The James Webb Space Telescope and First Light: Project Update, What to Expect & How to Prepare.

Rogier Windhorst (ASU) — JWST Interdisciplinary Scientist

Collaborators: S. Cohen, L. Jiang, R. Jansen (ASU), S. Driver, A. Hopkins & S. Wyithe (OZ)

(+Ex-students): N. Hathi, H. Kim, M. Mechtley, R. Ryan, M. Rutkowski, A. Straughn, & H. Yan

Talk at the ASU Origins Workshop: “Is Our Universe Necessary?”, ASU, Tempe, AZ, Sat Feb 1, 2014
Outline

• (1) Brief Update on the James Webb Space Telescope (JWST) Project

• (2) JWST and First Light: What Will it See & How to Prepare?

• (3) Charts to Answer what You Always Wanted to Ask but didn’t.

Workshop Question: Is Our Universe (incl. First Light!) necessary?

My Answer: To answer Q, need JWST + scientists, engineers, machinists, managers, politicians, lobbyists & lawyers \Rightarrow Need Universe!

Sponsored by NASA/HST & JWST
A fully deployable 6.5 meter (25 m²) segmented IR telescope for imaging and spectroscopy at 0.6–28 μm wavelength, to be launched in Oct. 2018. Nested array of sun-shields to keep its ambient temperature at 40 K, allowing faint imaging ($AB=31.5$ mag $= 1$ nJy) and spectroscopy.
80% of launch mass designed and built as of Jan. 2014.
JWST instrument update: US (UofA, JPL), ESA, & CSA.

Instrument Overview

Fine Guidance Sensor (FGS)
- Ensures guide star availability with >95% probability at any point in the sky
- Includes Narrowband Imaging Tunable Filter
- Developed by Canadian Space Agency & COM DEV

Mid-Infra-Red Instrument (MIRI)
- Distinguishes first light objects; studies galaxy evolution; explores protostars & their environs
- Imaging and spectroscopy capability
- 5 to 27 microns
- Cooled to 7K by Cyro-cooler
- Combined European Consortium/JPL development

Near Infra-Red Camera (NIRCam)
- Detects first light galaxies and observes galaxy assembly sequence
- 0.6 to 5 microns
- Supports Wavefront Sensing & Control
- Developed by Univ. of AZ & LMATC

Near Infra-Red Spectrograph (NIRSpec)
- Measures redshift, metallicity, star formation rate in first light galaxies
- 0.6 to 5 microns
- Simultaneous spectra of >100 objects
- Developed by ESA & EADS with NASA/GSFC Detector & Microshutter Subsystems

All delivered: MIRI 05/12; FGS 07/12; NIRCam 07/13, NIRSpec 9/13!
Mirror Status

- 15 flight primary mirrors and the flight secondary mirror are at GSFC in storage
 - All spares were at GSFC in storage (SM spares, 3 PMSA spares)
 - 2 EDU mirrors sent back to Ball for gear motor rework
 - All flight gear motor refurbishment is complete
 - All flight mirrors will be at GSFC by end of year, needed in 2015

Jan 2014: All 18 flight mirrors now delivered to NASA GSFC (MD).
Backplane Support Frame, Center Section, & Wings

- Center Section is complete
- Wings and cryo cycling is complete
- BSF assembly is complete
- Integration of the BSF to Center Section Complete
 - Cryo Cycling at MSFC XRCF complete

Sunshield Template Membrane Work Completed

- All Template Layers Completed
- Preparing for flight article manufacturing
- First two Flight Manufacturing Readiness Reviews Completed
- Membrane pull out test complete

Flight sunshield to be completed & tested by 2015 at Northrop (CA).
841 orbits HUDF 13 filters (false-color): objects affect $\sim 45\%$ of pixels!!

(2) What to expect in Webb (UltraDeep) Fields re. First Light?
HUDF weighted log-log: $F_{\text{uv}}N_{\text{uv}}U_{\text{BVIzYJWH}}$, $AB \lesssim 31$ ($\gtrsim 2$ nJy).
HUDF WFC3 IR Galaxy Counts: What to expect in Webb (UltraDeep) Fields?

- Faint-end near-IR count-slope $\sim 0.12 \pm 0.02$ dex/mag \iff
- Faint-end LF-slope ($z_{med} \sim 1.6$) $\alpha \sim -1.4 \Rightarrow$ reach $M_{AB} \sim -14$ mag.
- WUDF (- - -) can see $AB \lesssim 32$ objects: $M_{AB} \sim -15$ (LMCs) at $z \sim 11$.
- Lensing will change the landscape for JWST observing strategies.
Evolution of Schechter LF: faint-end LF-slope $\alpha(z)$, $\Phi^*(z)$ & $M^*(z)$:

- For JWST $z \gtrsim 8$, expect $\alpha \lesssim -2.0$; $\Phi^* \lesssim 10^{-3} (\text{Mpc}^{-3})$ (Oesch+ 11).
- HUDF: Characteristic M^* may drop below -18 or -17.5 mag at $z \gtrsim 10$.

\Rightarrow Will have significant consequences for JWST survey strategy.
What do the 6 possible $z\approx 9$ and single $z\approx 10$ HUDF candidate mean? Integrate Schechter LFs with $\alpha(z)$, $\Phi^* (z)$ and $M^* (z)$: $\lesssim 45\%$ sky-coverage by $AB\lesssim 30$ objects (Koekemoer$^+$13). Cosmic Variance $\gtrsim 30\%$. For any $\alpha(z\gtrsim 9-10)$, implies $M^* (z\gtrsim 10) \gtrsim -17.5$ mag (fainter!), so plan:

- (1) [Left] Webb “Medium-Deep” Fields (WMDF) ($10 \times 4 \times 2$h RAW): Expect few $z\approx 10-12$ objects to $AB\lesssim 30$ mag, so plan lensing targets.

- (2) [Middle] Webb Deep Field (WDF) (4×25h 7-filt NIRCam GTO): Expect 8–25 objects at $z\approx 10-12$ to $AB\lesssim 31$ mag.

- (3) [Right] Webb UltraDeep Field (WUDF) (4×150h; NIRCam DD?): Expect 30–90 objects to $AB\lesssim 32$ mag, many more if lensing targets.
Schechter LF \((z \lesssim 6 \lesssim 20)\) with \(\alpha(z), \Phi^*(z), M^*(z)\) above and \(\mu = 0.70\).

Area/Sensitivity for: HUDF/XDF, 10 WMDFs, 2 WDFs, & 1 WUDF.

- Will need lensing targets for WMDF–WUDFF to see \(z \sim 14–16\) objects.
HST Frontier Field A2744: JWST needs lensing to see First Light at $z \gtrsim 10-15!$
What are the best lenses in 2018: Rich clusters or (compact) galaxy groups?

[Left] Redshift surveys: SDSS $z \lesssim 0.25$ (Yang$^+$ 2007), GAMA $z \lesssim 0.45$ (Robotham$^+$ 2011), and zCOSMOS $z \lesssim 1.0$ (Knobel$^+$ 2012).

- **GAMA**: 22,000 groups $z \lesssim 0.45$; 2400 with $N_{spec} \gtrsim 5$ (Robotham$^+$ 11).
- $\lesssim 10\%$ of GAMA groups compact for lensing (Konstantopoulos$^+$ 13).
- Large group sample to identify optimal lens-candidates for $z \gtrsim 6$ sources.

(2) Gravitational Lensing to see First Light population at $z \gtrsim 10$. \

![Graph showing redshift surveys and halo mass vs. lookback time.](image)
GAMA group mass versus concentration assuming NFW DM halo profiles. Contours = Nr of expected lensed sources ($\Delta z=1$; Barone-Nugent$^+$ 13).

- 10 WMDFs on best GAMA groups add $\sim 50–100 \ z \sim 6–15$ sources ($AB \lesssim 30$).
- Also get $\gtrsim 10 \times$ more ($\gtrsim 500$) lensed sources at $\sim 2–15$.

WUDFF if pointed at clusters adds $\sim 6 \times$ more ($\gtrsim 3000$) sources at $6 \lesssim z \lesssim 15$.
Two fundamental limitations may determine ultimate JWST image depth:

1. **Cannot-see-the-forest-for-the-trees effect [Natural Confusion limit]**: Background objects blend into foreground because of their own diameter
 ⇒ Need multi-λ deblending algorithms.

2. **House-of-mirrors effect [“Gravitational Confusion”]**: Most First Light objects at $z \gtrsim 12–14$ may need to be found by cluster or group lensing.
 ⇒ Need multi-λ object finder that works on sloped backgrounds
 ⇒ If $M^*(z \gtrsim 10) \gtrsim -18$, need to use & model gravitational foreground.
Conclusions

- Project replan in 2010-2011. No technical showstoppers thus far.
- More than 80% of JWST H/W built or in fab, & meets/exceeds specs.

(2) JWST is designed to map the epochs of First Light, Reionization and Galaxy Assembly & SMBH-growth in detail. JWST will determine:
- Formation and evolution of the first star-clusters after 0.2 Gyr.
- How dwarf galaxies formed and reionized the Universe after 1 Gyr.
- JWST will need to use lensing to see First Light objects at z \(\gtrsim 12 \).

(3) JWST will have a major impact on astrophysics this decade:
- IR sequel to HST after 2018: Training the next generation researchers.
- JWST will define the next frontier to explore: Dark Ages at z \(\gtrsim 15–20 \).
References and other sources of material shown:

- http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/ [Clickable HUDF map]
- http://ircamera.as.arizona.edu/nircam/
- http://ircamera.as.arizona.edu/MIRI/
- http://www.stsci.edu/jwst/instruments/nirspec/
- http://www.stsci.edu/jwst/instruments/fgs

Any (space) mission is a balance between what science demands, what technology can do, and what budget & schedule allows ... (courtesy Prof. Richard Ellis).
Mega-Projects must learn how to build Coalition / fit into community ...
- JWST hardware made in 27 US States: \(\geq 80\% \) of launch-mass finished.

- Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.

- JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.

- JWST NIRCam made by UofA and Lockheed.
Fiscal Year 2014 HQ Milestones

Assumes JWST is appropriated in FY2014 the full President’s budget request of new obligation authority (NOA).

<table>
<thead>
<tr>
<th>Month</th>
<th>Milestone</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-13</td>
<td>1 Primary Mirror Backplane Support Structure Cryogenic Testing Readiness Review</td>
<td>Completed 9/10</td>
</tr>
<tr>
<td></td>
<td>2 Mirror Deployment Electronics Unit Manufacturing Readiness Review</td>
<td>Completed 10/8</td>
</tr>
<tr>
<td></td>
<td>3 Jet Propulsion Lab. (JPL) Cryogenic Test Chamber Readiness Review</td>
<td>Delayed: pulse tube, cooler shield issues</td>
</tr>
<tr>
<td></td>
<td>4 Johnson Space Center (JSC) Telescope and ISIM support structure fabrication complete</td>
<td>Completed 11/4</td>
</tr>
<tr>
<td>Dec-13</td>
<td>5 Spacecraft Critical Design Review Complete</td>
<td>Delayed to 1/14 [shutdown]</td>
</tr>
<tr>
<td></td>
<td>6 MIRI Cryocooler Flight Cold Head Assembly delivered to ISIM</td>
<td>Delayed 1/21/2014</td>
</tr>
<tr>
<td></td>
<td>7 JSC Clean Room ready to receive ground support equipment</td>
<td>Delayed to 1/14 [shutdown]</td>
</tr>
<tr>
<td></td>
<td>8 Complete ISIM cryogenic-vacuum risk reduction test</td>
<td>Concluded 11/13/2013, but not all tests completed because of shutdown</td>
</tr>
<tr>
<td>Jan-14</td>
<td>9 Delivery of last Primary Mirror Segment to GSFC</td>
<td>Completed 12/16</td>
</tr>
<tr>
<td></td>
<td>10 Observatory Operations software scripts Build 3 Complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 New detector focal plane arrays for NIRCam ready for integration into instrument</td>
<td>Completed 11/20</td>
</tr>
<tr>
<td>Feb-14</td>
<td>12 Secondary Mirror Mount delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 MIRI Cryocooler flight electronics delivered to JPL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 Final Data Management Subsystem Design Review</td>
<td>Completed 11/22</td>
</tr>
<tr>
<td></td>
<td>15 Flight NIRCam and NIRSpec ready for integration into ISIM</td>
<td>Delayed to 3/14 [shutdown]</td>
</tr>
<tr>
<td>Mar-14</td>
<td>16 Spacecraft Solar Array Manufacturing Readiness Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 JSC Chamber A Telescope ground support equipment test #1 design review</td>
<td></td>
</tr>
<tr>
<td>Apr-14</td>
<td>18 Telescope actuators electronics drive unit delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 Flight MIRI cryocooler assembly delivered to JPL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 MIRI Cryocooler Flight Refrigerant Line Deployment Assembly delivered to integration and testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 Sunshield Membrane Cover Assembly Manufacturing Readiness Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 MIRI cryocooler Test Readiness Review</td>
<td></td>
</tr>
<tr>
<td>May-14</td>
<td>23 Updated Observatory Commissioning Plan (rev C) delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 Start acceptance testing of flight cryocooler assembly and associated electronics</td>
<td>Delayed to 6/14 [shutdown]</td>
</tr>
<tr>
<td>Jun-14</td>
<td>25 Start cryo-vacuum test with fully integrated ISIM (“CV2”)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 Flight spare MIRI cryocooler assembly delivered to JPL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 JSC Chamber A bake-out and cryogenic proof testing complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 Hardware ready for MIRI cryo cooler test #3: checkout complete</td>
<td></td>
</tr>
<tr>
<td>Jul-14</td>
<td>29 Spacecraft Mid-Course Correction Thruster Final Assembly complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 Proposal Planning Subsystem build 9 complete</td>
<td></td>
</tr>
<tr>
<td>Aug-14</td>
<td>31 Sunshield Mid-boom and Stem assembly Manufacturing Readiness Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 Spacecraft Flight Software Build 2.2 Test Readiness Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 NIRSpec and FGS/NIRISS new Focal Plane Arrays ready for integration</td>
<td>Delayed to 9/14 [shutdown]</td>
</tr>
<tr>
<td>Sep-14</td>
<td>34 JSC cryogenic test telescope and ISIM test ground support equipment integration complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 Complete cryo-vacuum test of fully integrated ISIM (“CV2”) complete</td>
<td>Delayed to 10/14 [shutdown]</td>
</tr>
<tr>
<td></td>
<td>36 NIRSpec new microshutters ready for integration</td>
<td>Delayed to 10/14 [shutdown]</td>
</tr>
</tbody>
</table>

Blue font denotes milestones accomplished ahead of schedule, orange font denotes milestones accomplished late.

Milestones: How the Project reports its progress monthly to Congress.
Milestone Performance

- Since the September 2011 replan JWST reports high-level milestones monthly to numerous stakeholders

<table>
<thead>
<tr>
<th></th>
<th>Total Milestones</th>
<th>Total Milestones Completed</th>
<th>Number Completed Early</th>
<th>Number Completed Late</th>
<th>Deferred to Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2011</td>
<td>21</td>
<td>21</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FY2012</td>
<td>37</td>
<td>34</td>
<td>16</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>FY2013</td>
<td>41</td>
<td>38</td>
<td>20</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>FY2014</td>
<td>36</td>
<td>7</td>
<td>5</td>
<td>10*</td>
<td>0</td>
</tr>
</tbody>
</table>

*Late milestones have been or are forecast to complete within the year. Shutdown related delayed milestones included in this tally

7 out of 10 FY14 milestones late by 1 month due to Government shutdown. None of these are on the critical path, so caused no launch delay.
When is a Mission Too Cheap?*

Implications of the WMAP year-9 & Planck13 results for JWST science:

The year-9 WMAP data provided better foreground removal (Komatsu\(^+\) 2011; Hinshaw\(^+\) 2012; but see: Planck XVI 2013.)

First Light & Reionization occurred between these extremes:

- (1) Instantaneous at \(z \approx 11.1 \pm 1.1\) (\(\tau = 0.089 \pm 0.013\)), or, more likely:
- (2) Inhomogeneous & drawn out: starting at \(z \gtrsim 20\), peaking at \(z \lesssim 11\), ending at \(z \approx 7\).

The implications for HST and JWST are:

- HST/ACS has covered \(z \lesssim 6\), and WFC3 is covering \(z \lesssim 7–9\).
- For First Light & Reionization, JWST will survey \(z \approx 8\) to \(z \approx 15–20\).

Question: If Planck-\(\tau\) ↓ \(\lesssim 0.08\) (TBD, Planck14), then how many reionizers will JWST see at \(z \approx 10–20\)?
[Left] GAMA groups with secure AAT redshifts for $R \lesssim 19.8$ AB-mag. Also show redshift probability and absolute magnitude (M_r) distributions.

[Right] Measured group redshift distribution for two GAMA groups.

- Will select our WMDF IDS targets on groups (+ some clusters).
Same as p. 15, but optimistic $M^*(z)$ drop: $\mu = 0.33$ (Oesch et al. 2013).

- If so, far more $9 \lesssim z \lesssim 12$ objects expected in XDF, even though $N(6 \lesssim z \lesssim 8)$ remains the same $\iff M^*(z \sim 11)$ fainter than -17.5 ± 0.5 mag?
Same as pg. 15, but pessimistic $M^* (z)$ evolution parameter: $\mu = 1.0$.

- If so, JWST surveys would need lensing to see most $\gtrsim 11$ objects.
- Add $z \approx 6$ QSO host galaxy limits (or fluxes) by Mechtley$^+$ (2012, 2013).
B, I, J AB-mag vs. half-light radii r_e from RC3 to HUDF limit are shown.

All surveys limited by by SB (+5 mag dash)

Deep surveys bounded also by object density.

Violet lines are gxy counts converted to to natural conf limits.

Natural confusion sets in for faintest surveys (AB\gtrsim25). Will update for JWST.