High Redshift AGN and Their Host Galaxies: PSF-subtraction, Coronagraphy(?) & SED-fitting.

Rogier Windhorst (ASU) — JWST Interdisciplinary Scientist

S. Cohen, R. Jansen (ASU), C. Conselice (UK), S. Driver, S. Wyithe (OZ), B. Frye (UofA), & H. Yan (U-MO)

+ ASU Grads: N. Hathi, H. Kim, M. Mechtley, R. Ryan, M. Rutkowski, B. Smith, & A. Straughn

Outline:

(1) High-z AGN and Their Host Galaxies:

PSF-subtraction, Coronagraphy? & SED-fits.

- How did Galaxy Assembly keep up with Supermassive Black-Hole Growth?
- (2) Summary and Conclusions.

Talk at the JWST GTO Workshop, May 17, 2016; National Research Council, Victoria (BC, Canada).

Talks are on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/windhorst_AGNhosts16.pdf

(1a) HST WFC3 observations of QSO host systems at $z\simeq6$ (age $\lesssim1$ Gyr)

- Careful contemporaneous orbital PSF-star subtraction: Removes most of "OTA spacecraft breathing" effects (Mechtley ea 2012, ApJL, 756, L38).
- PSF-star (AB \simeq 15 mag) subtracts z=6.42 QSO (AB \simeq 18.5) nearly to the noise limit: NO host galaxy detected 100 \times fainter (AB \gtrsim 23.5 at r \gtrsim 0".3).

(1a) WFC3: Detection of one QSO Host System at $z \simeq 6$ (Giant merger?)

- Markov Chain Monte Carlo posterior model of observed PSF-star + Sersic light-profile. Gemini AO images to pre-select PSF stars (Mechtley⁺ 2014).
- First detection out of four $z\simeq 6$ QSOs [2 more to be observed].
- One z≃6 QSO host galaxy: Giant merger morphology + tidal structure?
- Same J+H structure! Blue UV-SED colors: (J−H) ≥ 0.19, constrains dust.
 - ullet IRAS starburst-like SED from rest-frame UV–far-IR, A $_{FUV}{\sim}1$ mag.
 - $M_{AB}^{host}(z\simeq6)\lesssim -23.0$ mag, i.e., \sim 2 mag brighter than $L^*(z\simeq6)$.

(1a) HST WFC3 observations of dusty QSO host galaxies at z≥6

- Blue dots: $z \simeq 6$ QSO SED, Grey: Average radio-quiet SDSS QSO spectrum at $z \gtrsim 1$ (normalized at 0.5μ). Red: $z \simeq 6$ host galaxy (WFC3+submm).
- Nearby fiducial galaxies (starburst ages $\lesssim 1$ Gyr) normalized at 100μ m: [LEFT] Rules out z=6.42 spiral or bluer host galaxy SEDs for 1148+5251. (U)LIRGs & Arp 220s permitted (Mechtley et al. 2012, ApJL, 756, L38). [RIGHT] Detected QSO host has IRAS starburst-like SED from rest-frame UV–far-IR, A_{FUV} (host) ~ 1 mag (Mechtley 2013 PhD; et al. 2016).
- JWST (+Coronagraphs?) can do this $\gtrsim 10 \times$ fainter: will do 2 in GTO time.

(1b) WFC3 observations of QSO host galaxies at $z\simeq 2$ (evidence for mergers?)

- Markov Chain Monte Carlo posterior model of observed PSF-star + Sersic light-profile: merging neighbors (some with tidal tails?; Mechtley, M., Jahnke, K., Windhorst, R. A., et al. 2016, astro-ph/1510.08461).
- JWST (+Coronagraphs?) can do this $\gtrsim 10 \times$ fainter: in restframe V for $z \gtrsim 6$.

Conclusions re. JWST Observations of z\26 Host Galaxies

- (1) JWST studies of the host galaxies of AGN at $z \gtrsim 6$ will require:
- Consideration of the likely very dusty host galaxy nature, given the limited fraction of faint host system detections with WFC3 IR at $z\gtrsim6$.
- Given the likely small host galaxy sizes (r_{hl}), $very\ careful\ contemporaneous\ PSF\ subtraction$ may work better than Coronagraphy.
- (2) Purpose of this Conference: Coordinate closely with MIRI (G. Rieke et al.) and other GTO teams (NIRISS) an optimal plan to observe host galaxies of AGN at $z\simeq 2-6$.

This IDS GTO team will likely do two QSO's at $z \gtrsim 6$ and two at $z \sim 2$.

SPARE CHARTS