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Outline: Key future observations to understand Reionization

• (1) Dust in QSO host galaxies: first WFC3 z≃6 QSO host galaxy
detection this month ...

• (2) How does the IMF depend on environment, Fe/H, and epoch?

• (3) Lyα at very high redshifts — through holes in the HI and dust?

• (4) What has HST done on Reionization, Galaxy Assembly, & Super-
massive Black-Hole Growth, and what will JWST do? (see M. Stiavelli).

• (5) Radio- and GRB-selected unobscured Star-Formation vs. epoch.

• (6) Far-IR-selected unobscured Star-Formation vs. of epoch.

• (7) Gravitational Lensing to see the Reionizing population at z>
∼8.

• (8) Summary and Conclusions.

Sponsored by NASA/HST & JWST



Red Center First Light Conference — a great week, we learned about:

Monday: Reionization (bubbles): Theory Monday: Ionization fraction XHII(z)

Tuesday: Steep faint-end of galaxy LF Wednesday am: HI, EOR, & HII bubbles



DUST MATTERS (as we all experienced yesterday):

Gas and dust can dim and redden
the light from your favorite star(s),

as well as the light from your
favorite quasars ...



Focus of Talk: How to find all of the Reionizing population despite dust & HI



[Left] CSIRO/ATNF 1.4 GHz image of Cen A (Feain, Cornwell & Ekers (2009).

Fermi GeV source (Yang+ 12); & Auger UHE Cosmic Rays (Abreu+ 2010).

[Middle] SF in Cent A jet’s wake (Crockett+ 2012, MNRAS, 421, 1602).

[Right] Well determined ages for young (∼2 Myr) stars near Cen A’s jet.

• JWST will trace older stellar pops and SF in much dustier environments.

• We must do all we can with HST in the UV–blue before JWST flies.



One day we will need a UV-optical sequel to Hubble:

[Left] One of two spare 2.4 m NRO mirrors: one will become WFIRST.

• NASA may look for partners to turn 2nd NRO into UV-opt HST sequel.

[Middle] HORUS: 3-mirror anastigmat NRO as UV-opt HST sequel.

• Can do wide-field (∼0.25 deg) UV-opt 0′′.06 FWHM imaging to AB<
∼29-

30 mag, and high sensitivity (on-axis) UV-spectroscopy.

[Right] ATLAST: 8–16 m UV-opt HST sequel, with JWST heritage.

• Can do same at 9 m.a.s. FWHM routinely to AB<
∼32-34 mag,

[and an ATLAST-UDF to AB <
∼38 mag ∼1 pico-Jy].



(1) HST WFC3 observations of QSO host galaxies at z≃6 (age<
∼1 Gyr)

• Careful contemporaneous orbital PSF-star subtraction: Removes most of
“OTA spacecraft breathing” effects (Mechtley ea 2012, ApJL, 756, L38).

• PSF-star (AB≃15 mag) subtracts z=6.42 QSO (AB≃18.5) nearly to the
noise limit: NO host galaxy detected 100×fainter (AB>

∼23.5 at r>
∼0′′.3).



(1) HST WFC3 observations of dusty QSO host galaxies at z≃6 (age<
∼1 Gyr)
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• TinyTim fit of PSF-star + Sersic models QSO nearly to the noise limit:
NO z=6.42 host galaxy at AB>

∼23.5 mag at radius r≃0′′.3–0′′.5.

THE most luminous Quasars in the Universe: Are all their host galaxies
faint (dusty)? ⇒ Major implications for Galaxy Assembly–SMBH Growth.



(1) HST WFC3 observations of dusty QSO host galaxies at z≃6
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• TinyTim fit of PSF-star + Sersic models of galaxy light-profile, nearly to
the noise limit: NO host galaxy at AB>

∼23.0 mag with re≃0′′.5 (Mechtley
et al. 2012, ApJL, 756, L23; astro-ph/1207.3283)

• JWST Coronagraphs can do this 10–100× fainter (and for z<
∼20, λ<

∼28µm)
— but need JWST diffraction limit at 2.0µm and clean PSF to do this.



(1) WFC3: First detection of one QSO Host Galaxy at z≃6 (Giant merger?)

• Monte Carlo Markov-Chain of observed PSF-star + Sersic ML light-
profile. Gemini AO data critical for PSF stars (Mechtley+ 2013).

• First solid detection out of four z≃6 QSOs [3 more to be observed].

• One z≃6 QSO host galaxy: Giant merger morphology + tidal structure??

• Same J+H structure! Blue UV-SED colors: (J–H)≃0.19, constrains dust.

• IRAS starburst-like SED from rest-frame UV–far-IR, AFUV∼1 mag.

• Mhost
AB (z≃6)<

∼–23.0 mag, i.e., ∼2 mag brighter than L∗(z≃6)!

⇒ z≃6 QSO duty cycle <
∼10−2 (<

∼10 Myrs); 1/4 QSO’s close to Magorrian.



(1) HST WFC3 observations of dusty QSO host galaxies at z≃6
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• Blue dots: z≃6 QSO SED, Grey: Average radio-quiet SDSS QSO spec-
trum at z>

∼1 (normalized at 0.5µ). Red: z≃6 host galaxy (WFC3+submm).

• Nearby fiducial galaxies (starburst ages<
∼1 Gyr) normalized at 100µm:

[LEFT] Rules out z=6.42 spiral or bluer host galaxy SEDs for 1148+5251.

(U)LIRGs & Arp 220s permitted (Mechtley et al. 2012, ApJL, 756, L38).

[RIGHT] Detected QSO host has IRAS starburst-like SED from rest-frame
UV–far-IR, AFUV (host)∼1 mag (Mechtley et al. 2013b).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



• Mhost
AB (z≃6)<

∼–23.0 ≃ M∗–2 mag at z≃6; 1/4 QSOs @ Magorrian.

⇒ z≃6 QSO duty cycle (AFUV≃0→1) <
∼0.01→1.0 (<

∼10→950 Myrs).

• To study co-evolution of SMBH-growth & proto-bulge assembly for
z<
∼10–15 requires new AGN finding techniques for JWST (e.g., Mortlock).

• JWST Coronagraphs can also trace super-massive black-holes as faint
quasars in young galaxies: JWST needs 2.0µm diffraction limit for this.



(1) WFC3 observations of QSO host galaxies at z≃2 (evidence for mergers?)
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• Monte Carlo Markov-Chain runs of observed PSF-star + Sersic ML
light-profile models: merging neighbors (some with tidal tails?; Mechtley,
Jahnke, Koekemoer, Windhorst et al. 2013).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



(2) (How) does the IMF depend on environment, Fe/H, and epoch?

• Gunawardhana+ (2011): GAMA AAT — 300 k-redshifts z<
∼0.4:

IMF-slope clearly depends on MAB, Specific Star-Formation Rate (sSFR),
& and similarly on SF-density (SFD). Critical for Reionization studies.

• JWST NIRSpec can do this 103–104× fainter (survey Hα for 0.5<
∼z<
∼6.5).



(3) Lyα at very high redshifts — through holes in the HI and dust?

(see many talks & posters this Conf, e.g.,: Dijkstra, McLinden, Schenker).

• Finkelstein+ (2013, Nature, subm.): Keck MOSFIRE spectra of z-drops.
Possible z≃7.51 Lyα confirmation of AB∼25.5 mag z-drop in CANDELS.

• JWST NIRSpec can do this 100×fainter (survey/detect Lyα for 4.5<
∼z<
∼40).



Implications of the WMAP year-9 & Planck results for JWST science:

HST/WFC3 z<
∼7–9←− −→ JWST z≃8–25

The year-9 WMAP data provided better foreground removal (Komatsu+

2011; Hinshaw+ 2012; but see: Planck XVI 2013; see Reichardt’s talk):

=⇒ First Light & Reionization occurred between these extremes:

• (1) Instantaneous at z≃11.1±1.1 (τ=0.089±0.013), or, more likely:

• (2) Inhomogeneous & drawn out: starting at z>
∼20, peaking at z<

∼11,
ending at z≃7. The implications for HST and JWST are:

• HST/ACS has covered z<
∼6, and WFC3 is covering z<

∼7–9.

• For First Light & Reionization, JWST will survey z≃8 to z≃15–20.

Question: If Planck-τ ↓ <
∼0.08 (TBD), then how many reionizers will

JWST see at z≃10–20?



4) What has HST done on reionization & galaxy assembly; what will JWST do?

10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10-σ)
over 40 arcmin2 at 0.07–0.15” FWHM from 0.2–1.7µm (UVUBVizYJH).

JWST adds 0.05–0.2” FWHM imaging to AB≃31.5 mag (1 nJy) at 1–
5µm, and 0.2–1.2” FWHM at 5–29µm, tracing young+old SEDs & dust.



z~1.61

z~2.04

z~2.69

F160WF125WF098MF850LPF775WF606WF435WF336WF275WF225W

Lyman break galaxies at the peak of cosmic SF (z≃1-3; Hathi+ 2010, 2013)

• JWST will similarly measure faint-end LF-slope evolution for 1<
∼z<
∼12.

(e.g., Bouwens+ 2010, 2013; Hathi+ 2010, 2013; Oesch + 2010; Robinson+

2013; see also talks by Ellis, Bouwens, & Oesch).



Finkelstein et al. (2013): Depending on how quickly faint-end of LF α(z)
and Clumping factor/escape fraction C/fesc evolve with epoch at z>

∼7,
faint-end of galaxy LF may complete reionization.

• JWST will be able to identify many of the reionizing dwarf galaxies to
AB<
∼31 mag, depending on C/fesc .
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Evol of LF-slope α (top), M∗ (bottom), & UV-slope β (right; Hathi+ 10,13)

• JWST z>
∼8, expect faint-end slope α≃–2.0 (see Bouwens’ talk).

• JWST z>
∼8, expect UV β<

∼–2.2 (Finkelstein+12; Bouwens, Jiang talks).

⇒ Both important for cosmic reionization at z>
∼6 by dwarf galaxies.

NOTE: Faint-end slope α–1.5 to –1.6 at z≃1.5–2 (also Siana 2012).

• JWST at z>
∼8: see if characteristic luminosity M∗ >

∼–19 mag.

⇒ Could cause significant gravitational lensing bias at z>
∼8–10.



WFC3 ERS 10-band redshift estimates accurate to <
∼4% with small sys-

tematic errors (Hathi et al. 2010, 2013), resulting in a reliable N(z).

• Measure masses of faint galaxies to AB=26.5 mag, tracing the process
of galaxy assembly: downsizing, merging, (& weak AGN growth?).

⇒ Median redshift in (medium-)deep fields is zmed ≃1.5–2.

• JWST will trace mass assembly and dust content <
∼5 mag deeper from

z≃1–12, with nanoJy sensitivity from 0.7–5µm.



Panchromatic Galaxy Counts from λ ≃0.2–2µm for AB≃10–31 mag

Data: GALEX, GAMA, HST ERS + HUDF/XDF ACS+WFC3 (e.g., Windhorst et al. 2011; Ellis+ 2012; Illingworth+ 2012;

Teplitz+2013): F225W, F275W, F336W, F435W, F606W, F775W, F850LP, F098M/F105W, F125W, F140W, F160W.

• HUDF: Faint-end near-IR mag-slopes≃ 0.22±0.02 to AB<
∼31 mag⇐⇒

At zmed ≃1.6, faint-end LF-slope α≃–1.5–1.6 to MAB≃–14 mag !

⇒ Extrapolation of LF(z>
∼2) to AB≃–10 is entirely plausible.



• Objects at z>
∼9 are rare (Bouwens+ 12; Trenti,+ 10; Yan+ 10), since

volume elt is small, and JWST samples brighter part of LF. JWST needs
its sensitivity/aperture (A), field-of-view (Ω), and λ-range (0.7-29 µm).

• With proper survey strategy (area AND depth), JWST can trace the
entire reionization epoch and detect the first star-forming objects.

• JWST Coronagraphs can also trace super-massive black-holes as faint
quasars in young galaxies: JWST needs 2.0µm diffraction limit for this.



(5) Radio- and GRB-selected unobscured Star-Formation vs. epoch.
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RLF: Spirals, Starburst galaxies, AGN (Ell+Quasars).

1.41 GHz counts (Windhorst+ 1993, 2003) from 100 Jy to 100 nJy:

Filled circles below 10 µJy: 12-hr SKA simulation (Hopkins+ 2000).

Models: Ellipticals (dot-dash) and Quasars dominate counts >
∼1 mJy.

=⇒ For S1.4
<
∼0.3–1 mJy, radio population traces unobscured SF:

SF-galaxies (dashed) <
∼1 mJy; spirals (dot-long dash) <

∼100 nJy.

Need: LOFAR/ASKAP/SKA to see all radio-selected SF at z<
∼10-20.



[Left] Seymour+ (2008): radio-selected SFR(z): hi-res radio morphology,
radio spectra, 24µm/1.4 & far-IR/1.4GHz removes AGN; ν-normalized.

Haarsma+ (2000): radio-selected RLF(z) for SF galaxies at z<
∼2.

Grey: UV-optically selected SFR(z).

[RIGHT] Kistler+ (astro-ph/1305.1630): GRB-selected SFR(z):

Open squares = HST ACS and WFC3 data;

Closed = LF extrapolated to MAB≃–10 mag, using α(z).

• UV-optical selection could miss >
∼0.5 dex of SFD(z) for z>

∼6, unless
extrapolation to MAB ≃–10 is justified; OR: dusty SF in faint galaxies.

• JWST will use Balmer breaks for z<
∼12 and Hα for z<

∼6.5.



[Left] Kistler+ (astro-ph/1305.1630): Actual GRB-selected SFR(z) sample.

[Right] Extrapolation of LF(z) used to compute SFD(z), using known α(z)
for z<

∼8, extrapolation of α(z) [≃–2] for z>
∼8, and cutoff MAB≃–10.

Need decades of SWIFT + sequels to GRB–select unobscured SFR(z>
∼7).

• Ultradeep JWST samples can confirm GRB hosts for z<
∼12–20: using

100’s of hours integration, or lensing in rich clusters, and/or lensing bias
from random foreground halos.



(6) Far-IR-selected unobscured Star-Formation vs. of epoch.

Gruppioni et al. (2013): Herschel far-IR selected cosmic SFR(z) increases
significantly for z>

∼1–3, especially for Type 1 & 2 AGN.
Spirals and Starbursts less so — cosmic downsizing.

• JWST can trace SF using Balmer breaks at z<
∼11.5.



Magnelli et al. (2013): Herschel far-IR selected cosmic SFR(z) increases
significantly for z>

∼1, especially for LIRG’s and ULIRG’s.

• Herschel limited by resolution and sensitivity: Need: space-based far-IR
sequel to Herschel and JWST to survey dust-obscured SFR at z<

∼10.

• ALMA can map individual objects (see X. Fan’s talk).



(7) Gravitational Lensing to see the Reionizing population at z>
∼8.



(7) Gravitational Lensing to see the Reionizing population at z>
∼8.

• Barone-Nugent+ (2012): Possible z=8 galaxy in WFC3 BoRG survey
(Trenti+ 2011) lensed by foreground group: Foreground halos (z≃1–2)
may gravitationally lens or amplify galaxies at z>

∼8–10 (Wyithe et al. 2011).

• If common, this could change the landscape for JWST observing strategies.



Hard to see the forest for the trees in the first 0.5 Gyrs?:

• Foreground galaxies (z≃1–2 or age≃3–6 Gyr) may gravitationally lens
or amplify galaxies at z>

∼8–10 (cosmic age<
∼0.5 Gyr; Wyithe et al. 2011).

• This could change the landscape for JWST observing strategies.

• Strength of effect at z>
∼8–10 depends on how fast M∗ declines with z.



Two fundamental limitations may determine ultimate JWST image depth:

(1) Cannot-see-the-forest-for-the-trees effect [Natural Confusion limit]:
Background objects blend into foreground neighbors because of their own
diameter⇒ Need multi-λ deblending algorithms!

(2) House-of-mirrors effect [“Gravitational Confusion”]: First Light objects
at z>
∼8–10 may be gravitationally lensed by foreground halos.

⇒ May have to model/correct for this: Need new SExtractor!

⇒ If M∗(z>
∼10)>

∼–19, may need to model entire gravitational foreground.

• Proper JWST 2.0µm PSF and straylight specs essential to handle this.



(8) Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs:

• Most z≃6 QSO host galaxies faint (dusty?), with 1 exception: L>>L∗.

• Need: 2.4m (NRO)—16 meter UV-optical HST sequel after WFIRST.

(2) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail. JWST will determine:

• How dwarf galaxies formed at z<
∼20, and reionized the Universe by z>

∼6.

• How SMBH’s grew during the onset of galaxy assembly at z<
∼20.

• Constrain IMF as function of Mass/environment, Fe/H, epoch.

• Trace Hα at 0.5<
∼z<
∼6.5, and Lyα at z>

∼8 through holes in HI and dust.

(3) Need: LOFAR/ASKAP/SKA for Radio–selected unobscured SFR(z).

(4) Need: Chandra sequel to select weak AGN in faint galaxies at z<
∼20.

(5) Need: SWIFT +sequels for GRB–selected unobscured SFR(z).

(6) Need: ALMA +Herschel sequel: Far-IR-selected unobscured SFR(z).

(7) Need: Use gravitational lensing (bias) to survey Reionizers at z>
∼8.



SPARE CHARTS



At the end of reionization, dwarfs had beaten the Giants?, but ...



What comes around, goes around ...



• References and other sources of material shown:

http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool]

http://www.asu.edu/clas/hst/www/ahah/ [Hubble at Hyperspeed Java–tool]

http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/ [Clickable HUDF map]

http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/

http://ircamera.as.arizona.edu/nircam/

http://ircamera.as.arizona.edu/MIRI/

http://www.stsci.edu/jwst/instruments/nirspec/

http://www.stsci.edu/jwst/instruments/fgs

Gardner, J. P., et al. 2006, Space Science Reviews, 123, 485–606

Mather, J., & Stockman, H. 2000, Proc. SPIE Vol. 4013, 2

Windhorst, R., et al. 2008, Advances in Space Research, 41, 1965

Windhorst, R., et al. 2011, ApJS, 193, 27 (astro-ph/1005.2776).
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http://www.asu.edu/clas/hst/www/ahah/
http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/
http://www.jwst.nasa.gov/
http://www.stsci.edu/jwst/
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http://ircamera.as.arizona.edu/MIRI/
http://www.stsci.edu/jwst/instruments/nirspec/
http://www.stsci.edu/jwst/instruments/fgs




JWST underwent several significant replans and risk-reduction schemes:

• <
∼2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.

• 2005: Eliminate costly 0.7-1.0 µm performance specs (kept 2.0 µm).

• 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.

• 2006: All critical technology at Technical Readiness Level 6 (TRL-6).

• 2007: Further simplification of sun-shield and end-to-end testing.

• 2008: Passes Mission Preliminary Design & Non-advocate Reviews.

• 2010, 2011: Passes Mission Critical Design Review: Replan Int. & Testing.



(Left) 128-hr HST/WFC3 IR-mosaic in HUDF at 1–1.6µm (YJH filters;
Bouwens et al 2010, Yan et al. 2010; +85-hr by R. Ellis in 09/2012).

(Right) Same WFC3 IR-mosaic, but stretched to <
∼10−3 of Zodical sky!

• The CLOSED-TUBE HST has residual low-level systematics: Imperfect
removal of detector artifacts, flat-fielding errors, and/or faint straylight.

⇒ The open JWST architecture needs very good baffling and rogue path
mitigation to do ultradeep JWST fields (JUDF’s) to 10−4 of sky.



(4) Recent results of Hubble WFC3 on Galaxy Assembly, & what JWST will do:

Galaxy structure at the peak of the merging epoch (z≃1–2) is very rich:
some resemble the cosmological parameters H0 , Ω, ρo, w, and Λ, resp.

Panchromatic WFC3 ERS images of early-type galaxies with nuclear star-
forming rings, bars, weak AGN, or other interesting nuclear structure.

(Rutkowski ea. 2012 ApJS 199, 4) =⇒“Red & dead” galaxies aren’t dead!

• JWST will observe any such objects from 0.7–29 µm wavelength.



(4) Rest-frame UV-evolution of Early Type Galaxies since z<
∼1.5.

(a)
(b)

• 10-band WFC3 ERS data measured rest-frame UV-light in nearly all
early-type galaxies at 0.3<

∼z<
∼1.5 (Rutkowski et al. 2012, ApJS, 199, 4).

=⇒ Most ETGs have continued residual star-formation after they form.

• Can determine their N(zform), which resembles the cosmic SFH dia-
gram (e.g., Madau et al. 1996). This can directly constrain the process of
galaxy assembly and down-sizing (Kaviraj, Rutkowski et al. 2012, MNRAS).

• JWST will extend this to all redshifts with Balmer+4000Å-break ages.



HST/WFC3 G102 & G141 grism spectra in GOODS-S ERS (Straughn+ 2010)

IR grism spectra from space: unprecedented new opportunities in astrophysics.

• JWST will provide near-IR grism spectra to AB<
∼29 mag from 2–5.0 µm.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15

• The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

• (1) Most spiral disks will
dim away at high redshift,
but most formed at z<

∼1–2.

Visible to JWST at very high
z are:

• (2) Compact star-forming
objects (dwarf galaxies).

• (3) Point sources (QSOs).

• (4) Compact mergers &
train-wrecks.



(5) Radio & X-ray host SED-ages: trace AGN growth directly?

Cohen+ (2013): GOODS/VLT UV+BVizJHK images + 1549 VLT redshifts.

Best fit Bruzual-Charlot (2003) SED + power law AGN.

Method: Multi-component SED fits (Windhorst & Cohen (2010).



Cohen+ (2013): GOODS/VLT UV+BVizJHK images + 1549 VLT redshifts.

Best fit Bruzual-Charlot (2003) SED + power law AGN.



Cohen et al. (2013): Best fit Stellar Mass vs. Age: X-ray and field galaxies.

Field galaxies have: Blue cloud of ∼100-200 Myr, Red cloud of >
∼1–2 Gyr.

• X-ray sources reside in galaxies that are a bit older than the general field
population, but by no more than <

∼0.5–1 Gyr on average.

• JWST+WFC3 can disentangle multiple SED + AGN power-law from
15-band photometry to AB=30 mag for z<

∼10.

• JWST can trace AGN-growth, host galaxy masses and ages since z∼10.



Cohen et al. (2013): Best fit Stellar Mass vs. Age: Radio and field galaxies.

Field galaxies have: Blue cloud of ∼100-200 Myr, Red cloud of >
∼1–2 Gyr.

• Radio galaxies are a bit older than the general field population, but by
no more than <

∼0.5–1 Gyr on average.

• JWST+WFC3 can disentangle multiple SED + AGN power-law from
15-band photometry to AB=30 mag for z<

∼10.

• JWST can trace AGN-growth, host galaxy masses and ages since z∼10.



Cohen+ (2013): ”AGN” fraction vs. stellar mass & z: X-ray and field gxys.

⇒ Many more with best-fit f(AGN)>
∼50% to be detected by IXO or SKA!

• JWST can trace power-law SED-fraction for M>
∼108 M⊙ and z<

∼10.



LEFT: 1549 CDF-S objects with z’s. RIGHT: 7000 CDF-S ERS with spz’s.

Cohen et al. (2013): Best fit extinction AV distribution: X-ray and field.

• In Hopkins et al. (2006, ApJS, 163, 1) scenario, dust and gas are expelled
after the starburst peaks and before before the AGN becomes visible.

• Older galaxies have less dust after merger/starburst/outflow.

• But the age-metallicity relation may complicate this.



Appendix 1: Will JWST (& SKA) reach the Natural Confusion Limit?
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• HUDF galaxy counts (Cohen et al. 2006): expect an integral of >
∼2×106

galaxies/deg2 to AB=31.5 mag (≃ 1 nJy at optical wavelengths). JWST
and SKA will see similar surface densities to ≃1 and 10 nJy, resp.

• ⇒ Must carry out JWST and SKA nJy-surveys with sufficient spatial
resolution to avoid object confusion (from HST: this means FWHM<

∼0′′.08).

• ⇒ Observe with JWST/NIRSpec/MSA and SKA HI line channels, to
disentangle overlapping continuum sources in redshifts space.
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Combination of ground-based and space-based HST surveys show:

• (1) Apparent galaxy sizes decline from the RC3 to the HUDF limits:

• (2) At the HDF/HUDF limits, this is not only due to SB-selection effects
(cosmological (1+z)4-dimming), but also due to:

• (2a) hierarchical formation causing size evolution:
rhl(z) ∝ rhl(0) (1+z)−1

• (2b) increasing inability of object detection algorithms to deblend galaxies
at faint mags (“natural” confusion 6= “instrumental” confusion).

• (3) At AB>
∼30 mag, JWST and at >

∼10 nJy, SKA will see more than

2×106 galaxies/deg2. Most of these will be unresolved (rhl
<
∼0′′.1 FWHM

(Kawata et al. 2006). Since zmed≃1.5, this influences the balance of how
(1+z)4-dimming & object overlap affects the catalog completeness.

• For details, see Windhorst, R. A., et al. 2008, Advances in Space Re-
search, Vol. 41, 1965, (astro-ph/0703171) “High Resolution Science with
High Redshift Galaxies”


