High Redshift AGN and Their Host Galaxies:
PSF-subtraction, Coronagraphy(?) & SED-fitting.

Rogier Windhorst (ASU) — JWST Interdisciplinary Scientist
S. Cohen, R. Jansen (ASU), C. Conselice (UK), S. Driver, S. Wyithe (OZ), B. Frye (UofA), & H. Yan (U-MO)
+ ASU Grads: N. Hathi, H. Kim, M. Mechtley, R. Ryan, M. Rutkowski, B. Smith, & A. Straughn

Outline:

(1) High-z AGN and Their Host Galaxies:
PSF-subtraction, Coronagraphy? & SED-fits.

• How did Galaxy Assembly keep up with Supermassive Black-Hole Growth?

• (2) Summary and Conclusions.

Talk at the JWST GTO Workshop, May 17, 2016; National Research Council, Victoria (BC, Canada).

(1a) HST WFC3 observations of QSO host systems at $z \approx 6$ (age $\lesssim 1$ Gyr)

- PSF-star ($AB \approx 15$ mag) subtracts $z=6.42$ QSO ($AB \approx 18.5$) nearly to the noise limit: NO host galaxy detected $100 \times$ fainter ($AB \gtrsim 23.5$ at $r \gtrsim 0''3$).
(1a) WFC3: Detection of one QSO Host System at $z \approx 6$ (Giant merger?)

- First detection out of four $z \approx 6$ QSOs [2 more to be observed].
- One $z \approx 6$ QSO host galaxy: Giant merger morphology + tidal structure?
- Same J+H structure! Blue UV-SED colors: $(J-H) \approx 0.19$, constrains dust.
 - IRAS starburst-like SED from rest-frame UV–far-IR, $A_{FUV} \sim 1$ mag.
 - $M_{host}^{AB}(z \approx 6) \lesssim -23.0$ mag, i.e., ~ 2 mag brighter than $L^*(z \approx 6)$.
HST WFC3 observations of dusty QSO host galaxies at \(z \sim 6 \)

- **Blue dots:** \(z \sim 6 \) QSO SED, **Grey:** Average radio-quiet SDSS QSO spectrum at \(z \gtrsim 1 \) (normalized at 0.5 \(\mu m \)). **Red:** \(z \sim 6 \) host galaxy (WFC3+submm).

- **Nearby fiducial galaxies** (starburst ages \(< 1 \) Gyr) normalized at 100 \(\mu m \):
 - [LEFT] Rules out \(z=6.42 \) spiral or bluer host galaxy SEDs for 1148+5251.
 - [RIGHT] Detected QSO host has IRAS starburst-like SED from rest-frame UV–far-IR, \(A_{FUV} \)(host) \(\sim 1 \) mag (Mechtley 2013 PhD; et al. 2016).

- **JWST (+Coronagraphs?)** can do this \(\gtrsim 10 \times \) fainter: will do 2 in GTO time.
(1b) WFC3 observations of QSO host galaxies at $z \simeq 2$ (evidence for mergers?)

- JWST (+Coronagraphs?) can do this $\gtrsim 10 \times$ fainter: in restframe V for $z \gtrsim 6$.
Conclusions re. JWST Observations of \(z \gtrsim 6 \) Host Galaxies

(1) JWST studies of the host galaxies of AGN at \(z \gtrsim 6 \) will require:

- Consideration of the likely very dusty host galaxy nature, given the limited fraction of faint host system detections with WFC3 IR at \(z \gtrsim 6 \).
- Given the likely small host galaxy sizes \((r_{hl}) \), very careful contemporaneous PSF subtraction may work better than Coronagraphy.

(2) Purpose of this Conference: Coordinate closely with MIRI (G. Rieke et al.) and other GTO teams (NIRISS) an optimal plan to observe host galaxies of AGN at \(z \sim 2–6 \).

This IDS GTO team will likely do two QSO’s at \(z \gtrsim 6 \) and two at \(z \sim 2 \).