Kinematics I

Spring 2005

What you should know

- What is the kinematics?
- Coordinate systems
- The difference between scalar and vector?
- Vector summation method (graphically and mathematically)
- Distance and displacement?
- Speed and Velocity?
- Acceleration?
- Tangential Method (Instantaneous vs. Average)

What is the kinematics?

→ Linear Kinematics and Angular Kinematics

Linear Motion (=Translation)

• Rectilinear

- No change in both _____ of motion and _____ of the object during movement
- All points on the object move the same distance.
- Curvilinear
 - Change in direction of motion, but
 No change in _____ of the ____
 object _____
 - All points on the object move the same distance

Angular Motion (=Rotation)

- Occur about an _____ within a body or outside of the body.
- Continual change of orientation during movement.
- As the object moves, the paths that each point follows _____ path with having same center or axis

General Motion (Translation+Rotation)

• Combination of linear and angular motions

Descriptions

- **<u>Position</u>** : location in space
- Where is it now? \rightarrow Need information.
- <u>: X & Y-coordinate</u> system with reference point (origin)

Descriptions

•

: Describe the

position with *r* (resultant) and θ .

 $X = r \cdot \cos \theta, \quad Y = r \cdot \sin \theta$ (15, 80) = [81.4*cos*(79.4?), 81.4*sin*(79.4?)] • Cartesian coordinate vs Polar coordinate

 $\sin \theta = 3/r \rightarrow 3 = r \sin \theta, \ r = 3/\sin \theta$ $\cos \theta = 5/r \rightarrow 5 = r \cos \theta, \ r = 5/\cos \theta$

Scalar vs. Vector

- Scalar: physical quantity that is completely described by its
- No negative quantity ex) mass, time, distance, speed,

• Vector: physical quantity that possess both _____ and

ex) displacement, velocity, acceleration,....

Example: Walking north and east, then north and east again:

Displacement ("as the crow flies")?

Magnitude d

Direction θ

Examples - Angular distance and displacement.

Diving, gymnastics: "triple somersault with a full twist" 3.0 revolutions about a transverse axis (somersaulting axis) combined with 1 rev about a longitudinal axis (twisting axis) transverse axis $\phi = ___{\theta=}^{-} \theta = ___{0}^{-}$ long. axis $\phi = ___{\theta=}^{-} \theta = ___{0}^{-}$

Discus throw:

Body rotates through _____ rotations prior to discus release.

 ϕ = ____ rev θ = ____ rev

Joint range of motion:

The elbow and knee have ROM's of approximately 150 degrees.

φ = _____ θ = ____

Typical units - 3 used commonly: revolutions, radians, degrees

1 rev = 2B rad (i.e., 6.28 rad) = 360 deg 1 rad = 57.3 deg

Distance Traveled and Displacement *How far?*

- <u>Distance Traveled</u>: a measure of the length followed by the object whose motion is being described, from its starting (initial) position to its ending (final) position.
- Scalar quantity (No direction)
- Symbol = λ

- <u>Resultant Displacement</u>: the length from the initial position to the final position
- Vector quantity
- Symbol = d
- Calculation?

∕∠<u>How fast</u>?

Describing rate of change of linear or angular position with respect to (wrt) time

Speed or Velocity: <u>Rate</u> at which a body moves from one position to another

Speed (scalar) Velocity (vector)

Note: There will be times when it is important to use velocity because of its vector characteristic.

Linear: Angular:

$$\overline{v} = \frac{d}{\Delta t}$$
 $\overline{\omega} = \frac{\theta}{\Delta t}$

Examples of linear speed or velocity:

Tennis: 125 mph (55.9 m/s) serve v = 125 mph = 55.9 m/s Pitching: 90 mph (40.2 m/s) fastball v = 90 mph = 40.2 m/s

```
Running:
     Marathon (26.2 mi) - 2 hr 10 min
                              (2.17 hr)
        \overline{v} = 12.1 mph (5.4 m/s; 4:57 per mile)
     Sprinting - 100 m in 9.86 s
         \overline{v} = 10.14 m/s = 22.7 mph
     Football - "4.6" speed (40 yd in 4.6 s)
         \overline{v} = 7.95 m/s = 17.8 mph
Typical units of measurement for v:
 m/s, km/hr (kph), ft/s, mph
Examples of angular speed or velocity:
Auto engine speed - 3000 rpm
     \omega = 3000 rpm
 CD ROM drive - 400 rpm
     \omega = 400 rpm
 Cycling cadence - 90 rpm
     \omega = 90 rpm
 Isokinetic dynamometer (Cybex and others) -
    e.g., 60 deg/s
    \omega = 60 deg/s
```

Body segment ω's -

e.g., peak ω of soccer player's knee... 2400 deg/s . 6.7 rev/s

Typical units of measurement for ω: rpm, deg/s, rad/s

Average vs. Instantaneous Velocities

Average speed per race distance:

100 m...marathon

Race that produces highest average speed?

Sometimes \overline{v} over relatively long t is not very informative - reflects need for a "kinematic profile" for more detailed information about performance

e.g., distance running - split times

e.g., sprinting - 1987 T&F World Champ. Johnson vs. Lewis 9.83 s 9.93 s $\Delta = 0.100$ s

Where was race won or lost?Reaction time: $\Delta = 0.067$ sAfter 10 m: $\Delta = 0.100$ s

By decreasing t over which we examine velocity and other kinematic information, we approach *instantaneous* estimates of performance - gives more detail about performance.

e.g., during a soccer kick (next page):

Ben vs. Carl

Table 5.1 & 5.2 Result of 1988 Seoul Olympics

	Ben Johnson		Carl Lewis						
	Elapsed	Interval	Elapsed	Interval	Elapsed	Interval		Ben	Carl
	time(s)	time (s)	time(s)	time(s)	time diff(s)	time diff	Interval (m)	Avg. Speed	Avg. Speed
Position (m)					(Ben - Carl)			(m/s)	(m/s)
0	0		0						
10	1.83	1.83	1.89	1.89	-0.06	-0.06	0-10	5.46	5.29
20	2.87	1.04	2.96	1.07	-0.09	-0.03	10-20	9.62	9.35
30	3.8	0.93	3.9	0.94	-0.1	-0.01	20-30	10.75	10.64
40	4.66	0.86	4.79	0.89	-0.13	-0.03	30-40	11.63	11.24
50	5.5	0.84	5.65	0.86	-0.15	-0.02	40-50	11.9	11.63
60	6.33	0.83	6.48	0.83	-0.15	0	50-60	12.05	12.05
70	7.17	0.84	7.33	0.85	-0.16	-0.01	60-70	11.9	11.76
80	8.02	0.85	8.18	0.85	-0.16	0	70-80	11.76	11.76
90	8.89	0.87	9.04	0.86	-0.15	0.01	80-90	11.49	11.63
100	9.79	0.9	9.92	0.88	-0.13	0.02	90-100	11.11	11.36

Ben vs. Carl

⊄<u>Acceleration</u>

Describing the rate of change of linear or angular velocity wrt time

Vector only - no scalar equivalent

Linear:

Angular:

Typical units of measurement for acceleration: Linear - m/s², ft/s² Angular - deg/s², rad/s²

Example - linear

An athlete described as being "quick" or having "good acceleration" - same as being fast?

<u>No</u>, acceleration describes a person's ability to <u>change speed or direction</u>; doesn't describe top speed.

Example - angular

Throwing a baseball

Angular speed of shoulder internal rotation increases from zero to 1800 deg/s in 26 ms just prior to release...

Ball velocity at release correlates strongly (r=.75) with shoulder internal rotation speed at release (Sherwood, 1995).

<u>Example – linear</u>: Auto accelerations - Indy car vs. Corvette

Indy car				Corvette			
∆mph	∆m/s	∆t (s)	ā (m/s²)	∆mph	∆m/s	∆t (s)	ā (m/s²)
0-60	0-26.8	2.0	13.42	0-30	0-13.4	1.8	7.45
60-80	26-8-35.8	0.9	9.94	30-40	13.4-17.9	1.0	4.47
80-100	35.8-44.7	1.1	8.13	40-50	17.9-22.4	1.5	2.98
100-120	44.7-53.7	1.2	7.45	50-60	22.4-26.8	1.7	2.63
120-140	53.7-62.6	1.4	6.39	60-70	26.8-31.3	1.8	2.48
140-160	62.6-71.6	1.5	5.96	70-80	31.3-35.8	2.2	2.03
160-180	71.6-80.5	1.5	5.96	80-90	35.8-40.3	2.8	1.60

When is speed or velocity highest for Indy car?

When is acceleration highest for Indy car?

Is the speed or velocity of the Indy car changing approximately 6-8 seconds after the start?

Link between position, velocity, and acceleration:

<u>Velocity</u> - rate of change of <u>position</u> wrt time

Acceleration - rate of change of velocity wrt time

- X Instantaneous <u>velocity</u> is reflected by the *slope* of the <u>position</u> curve at some instant in time.
- X Instantaneous <u>acceleration</u> is reflected by the *slope* of the <u>velocity</u> curve at some instant in time.

See soccer kick - angular position, velocity, and acceleration graphs next page

Tangential Method (Displacement \rightarrow Velocity)

- 1. Find out "_____" (slope + to or to +)
 - Mark the instance (the specific time)
 - Velocity = 0 at the instance

2. Find out "

" (slope
$$\uparrow \& \downarrow$$
 or $\uparrow \& \downarrow$)

- Mark the instance (the specific time)
- Velocity = peak at the instance (flexion point of velocity)
- 3. Categorize positive and negative slope area
 - d uphill \rightarrow V positive, d downhill \rightarrow V negative
 - Watch out deflexion point!!
- 4. Create the velocity curve based on the slope of displacement graph.

Position			17
			Can you deduce the position vs. time and acceleration vs. time profiles based on the velocity profile of a hand reaching for a
Velocity	Time		glass of water?
Acceleration	Time		
		Time	

Six Cases of Acceleration								
Case	Change in	Starting	Ending	Δv	Accel.			
	Speed	Direction	Direction		$(\Delta v / \Delta t)$			
1	Speeding							
	up							
2	Slowing							
	down							
3	Speeding							
	up							
4	Slowing							
	down							
5	Reversing							
	directions							
6	Reversing							
	directions							

Notes:

- 1. Speeding up in the positive direction = _____ acceleration
- 2. Slowing down in the positive direction = _____ acceleration
- 3. Speeding up in the negative direction = _____ acceleration
- 4. Slowing down in the negative direction = _____ acceleration
- 5. *Reversing directions* from positive to negative = _____ acceleration
- 6. *Reversing directions* from negative to positive = _____ acceleration.