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What the Scientists See: What the Project Manager Sees:

Any (space) mission is a balance between what science demands, what
technology can do, and what budget & schedule allows ... (coutesy prot. & i)



Outline

® (1) Recent key lessons from the Hubble Wide Field Camera 3.
® (2) Update on JWST — given in Dr. Mark Clampin’s talk.

® (3) JWST Measuring Galaxy Assembly & Supermassive Black-Hole
Growth.

® (4) How can JWST measure the Epochs of First Light & Reionization?

® (5) Summary and Conclusions.
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JWST ~25X% larger than Hubble, so at ~2.5X larger wavelengths:
JWST has the same resolution in the near-IR as Hubble in the optical.
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2000 Decadal: JWST is the near—mid-IR sequel to HST and

e Vastly larger A(x€2) than HST in UV-optical and



(1) Recent key lessons from the Hubble Wide Field Camera 3.




Hubble Space Telescope Program

Role of ACS in HST Post-SM4 Imaging Capability

HST Discovery Efficiency
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ACS/WEFC superior to WFC3 survey efficiency at visible-red wavelengths
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— WFC3 opened major new parameter space for astrophysics in 2009:
WEFC3 filters designed for star-formation and galaxy assembly at z~1-8.

e HST WFC3 and its a critical pathfinder for JWST science.
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Well determined ages for young (~2 Myr) stars in Centaurus A jet, with
star-formation in jet's wake (Crockett et al. 2012, MNRAS, 421, 1602).

JWST will trace older stellar pops and SF in much dustier environments.

® \We must do all we can with HST in UV-blue before JWST flies.



HST WFC3 observations of Quasar Host Galaxies at z~6 (age<1 Gyr)
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e Careful contemporaneous orbital PSF-star subtraction: Removes most of
"OTA spacecraft breathing” effects (Mechtley ea 2012, ApJL, 756, L38)



HST WFC3 observations of Quasar Host Galaxies at z~6 (ageS1 Gyr)

TinyTim PSF Model Residual

THE most luminous Quasars in the Universe: Are all their host galaxies
faint = Major implications for Galaxy Assembly-SMBH Growth.



HST WFC3 observations of Quasar Host Galaxies at z~6 (ageS1 Gyr)
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e JWST Coronagraphs can do this 10-100 X fainter (and for z<20, AS28um)
— but need JWST diffraction limit at 2.0em and clean PSF to do this.
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e Blue dots: z=6.42 QSO SED, Grey: Average radio-quiet QSO spectrum
at zS1 (normalized at 0.5u).

e Nearby fiducial galaxies (starburst agesS1 Gyr) normalized at 100pm:
(U)LIRGs permitted.

e JWST Coronagraphs can do this 10-100 X fainter (and for z<20, AS28um).



(3) Brief Update of JWST — see Dr. Mark Clampin’s talk.

“Brilliantly done...breathtaking in its vision.”
The New York Times

Author of The Emperar’s Genaral
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(RIGHT) Life-size JWST prototype on the Capitol Mall.



® (4) How can JWST measure Galaxy Assembly?

: . L B |
10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 még ‘(1040')

over 40 arcmin® at 0.07-0.15" FWHM from 0.2-1.7um (UVUBViz

JWST adds 0.05-0.2" FWHM imaging to AB~31.5 mag (1 nly) at 1-
5pum, and 0.2-1.2" FWHM at 5-29um, tracing young+old SEDs & dust.



Some science results of the Wide Field Camera Early Release Science data:

Galaxy structure at the peak of the merging epoch (z~1-2) is very rich:
some resemble the cosmological parameters Hg , €2, po, w, and A, resp.

Panchromatic WFC3 ERS images of early-type galaxies with nuclear star-
forming rings, bars, weak AGN, or other interesting nuclear structure.

(Rutkowski ea. 2012 ApJS 199, 4) = "Red & dead"” galaxies aren't dead!
o JWST will observe any such objects from 0.7-29 pem wavelength.



Redshift
0.3 04 06 0810 14

ERS ETGs

-
)
0
S
S
Z

z

7

Time since z,=3.5 (Gyr) Formation redshift

e 10-band WFC3 ERS data measured rest-frame UV-light in nearly all
early-type galaxies at 0.35z31.5 (Rutkowski etal. 2012, ApJS, 199, 4).

e Can determine their N(z ¢4y, ), Which resembles the cosmic SFH dia-
gram (e.g., Madau etal. 1996). This can directly constrain the process of
galaxy assembly and down-sizing (Kaviraj, Rutkowski et al. 2012, MNRAS).

e JWST will extend Balmer+4000A-break ages to zS11.
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e JWST will similarly measure faint-end LF-slope evolution for 15z3512.

(e.g., Bouwens et al. 2010; Hathi et al. 2012, 2012; Oesch et al. 2010).




® This work [a(z)=-1.10-0.10xz]
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Redshift

® In the JWST regime at zZ8, expect faint-end LF slope aa~2.0.
® In the JWST regime at zZ 8, expect characteristic luminosity M * Z-19.

=> Could have critical consequences for gravitational lensing bias at zZ10.
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WFC3 ERS 10-band redshift estimates accurate to <4% with small sys-
tematic errors (Hathi et al. 2010, 2012), resulting in a reliable N(z).

e WFC3 is an essential pathfinder at z<8 for JWST (0.7-29 pum) at zZ9.

e JWST will trace mass assembly and dust content 3-4 mags deeper from
z~1-12, with nanoly sensitivity from 0.7-5um.



® Detailed Hydrody-
namical models (e.g., V.
Bromm) suggest that
massive Pop Ill stars may
have reionized universe at

redshifts z<10-30 (First
Light).

® A this should be visi-
ble to JWST as the first
Pop 1l stars and surround-
ing (Pop 11.5) star clus-
ters, and perhaps their ex-
tremely luminous super-
novae at z~10—230.

We must make sure we theoretically understand the likely Pop |lIl mass-
range, their IMF, their duplicity and clustering properties, their SN-rates,
etc.



Implications of the (2011) 7-year WMAP results for JWST science:
HST/WFC3 zS7-9 «— — JWST z~8-25
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e HST/ACS has covered z<6, and WFC3 is now covering zS7-9.
e For First Light & Reionization, JWST must sample z~8 to z~15-20.
= JWST must cover A=0.7-29 pm, with its diffraction limit at 2.0 pm.



(4) How will JWST measure First Light & Reionization?
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e Can't beat redshift: to see First Light, must observe near-mid IR.

= This is why JWST needs NIRCam at 0.8-5 ggm and MIRI at 5-28 pm.
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e Objects at zZ9 are rare (Bouwens"’ 10: Trenti T 10: Yan™ 10), since
volume elt is small, and JWST samples brighter part of LF. JWST needs
its sensitivity /aperture (A), field-of-view (£2), and A-range (0.7-29 pm).

e With proper survey strategy (area AND depth), JWST can trace the
entire reionization epoch and detect the first star-forming objects at z<20.

e JWST Coronagraphs can also trace super-massive black-holes as faint
quasars in young galaxies: JWST needs 2.0pm diffraction limit for this.
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o ~10-40% of the HUDF Y-drops and J-drops appear close to bright
galaxies (Yan et al. 2010, Res. Astr. & Ap., 10, 867).

e Expected from gravitational lensing bias by galaxy dark matter halo dis-

tribution at z~1-2 (Wyithe etal. 2011, Nature, 469, 181).

® Need JWST to measure z~9-15 LFs, and see if fundamentally different
from z<8. Does gravitational lensing bias boost LF bright-end?




Hard to see the forest for the trees in the first 0.5 Gyrs?:

e Foreground galaxies (z~1-2 or age~3-6 Gyr) may gravitationally lens
or amplify

® This could change the landscape for JWST observing strategies.



Two fundamental limitations determine ultimate JWST image depth:

(1) Cannot-see-the-forest-for-the-trees effect: Background objects blend
into foreground neighbors = Need multi-A deblending algorithms!

(2) House-of-mirrors effect: (Many?) First Light objects can be gravita-
tionally lensed by foreground galaxies = Must model/correct for this!

® Proper JWST 2.0pem PSF and straylight specs essential to handle this.



(5) Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail. JWST will determine:

e Formation and evolution of the first star-clusters after 0.2 Gyr.
e How dwarf galaxies formed and reionized the Universe after 1 Gyr.

e Galaxy Assembly and Super-Massive Black-Hole Growth for zS7-12.

(4) JWST will have a major impact on astrophysics this decade:

e JWST helps define next frontier to explore: the Dark Ages at zZ20.
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(4) Predicted Galaxy Appearance for JWST at redshifts z~1-15
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NASA and R. Windhorst (Arizona State University) * STScl-PRC01-04

® The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

e High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4) Predicted Galaxy Appearance for JWST at redshifts z~1-15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

® (1) Most spiral disks will
dim away at high redshift,
but most formed at z<1-2.

Visible to JWST at very high

Z are.

® (2) Compact star-forming
objects (dwarf galaxies).

® (3) Point sources (QSOs).

® (4) Compact mergers &
train-wrecks.
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(Left) 128-hr H.S,T/WFC3 IR-mosaic in HUDF at 1-1.6um (YJH filters;
Bouwens et al 2010, Yan et al. 2010; +85-hr by R. Ellis in 09/2012).

(Right) Same WFC3 IR-mosaic, but stretched to 1072 of Zodical sky!

e The CLOSED-TUBE HST has residual low-level systematics: Imperfect
removal of detector artifacts, flat-fielding errors, and/or faint straylight.

— The open JWST architecture needs very good baffling and rogue path
mitigation to do ultradeep JWST fields (JUDF's) to 104 of sky.



R, “-+| H. Kim (2012 ApJS & Dissertation)

Spiral Galaxy M83
Hubble Space Telescope » WFC3/UVIS

NASA, ESA, R. O’Connell (University of Virginia), the WFC3 Science Oversight Committee, and ESO

$TScl-PRC0O9-29
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Well determined dust-corrected ages for stars in M83, with formation and
dissipation along/across spiral arms (Hwihyun Kim et al. 2012, ApJS).
JWST can do this in much dustier environments and for older stellar pop-

ulations. But must do all we can with HST in UV-blue before JWST flies!




Schematic of Transit and Eclipse Science Timeline of a Transit Observation
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Typical modeling use model
spectra like that shown here
to constrain what a transit
spectrum might look like for
difference distances from
Earth, stellar type, planet
size...

JWST IR spectra can find water and COz2 in (super-)Earth-like exoplanets.




Transit Spectrum of Habitable "Ocean Planet”
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JWST IR spectra can find water and CO2 in transiting Earth-like exoplanets.
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Appendix 1: will JWST (& SKA) reach the Natural Confusion Limit?
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@ HUDF galaxy counts (Cohen et al. 2006): expect an integral of 22 x 109
galaxies/deg? to AB=31.5 mag (~ 1 nly at optical wavelengths).

e — Must carry out JWST and SKA nly-surveys with sufficient spatial
resolution to avoid object confusion (from HST: this means FWHM $07/08).

® = Observe with JWST/NIRSpec/MSA and SKA HI line channels, to

disentangle overlapping continuum sources in redshifts space.




Panchromatic Galaxy Counts from A ~0.2-2um for AB~10-30 mag
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Filters: F336W, F435W, F606W, F775W,
F125W, F160W.

® No single Lum.+Dens evol model fits over 1 dex in A and 8 dex in flux.
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Combination of ground-based and space-based HST surveys show:

® (1) Apparent galaxy sizes decline from the RC3 to the HUDF limits:

@ (2) At the HDF/HUDF limits, this is not only due to SB-selection effects
(cosmological (14z)%-dimming), but also due to:

® (2a) hierarchical formation causing size evolution:
rmi(z) o< rpy(0) (1+2)~*

® (2b) increasing inability of object detection algorithms to deblend galaxies
at faint mags ( “natural” confusion # “instrumental” confusion).

e (3) At ABZ30 mag, JWST and at 210 nly, SKA will see more than

2% 100 galaxies/deg?. Most of these will be unresolved (7},; <071 FWHM
(Kawata et al. 2006). Since z;,,6q~1.5, this influences the balance of how
(1+2z)*-dimming & object overlap affects the catalog completeness.

e For details, see Windhorst, R. A., et al. 2008, Advances in Space Re-
search, Vol. 41, 1965, (astro-ph/0703171) “High Resolution Science with
High Redshift Galaxies”



