YOU ARE NOT ALLOWED TO TAKE SPARE COPIES OF THIS EXAM FROM THE TESTING ROOM

- PRINT YOUR NAME ON EACH PAGE!
- WRITE CLEARLY!
- READ THE DIRECTIONS CAREFULLY!
- MOLECULAR MODELS ARE ALLOWED
- USE BLANK PAGES AS SCRATCH PAPER
- DO NOT USE RED INK
- DON'T CHEAT, USE COMMON SENSE!

H
Li Be
Na Mg
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Interaction Energies, kcal/mol

<table>
<thead>
<tr>
<th></th>
<th>Eclipsing</th>
<th>Gauche</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/H</td>
<td>-1.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>N/Ne</td>
<td>-1.4</td>
<td>-0.95</td>
</tr>
<tr>
<td>Me/Me</td>
<td>~2.6</td>
<td>~1.1</td>
</tr>
<tr>
<td>Et/Me</td>
<td>~0.95</td>
<td></td>
</tr>
<tr>
<td>i-Pr/Me</td>
<td>~1.1</td>
<td></td>
</tr>
<tr>
<td>t-Bu/Me</td>
<td>~2.7</td>
<td></td>
</tr>
<tr>
<td>Gauche</td>
<td>~3.1</td>
<td>-2.7</td>
</tr>
</tbody>
</table>

Infrared Correlation Chart

NMR Correlation Charts

ANSWER KEY

YOU MUST COMPLETE THIS PAGE WITH YOUR NAME
(EVEN THOUGH YOU ALREADY DID THIS ON THE COVER PAGE)
AND ALSO GIVE YOUR ASU OR POSTING ID NUMBER
WE NEED THIS NUMBER BECAUSE YOU WOULDN'T BELIEVE THE NUMBER OF STUDENTS WHOSE NAMES WE CAN'T READ!

PRINTED
FIRST NAME ________________
PRINTED
LAST NAME ________________
ASU ID or Posting ID ________________

Points by question
1 __________ /14
2 __________ /21
3 __________ /12
4 __________ /36
5 __________ /18
6 __________ /20
7 __________ /30
8 __________ /24

Points Removed for cover errors ___/2

Extra Credit ___/5

Total (incl Extra) ________/175+5

YOU ARE NOT ALLOWED TO TAKE SPARE COPIES OF THIS EXAM FROM THE TESTING ROOM
Question 1 (14 pts.) Give the IUPAC name for the following structure, include all stereochemistry as appropriate.

6-bromo-3-ethyl-2-methyl-(3Z)-heptene

Question 2 (21 pts) For the proton nmr spectrum of the provided structure, circle the hydrogen atom or atoms that would have the smallest chemical shift, and also the hydrogen atom or atoms that would have the largest chemical shift, clearly indicate which is which. Give a BRIEF EXPLANATION that includes the term DESHIELDING.

To determine which proton has the largest chemical shift you will need to draw a minor resonance contributor, draw this minor contributor as part of your answer, be sure to include all curved arrow pushing, resonance arrows and resonance brackets.

the protons with the smallest chemical shift are least deshielded, they are farthest from the functional groups

the minor resonance contributor shows a partial positive charge on the carbon carrying the proton, which deshields and increases chemical shift

Question 3 (12 pts.) For each of the following 2 structures, indicate how many signals would you expect to see in a 13Carbon nmr spectrum.

four grading:
2 = 2 pts
3 = 3 pts
4 = 6 pts
6 = 3 pts
8 = 2 pts

five grading:
3 = 2 pts
4 = 3 pts
5 = 6 pts
6 = 3 pts
8 = 1 pt
Question 4 (36 pts) Give the curved-arrow pushing for the following reaction. For each intermolecular, indicate the Lewis acid/base (LA/LB) and Bronsted acid/base (BA/BB) where appropriate.

b) How many steps are there in your mechanism? ____________
c) How many transition states are associated with your mechanism? ____________
d) Draw a reaction energy diagram for your mechanism, label the axes, indicate the positions of the reactants, products and any intermediates (don't redraw the structures, you can circle the items on the mechanism and use arrows, or use symbols such as I1 for intermediates 1 etc.). Indicate the activation energy for each step, the reaction exothermicity and the rate determining step.

e) Draw below the transition state for the rate determining step (only)
Question 5 (18 pts.) Give the missing major organic products OR reagents/conditions as appropriate for each of the following reactions, include all non-bonding electrons.

a) \[
\begin{align*}
\text{1. } & \text{H}_2\text{O/Hg(OAc)}_2 \\
\text{2. } & \text{NaBH}_4 \\
\end{align*}
\]

b) \[
\begin{align*}
\text{1. } & \text{BH}_3\text{-THF} \\
\text{2. } & \cdot\text{OH/H}_2\text{O}_2 \\
\end{align*}
\]

Extra Credit (5 pts) Dr. Gould had a conversation with his daughter about which topic?

- cis- and trans-
- saturated and unsaturated
- acids and bases
- Markovnikov and Anti-Markovnikov
Question 6 (20 pts.) For the structures A and B, draw the conjugate base anion formed upon deprotonation of the hydrogen atoms bonded to nitrogen, indicated. Be sure to include ALL resonance structures where appropriate. Indicate which would be the stronger Bronsted acid, A or B, and give a BRIEF explanation for your choice.

B deprotonation gives a resonance stabilized anion with negative charges on N and O, which makes the most stable anion, deprotonation of B puts the negative charge on N and C which is higher in energy than that from C, higher energy electrons in the base means stronger base and weaker conjugate acid.

Question 7 (30 pts.) For the following Bronsted acid/base equilibrium:
1. Give the curved arrow-pushing and indicate the stronger and weaker acid and base on each side and indicate which acid has the larger and smaller pKa values
2. Draw a reaction energy diagram, indicate which reaction would be faster and on which side the equilibrium would lie, give a BRIEF explanation that includes drawing of resonance contributors as appropriate
3. Give a drawing of the transition state

The anion base on the left is more stable (it has lower energy electrons) due to the non-bonding electrons in an sp hybridized orbital compared to sp3 on the right, thus the base on the left is weaker, the conjugate acid is stronger, the stronger acid and stronger base react faster.
Question 8 (24 pts) Provided are spectra for a compound with molecular formula $C_{10}H_{14}$

a) Give the degrees of unsaturation $\underline{4}$

b) On the infrared spectrum, indicate which peaks correspond to which functional groups (including C(sp3)-H). Indicate BOTH the functional group, and where appropriate, the specific BOND in the functional group that corresponds to the peak.

c) Draw the structure and clearly indicate which hydrogens correspond to which signals in the proton nmr spectrum.