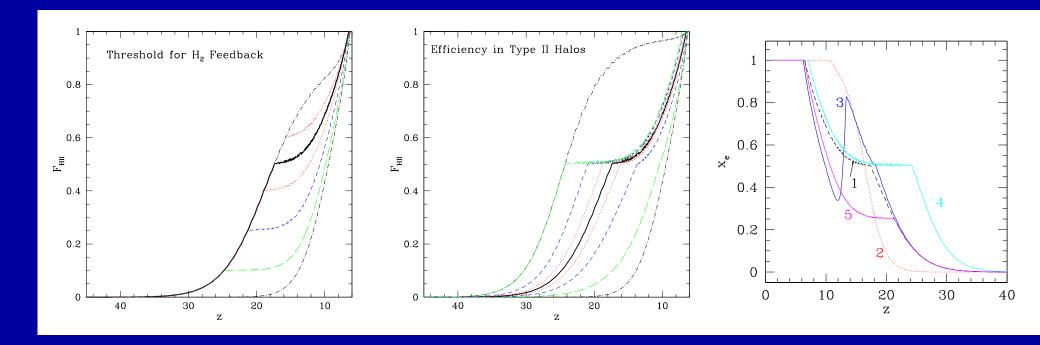
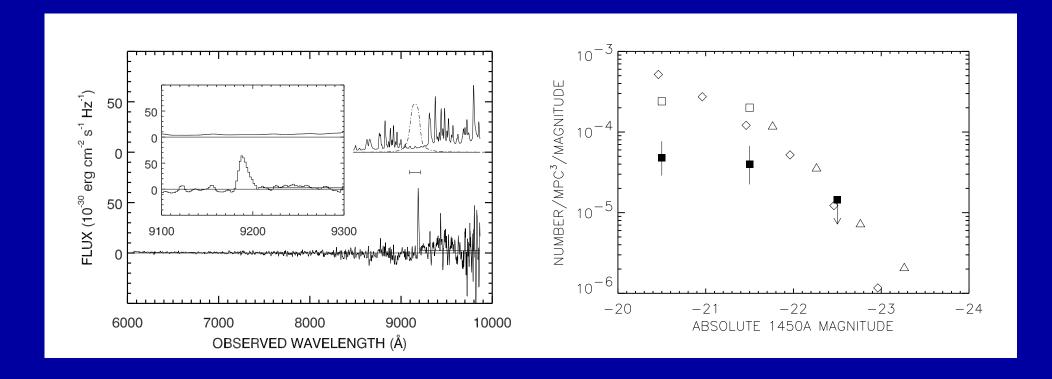
Case Study of the Tunable Filters reaching to $0.95\mu m$

Rogier A. Windhorst and Seth H. Cohen (ASU)

- ullet (1) Currently planned TF in FGS covers 1.2–5.0 μ m .
- (2) There are two etalons each covering no more than an octave in wavelength. There is likely no funds or room for a third etalon.
- (3) There are compelling reasons to have the long wavelength-end go to close to 5.0 μ m due to spectral features in brown dwarf/planets.
- (4) There are compelling reasons to have no large gaps around 2.4 μ m due to spectral features in starforming regions/stellar pops.
- (5) There are compelling reasons to have the short λ -side of the TF to reach to \sim 0.95 μ m to detect Ly α in the expected numerous faint dwarf galaxies that concluded the reionization epoch around z \simeq 6–7.

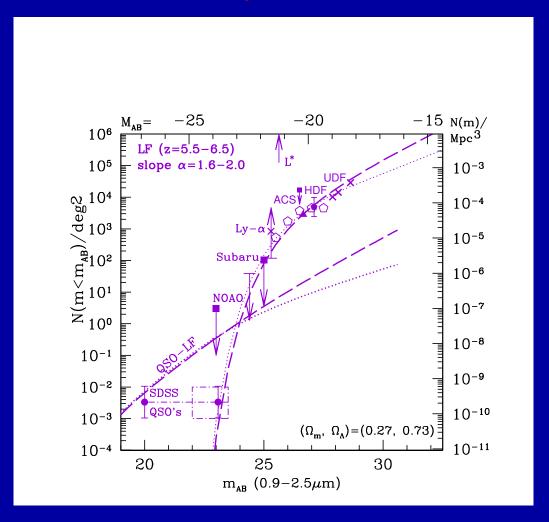

How can we reconcile these issues?

- (1) Getting $\Delta \lambda \simeq 0.30$ dex from a single etalon is hard (Hutchings).
- (2) How far to the red does the reddest etalon need to go when studying spectral features in brown dwarf/planets ($\lambda \gtrsim 4.6 \mu$ m; Lunine)?
- (3) How large a gap at $\lambda \simeq 2.4 \, \mu$ m can be tolerated when studying spectral features in starforming regions and stellar populations (McCaughrean)?
- (4) What is the highest redshift where the Ly α line can reasonably be expected to be observable to JWST?
- (5) Can a compromise in the adopted TF wavelength-range be found?
- (6) Or can a few $\sim 3\%$ filters around $\lambda \simeq 1.0 \mu m$ be added to NIRCam?


Detailed models based on WMAP results (Cen 2003) suggest that:

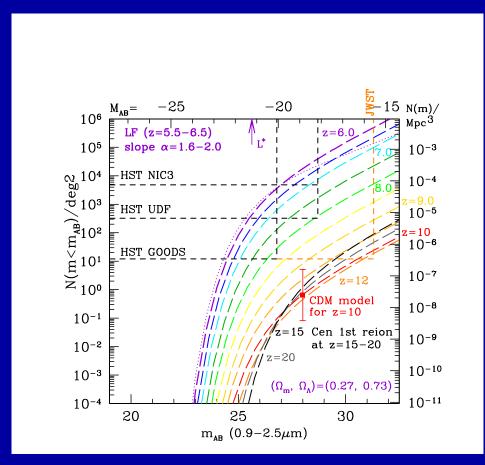
- (1) A first epoch of reionization ("First Light") may have been caused by the onset of Population III stars at $z\simeq15-25$. (Other mechanisms have been proposed as well: early AGN, exotic particles, etc.).
- (2) Pop III supernovae may have caused the second Dark Ages at $z=15\rightarrow 10$, since they heated the IGM, which could not cool until:
- (3) Pop II stars started to form in dwarf (proto-)galaxies with 10^6-10^9 M_{\odot} at z \simeq 6-10. These objects concluded the reionization epoch at z \simeq 6-6.5, as now visible in the GP-troughs of SDSS quasars.

Other models based on WMAP (Holder et al., Haiman et al. 2003) show:


- (1) Widely different reionization scenarios at $z\simeq25 \rightarrow z\simeq15$.
- (2) A general agreement in the increase of HII fraction for $z \simeq 10 \rightarrow z \simeq 6$, otherwise GP-troughs of SDSS quasars would not be seen at $z \sim 6$.
- \Rightarrow In most models, a significant increase in the HII fraction is expected in the range $z\simeq 8 \rightarrow z\simeq 6$.
- \Rightarrow Due to foreground HI damping wings, the Ly α line may no longer be visible at z \gtrsim 7–8, except in some ionized bubbles around transparent objects (Stiavelli 2004). These lines we must try to survey with JWST.

A few narrow-line Ly α objects at z \gtrsim 6 are now being seen (Hu et al. 2002).

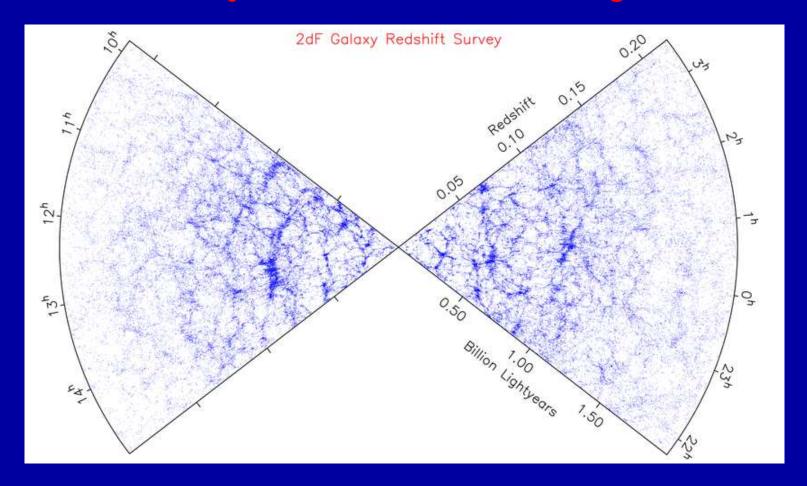
- ullet (1) From ground-based narrow or medium-band Lylpha searches.
- (2) Their LF is likely very steep (Hu et al. 2003, Rhoads et al. 2002)


Large numbers of dropouts and Ly α emitters are expected for z \simeq 6–8.

The luminosity function ("LF") of $z\simeq 6$ objects (Yan et al. 2003a, b) is possibly extremely steep. Preliminary UDF points from the released $z\simeq 6$ UDF dropout list confirm this (but wait for the final UDF early March).

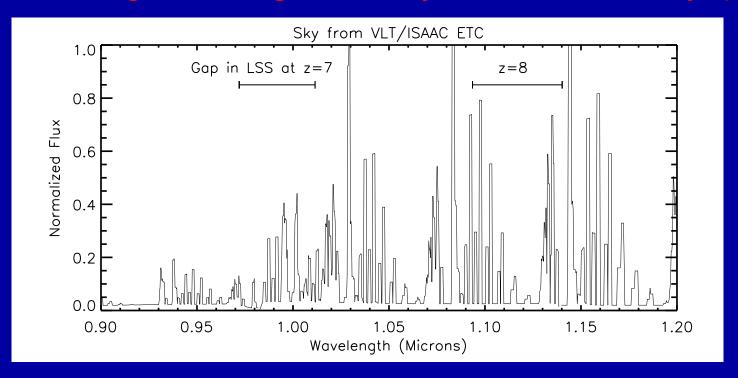
• Their LF almost violates Olbers' paradox with faint-end Schechter slope $|\alpha| \simeq 2.0$. Equal octaves contribute equally to the reionizing background.

\Rightarrow Must probe AB \gtrsim 27 mag to measure the LF slope for z \gtrsim 6.5.

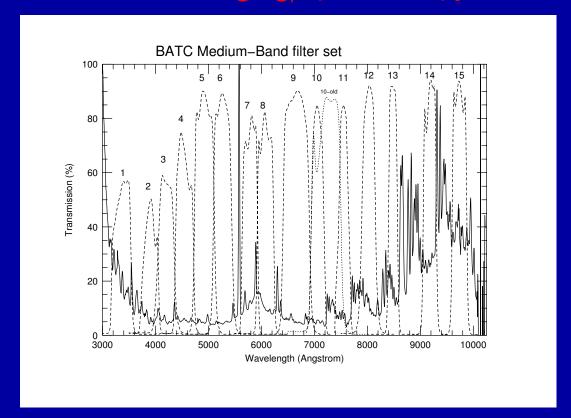

- The stars in dwarf galaxies, not quasars, provided enough UV flux to complete the reionization of the universe by $z\simeq6$ (Yan et al. 2003b; Yan & Windhorst 2004). This is what JWST will observe in detail.
- The ionizing OB-stars must have formed between $z\simeq6.5$ and $z\simeq8$ (ages $\tau\simeq30-200$ Myr), but they cannot have pervasively filled the universe at $z\gtrsim8$, or no GP-troughs would be seen in SDSS quasars at $z\simeq6$.

- We must seriously count on the possibility that the dwarf galaxy LF ramps up significantly in amplitude between $z\simeq8$ and $z\simeq6$, or Gunn-Peterson troughs in the spectra of SDSS quasars would not be seen at $z\sim6$.
- The epoch $z\simeq 8 \to z\simeq 6$ is likely when the first significant and pervasive Population II star-formation took place, where the normal IMF first developed, or the "actual beginning of the galaxy assembly epoch".

- \Rightarrow In order to probe this epoch, JWST must be able to observe the Ly α line at z \simeq 6.5–8 or $\lambda \simeq$ 0.95–1.1 μ m .
- \Rightarrow Faint flux levels (AB>>27 mag) must be reached in order to measure the faint-end slope of the LF.


- This cannot be done from the ground because of a subtle conspiracy of observational and cosmological reasons. In summary, these are:
- (a) Gaps in the redshift distribution N(z) of galaxies are typically seen at co-moving separations of 60-120 Mpc (Great Walls, etc). Faint redshift surveys with rich statistics reflect this in spikes in N(z) typically $\Delta z \simeq 0.03$ apart locally, and at $\Delta z \simeq 0.03 \times (1+z)$ at higher redshifts.
- (b) While there are some gaps between the near-IR OH night-sky lines, these are not wide enough to efficiently sample $Ly\alpha$ over the entire required redshift range.
- (c) The relative width of the filters needed to do the corresponding ground-based images increases the night-sky brightness by 3–5 mags, voiding the advantage of a larger ground-based telescope. OH-suppressing spectrographs don't solve this, since they don't cover wide fields for imaging.

Ly α from AB \gtrsim 27 objects can't be observed from ground for z \gtrsim 6.5.


- Large Scale Structure (LSS) has typical spacings in the redshift distribution ("foam") in between which fewer objects are seen in a given LOS.
- These structures or "Great Walls" are typically 60-120 Mpc in size and separation.

Gaps in LSS at high-z are larger than any windows in NIR sky-spectrum.

- ullet At z \simeq 7, 60–120 Mpc corresponds to $\Delta\lambda \simeq$ 0.02–0.04 μ m .
- There are no windows in the near-IR night-sky large enough to counter these effects from LSS \Rightarrow Atmospheric OH-lines limit efficiency of medium (or broad-)band observations from the ground.
- The deepest VLT J-band image reached $J_{AB}{\simeq}26.8$ in 33.6 hours (Labbe et al. 2003). We require $AB{\gtrsim}27{-}31$ mag.
- The required medium-band imaging for $0.95 \lesssim \lambda \lesssim 1.2~\mu$ m can only be done from space. It would require 100's of nights on 8-10 m telescopes.

Ground-based medium-band imaging/spectroscopy between the sky-lines.

- Some imaging has been done on ground-based 4-8 m telescopes (Wolfe et al. 2001; Rhoads et al. 2002; Yan et al. 2002; Kodaira et al. 2003). Modest numbers of $z\simeq5.7-6.6$ objects were found to AB=24-25.5 mag.
- The near-IR sky in between the brightest sky-lines is not completely dark, neither is the transparency (mag/sec(z)) necessarily small (7600Å!).
- The best search technique uses a grism filtered between the sky-lines with multislit follow-up (Lilly et al. 2003). Possibly $\gtrsim 0.1$ sq. deg. has to be surveyed to AB $\gtrsim 25$ mag to get a significant sample at $z \gtrsim 6.5$.

In conclusion:

- Very deep medium-band TF searches at z=6.5-8 will see enormous numbers of faint Ly α emitters, an extremely efficient use of JWST survey time.
- \bullet We must try to find a solution to let the TF cover 0.95–1.10 $\mu \rm m$, without jeopardizing the brown dwarf/planetary science at the long wavelength end or the star-formation science around 2.4 $\mu \rm m$.
- Failing to do so may result in JWST missing out on:
- (1) The end of the reionization era;
- (2) The beginning of the galaxy assembly line; and
- (3) The development of the first Pop II stars and their Initial Mass Function.