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ABSTRACT

Chondrules are millimeter-sized, silicate (mostly ferromagnesian) igneous spheres found

within chondritic meteorites. They are some of the oldest materials in our Solar System, hav-

ing formed within a few million years of its birth. Chondrules were melted at high temperature

(over 1800 K), while they were free-floating objects in the early solar nebula. Their petrology and

chemistry constrain their formation, especially their thermal histories. Chondrules provide some of

the most powerful constraints on conditions in the solar nebula. Models in which chondrule precur-

sors melted by passage through solar nebula shocks are very promising, and meet most constraints

on chondrule formation in broad brush. However, these models have been lacking in some of the

relevant physics. Previous shock models have used incorrect approximations to the input radiation

boundary condition, and the opacity of solids has been treated simply. Most important, a proper

treatment of cooling due to molecular line emission has not been included. In this thesis, the shock

model is significantly improved. The appropriate boundary condition for the input radiation and

the proper method for calculation of the opacity of solids are determined. Additionally, a complete

treatment of molecular line cooling due to water is included. Previous estimates of the effect of line

cooling predicted chondrule cooling rates in excess of 10,000 K per hour. However, once molecular

line cooling due to water was incorporated into the full shock model, it was found that line cooling

has very little effect (typically, a difference of less than 10 K) on the thermal histories of gas and

chondrules. This behavior is attributed mostly to the thermal buffering of the gas due to hydrogen

dissociation and recombination, which tends to keep the gas temperature at approximately 2000

K until the column densities of water become optically thick to line emission. Chondrule cooling

rates in the range of 10 - 1000 K per hr are predicted, consistent with observations.
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CHAPTER 1

INTRODUCTION

The parent bodies of the most primitive meteorites, the chondrites, ∼ 4.57 billion years ago

(Wadhwa & Russell 2000). Bulk composition analyses of chondrites show that they closely approx-

imate the composition of the Sun’s photosphere, excluding the most volatile elements (Anders &

Grevesse 1989; Lodders 2003; Palme & Jones 2005). This suggests that chondrites formed from

the same material as the Sun, dating to the origin of our Solar System. Chondrites are gener-

ally categorized into five classes: Ordinary, Carbonaceous, Enstatite, Rumuruti, and Kakangari,

based on their mineralogical and petrographic characteristics, as well as their whole-rock chemical

and oxygen-isotopic compositions, and are sub-divided into various groups (Weisberg et al. 2006).

Unequilibrated chondrites are the most primitive meteorites in our collection, in that they have

suffered very little alteration since their formation, and therefore contain information about the

conditions that existed in the early solar nebula. Chondrites are remarkable for containing calcium-

rich, aluminum-rich inclusions (CAIs), the oldest solids in the Solar System, whose formation has

been dated to between 4567 Ma (Amelin et al. 2002, 2006; Jacobsen et al. 2008; Connelly et

al. 2008) and 4569 Ma (Bouvier et al. 2007; Burkhardt et al. 2008; Bouvier & Wadhwa 2009).

Also found in abundance within all chondrites (except for CI carbonaceous chondrites) are sub-

millimeter- to millimeter-sized, (mostly ferromagnesian) igneous spheres, called chondrules, from

which the chondrites derive their name.

Chondrules formed, at most, ∼ 2-3 million years after CAIs (Amelin et al. 2002; Kita et

al. 2005; Russell et al. 2006; Wadhwa et al. 2007; Connelly et al. 2008), as melt droplets that were

heated to high temperatures while they were independent, free-floating objects in the early solar

nebula (Lauretta et al. 2006). After they were heated, cooled, and crystallized, chondrules were

incorporated into the parent bodies from which chondrites originate. Chondrules are capable of

providing incredibly detailed information about conditions in the Solar System protoplanetary disk,

if the process that led to their heating, melting and recrystallization could be understood (Lauretta

et al. 2006). Chondrules make up to 80% of the volume of ordinary chondrites (Grossman 1988;

Ciesla 2005; Lauretta et al. 2006), and it is estimated that ∼ 1024 g of chondrules exist in the
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asteroid belt today (Levy 1988). Such a prevalence of chondrules suggests that chondrule-forming

events were widespread in the solar nebula. A process that can melt 1024 g of rock is surely a

dominant process in the solar nebula disk.

1. Chondrules and the Constraints on their Formation

Recall that there are five general classes of chondritic meteorites based on petrology and

chemical composition: Ordinary, Carbonaceous, Enstatite, Rumaruti, and Kakangari (Brearley &

Jones 1998). Chondrules are found in all but type CI carbonaceous chondrites, which may lack

chondrules due to major alteration by water (Weisberg et al. 2006). Chondrules are sub-millimeter

to millimeter in size, with the majority close to one millimeter in diameter (Grossman 1988; Ciesla

2005) and are classified based on their bulk density, mineralogy, and textural types.

1.1. Chemistry of Chondrules

Fe-, Mg-rich chondrules contain phases rich in FeO and MgO. They are found in all classes

of chondrites and are the most abundant type of chondrules. The bulk composition of Fe-, Mg-rich

chondrules is similar to CI chondrites, with respect to refractory and moderately volatile elements

(Grossman et al. 1988; Hewins 1991; Connolly et al. 2001). These types of chondrules are usually

designated either FeO-poor (Type I) or FeO-rich (Type II). Type I chondrules have < 10 wt %

bulk FeO content and are metal-rich (Rubin et al. 1999). Type II chondrules have > 10 wt % bulk

FeO content and are metal-poor, with Fe, Ni-metal in proportions up to ∼ 30 vol % (Connolly et

al. 2001). Subdivision within Type I and Type II chondrules depends on the abundance of olivine

and low-Ca pyroxene. Type A chondrules have < 10 % low-Ca pyroxene and Type B chondrules

have < 10 % olivine, with Type AB possessing intermediate amounts of both low-Ca pyroxene and

olivine.

Al-rich chondrules are the second most abundant class of chondrule and are found in almost

all types of chondrites (Connolly & Desch 2004). As defined by Bischoff & Keil (1984), Al-rich
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chondrules are those with bulk Al2O3 > 10 wt % (up to 28 wt %) for ordinary chondrites and >

12 wt % (up to 29 wt %) for Kakangari. Sizes of Al-rich chondrules range between 50 to 1300

µm, with many different textural types observed. Other types of chondrules include chromite-rich,

silica-bearing, fassaite-rich (Grossman et al. 1988; Brearley & Jones 1998; Zanda et al. 2004), and

the unique chondrules found within type CH chondrites (Krot et al. 2000, 2002). No experimental

constraints exist for the thermal histories of these other types of chondrules, therefore less is known

about their formation conditions (Connolly & Desch 2004).

1.2. Textures of Chondrules

Porphyritic textured chondrules (those with large crystals, or phenocrysts, set in a matrix

of smaller-grained material) make up ∼ 85 % of all chondrules in ordinary chondrites (Gooding &

Keil 1981). Porphyritic textures include porphyritic olivine (PO) and porphyritic olivine-pyroxene

(POP). Non-porphyritic chondrules make up the remaining ∼ 15 % of chondrules found in ordinary

chondrites. The non-porphyritic chondrules are divided into subtypes: glass (G), cryptocrystalline

(CC), radial pyroxene or olivine (RP and RO), radial pyroxene-olivine (RPO), and barred olivine

or pyroxene (BO and BP) (Gooding & Keil 1981).

The textures and chemistry of chondrules can constrain their thermal histories, melt evo-

lution, and precursor materials (Connolly et al. 2006). Experimental petrology determines the

heating and cooling rates of chondrules by defining the constraints on crystal growth and evolution

of the bulk composition during melting and cooling. Experimental petrology has shown that the

most important determinants of texture during chondrule formation are peak temperature, cooling

rates, and the presence of external seed nuclei. Cooling rates are constrained by texture, major

and minor element abundances, and bulk chemistry (Connolly & Desch 2004; Connolly et al. 2006;

Lauretta et al. 2006). Peak temperature is constrained by the number of nuclei remaining in the

melt and/or the number of nuclei encountered as external seed nuclei (Lofgren 1983, 1989, 1996;

Hewins & Connolly 1996; Hewins 1997; Connolly et al. 1998; Desch & Connolly 2002; Lauretta et

al. 2006).
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1.3. Thermal Histories of Chondrules

Thermal Histories of Fe-, Mg-rich Chondrules. According to furnace experiments, in which

melt droplets with chondrule compositions are allowed to cool and crystallize, reproduction of

chondrule textures requires specific ranges of cooling rates (see below) between the liquidus tem-

perature (≈ 1800 K) and solidus temperature (≈ 1400 K; Hewins & Connolly 1996). The majority

of chondrules experienced peak temperatures in the range of 1770 - 2120 K for several seconds

to minutes (Lofgren and Lanier 1990; Radomsky and Hewins 1990; Hewins and Connolly 1996;

Lofgren 1996; Hewins 1997; Connolly and Love 1998; Jones et al. 2000; Connolly and Desch 2004;

Hewins et al. 2005; Ciesla 2005; Connolly et al. 2006; Lauretta et al 2006), although the peak

temperatures of BO chondrules may have been as much as 2200 K (Connolly et al. 1998; Connolly

et al. 2006). Chondrule textures (the arrangement and shape of their crystals) and the elemental

zoning behavior within individual crystals constrain the cooling rates of chondrules (Connolly &

Hewins 1991; Jones & Lofgren 1993; DeHart & Lofgren 1996; Desch & Connolly 2002; Connolly et

al. 2006; Lauretta et al. 2006). Based on texture and chemistry, chondrules experienced cooling

rates of 10 - 3000 K hr−1, with most cooling at ∼ 100 K hr−1 or less through their crystallization

range (Desch & Connolly 2002; Hewins et al. 2005; Connolly et al. 2006; Lauretta et al. 2006).

Miyamoto et al. (2009) recently developed a model to calculate cooling rates using the Fe-Mg

chemical zoning profiles of olivine. They found that for the type II porphorytic olivine chondrules

in Semarkona, the cooling rates through crystallization temperatures are broadly consistent with

furnace experiments (10 - 1000 K hr−1). Initial cooling above the liquidus was at least 5000 K

hr−1 (Yu et al. 1996; Yu & Hewins 1998; Desch & Connolly 2002). Porphyritic chondrules cooled

at about 10 − 103 K hr−1, and barred-olivine chondrules cooled at about 103 K hr−1 (Hewins et al.

2005; see also Desch & Connolly 2002). Additionally, chondrules retain volatile elements such as

S, indicating that they did not remain above the liquidus for more than minutes, and cooled quite

rapidly (& 104 K hr−1 while above the liquidus (Yu & Hewins 1998)). The presence of primary S

tells us that chondrules did not experience prolonged heating between ∼ 650 - 1200K for more than
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several minutes (Hewins et al. 1996; Connolly and Love 1998; Jones et al, 2000; Lauretta et al.

2001; Tachibana & Huss 2005; Connolly et al. 2006). Finally, there is no indication of the isotopic

fractionation that would arise from the free evaporation of alkalis such as Na, which constrains

the time spent at high temperature before melting (Tachibana et al. 2004). Modeling of isotopic

fractionation has shown that chondrules must heat up from 1300 to 1600 K in times on the order

of minutes or less in order to prevent isotopic fractionation of S (Tachibana & Huss 2005). The

only alternative to such rapid heating is if the ambient nebular gas was enriched in volatile or

moderately volatile elements (Connolly et al. 2006).

The time spent at the peak temperature also affects the amount of relict material that

remains intact (Lofgren 1996; Connolly and Desch 2004; Hewins et al. 2005; Connolly et al. 2006;

Lauretta et al. 2006). Approximately 15% of chondrules in ordinary chondrites contain relict grains

(Jones 1996), the presence of which limits the duration of heating above the liquidus to tens of

seconds to several minutes (Connolly et al. 2006). The texture and chemistry of these relict grains

indicates that they are previous generations of chondrules, signifying that chondrules experienced

multiple heating events (Jones et al. 2005; Connolly et al. 2006; Lauretta et al. 2006). Evidence

for multiple heating events is also found by the presence of fine-grained, igneous rims around some

chondrules; a layer of material that was heated and melted in an event that post-dated melting of

the host chondrule (Hewins et al. 1996, Jones et al. 2005).

Thermal Histories of Al-rich Chondrules. Thermal histories of Al-rich chondrules are poorly

understood, although Sheng (1992) and Sheng et al. (1992) present approximations for cooling

rates for a class of Al-rich chondrules known as plagioclase-olivine inclusions, or POIs, when the

maximum temperature achieved was ∼ 1800 K. It has been speculated that the formation history

of Al-rich chondrules is similar to Fe-, Mg-rich chondrules (Connolly & Desch 2004).

1.4. Additional Constraints on Chondrule Formation

The combination of chondrules and the fine-grain matrix in chondritic meteorites results in

a solar bulk composition, suggesting that the chondrules and matrix formed in the same vicinity
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within the solar nebula (Palme et al. 1993; Klerner & Palme 2000; Scott & Krott 2005; Ebel et

al. 2008; Hezel & Palme 2008), and must be considered as an additional constraint on chondrule

formation models. Klerner & Palme (2000) found a sub-chondritic value for the Ti/Al ratio in the

matrix of the CR chondrite, Renazzo, while the Ti/Al ratio in the chondrules are supra-chondritic.

The same complementarity values for Ti/Al are found in Al Rais and the CV meteorites Kaba,

Leoville, Mokoia, and Vigarano (Klerner & Palme 2000). Additionally, the Mg/Si ratio in Renazzo

matrix was found to be sub-chondritic, while the ratio in the chondrules are supra-chondritic (Ebel

et al. 2008). Hezel & Palme (2008) analyzed the Ca/Al ratios in the matrix and chondrules of

Allende and Y-86751. These two CV meteorites are almost identical in bulk composition and

structure. Hezel & Palme found the Ca/Al ratio in the matrix of Allende to be sub-chondritic and

the ratio in the matrix to be super-chondritic. Yet the opposite is found for Y-86751. Hezel &

Palme interpret this as ruling out redistribution of Ca during parent body alteration, and therefore

is indicative of a difference in conditions during formation.

The frequency of compound chondrules, two or more chondrules that are fused together,

allows an estimate of the density of chondrules during formation (Gooding & Keil 1981; Wasson

et al. 1995; Hood & Kring 1996; Ciesla et al. 2004a; Ciesla 2005; Yasuda & Nakamoto 2008)

and in some cases (enveloping compound chondrules) argues for multiple heating events (Wasson

et al. 1995; Jones et al. 2005). Chondrule densities of ∼ 10 m−3 over regions of ∼ 103 km are

needed in order to prevent the isotopic fractionation of volatiles during melting (Cuzzi & Alexander

2006). Additionally, the retention of volatiles, such as Na, places lower limits on chondrule density

(Cuzzi & Alexander 2006; Fedkin et al. 2006; Alexander et. al. 2008, Kropf & Pack 2008). Lack

of Rayleigh isotopic fractionation among major elements constrains the pressure in chondrule-

forming regions to & 10−3 bar (Alexander 2004), Alternatively, this lack of fractionation may

occur because chondrules come into equilibrium with gas evaporated from other chondrules, which

would constrain the minimum concentration of chondrule precursors (Cuzzi & Alexander 2006). In

addition, Cuzzi & Alexander (2006) found that to satisfy the constraints on isotopic fractionation
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TABLE 1

Observational Constraints for Chondrule Formation Models - Essential
Constraints for which a Model Must Account

Constraint Supporting Observations

Widespread and efficient high chondrule abundances
Nebular timescales only isotopic dating
Low ambient temperature presence of volatiles
Short heating time (minutes) retention of volatiles

preservation of relict grains
experimental reproduction of textures
lack of isotopic fractionation of S

Peak temperatures ∼ 2000 K experimental reproduction of textures
Short cooling time (hours) experimental reproduction of textures

zoning in minerals
presence of glass

Multiple episodes; recycling relict grains
compound chondrules
igneous rims

Magnetic field remanent magnetization
Size sorting restricted size range in each chondrite group
Presence of dust that escapes heating fine-grained rims

of major elements, the chondrule-forming region must be at least 150 - 6000 km in scale. The range

in sizes of chondrules must also be addressed by formation models, as well as the partial pressure of

elements, such as oxygen and the total pressure chondrules experienced (Connolly & Desch 2004).

Finally, under the assumption that 26Al was homogeneous in the early Solar System, there

is an apparent age gap between CAI and chondrule formation based on initial values of 26Al/27Al

(Russell et al. 1997; Galy et al. 2000; Tachibana et al. 2003; Bizzarro et al. 2004; Russell et

al. 2007). These same data suggest timescales for chondrule formation of several Myr (Huss et al.

2001; Tachibana et al. 2003; Wadhwa et al. 2007; Rudraswami et al. 2008; Hutcheon et al. 2009),

as do Pb-Pb ages (Amelin et al. 2002; Kita et al. 2005; Russell et al. 2006; Connelly et al. 2008).

The majority of observational constraints for formation models of chondrules are summarized

in Tables 1 and 2, which we have adapted from Table 1 of Jones et al. (2000).
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TABLE 2

Observational Constraints for Chondrule Formation Models - Constraints less
Widely Accepted by Meteoriticists

Constraint Supporting Observations

Chondrule formation ∼ 2 Myr after CAI formation short-lived radioisotope data
Pb-Pb dating

Elevated gas pressure stability of molten chondrule
Variable nebular oxidation states variable oxidation states of chondrules

2. Chondrule Formation Models

The chondrule formation process, despite its obvious importance, has been a mystery in

the field of meteoritics for two centuries, since the recognition that chondrules are igneous, “ like

drops of fiery rain” (Sorby 1877). Proposed mechanisms include interaction with the early active

Sun, through jets (Liffman & Brown 1995; Liffman & Brown 1996) or solar flares (Shu et al.

1996, 1997, 2001), melting by lightning (Pilipp et al. 1998; Desch & Cuzzi 2000), and melting by

planetesimal impacts (Urey & Craig 1953; Urey 1967; Sanders 1996; Lugmair & Shukolyukov 2001).

The most widely-accepted hypothesis, though, is that chondrules were melted in shock waves in

the protoplanetary disk (Hewins 1997; Jones et al. 2000; Connolly & Desch 2004; Connolly et al.

2006).

2.1. Lightning

The proposal that chondrules were melted by lightning in the asteroidal region of the solar

nebula has been debated for some time (Cameron 1966; Whipple 1966; Morfill et al. 1993; Love et

al. 1995; Horanyi et al. 1995; Horanyi & Robertson 1996; Pilipp et al. 1998; Gibbard et al. 1997;

Desch & Cuzzi 2001; Güttler et al. 2008). In this model, gas turbulence, gas convection, and/or

vertical solar gravity produces size-segregated motions of chondrule precursors, which are then

assumed to transfer charge in a manner similar to how ice particles in terrestrial thunderstorms do.

On Earth, the continuing rainout of positively charged hailstones leads to large-scale separation of
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charge and an increasing vertical electric field. When the field reaches a critical value (∼ 105 V

m−1), the resistance of the air breaks down and current flows, in the form of a lightning bolt, to

cancel the charge separation (Jones et al. 2000; Desch & Cuzzi 2001).

The nebular lightning model of chondrule formation has support in the form of widespread

observations of lightning in volcanic plumes and dust storms, as well as in the atmospheres of the

outer planets (Desch et al. 2002, and references therein). Additionally, lightning discharges have

been observed at high altitude on Earth (Sentman et al. 1995), where the pressure is ∼ 10−5 bar,

analogous to the pressure in the solar nebula (Bell et al. 1997).

The nebular lightning model of Morfill et al. (1993) resulted in discharges lasting ∼ 100

s, consistent with the peak heating times of chondrules. The spatial scale of discharges may have

been large enough to produce chondrule cooling rates (Jones et al. 2000). However, Gibbard et

al. (1997) pointed out that the electrical conductivity in the nebula may have been too high,

effectively preventing discharges. Additionally, the energy flux may have been too small to melt

silicates (Love et al. 1995). Desch & Cuzzi (2002) presented a model which would eliminate most

of the problems with previous lightning models. Their model results in very large charges on

particles and very high concentrations of those particles, leading to higher particle velocities. The

greater velocities, combined with the large charges on the particles, result in very energetic bolts

(Desch & Cuzzi 2002). However, the electrical discharge experiments of Güttler et al. (2008) found

chondrule formation by lightning unlikely, at best. In most of their experimental results, dust

aggregates exploded, rather than melting (Güttler et al. 2008). Additionally, the small scales over

which lightning is expected to operate would seemingly result in cooling rates that are too rapid

to meet constraints on the thermal history of chondrules (Desch 2000). A better understanding of

the electrical properties of the solar nebula, as well as terrestrial lightning, and further modeling

is necessary to demonstrate that lightning is a viable source of the transient heating events that

formed chondrules (Jones et al. 2000).
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2.2. Interaction of Planetary Bodies

Planetary settings for the formation of chondrules include magmatic processes (Brezina

1885; Wahl 1911; Roy 1957; Chen et al. 1998; Lugmair & Shukolyukov 2001), ejection by volcanoes

(Merrill 1920), and collisions between planetary bodies (Urey & Craig 1953; Urey 1967; Sanders

1996; Symes et al. 1997). The arguments against chondrule formation in a planetary setting

have been summarized by many authors (Taylor et al. 1983; Boss 1996; Hewins 1997; Jones et

al. 2000; Ciesla 2005), most especially Taylor et al. (1983) and Boss (1996). These arguments

include the observation that chondrules are very different from known volcanic and impact deposits

that are found on Earth, the Moon, and in meteorites (Taylor et al. 1983). Taylor et al. (1983)

also cite the small abundance of agglutinates in chondrites, absence of hypervelocity impact pits

on chondrules, the presence of chondrule rims, the diversity of chondrule compositions, oxygen

isotopic heterogeneities, unfractionated bulk silicate compositions, and the narrow size distribution

of chondrules, as arguments against formation of chondrules in a planetary setting. The high

abundance of chondrules indicates an extremely efficient mechanism, difficult to reconcile with

formation by impacts (Taylor et al. 1983; Boss 1996; Keil et al. 1997; Hewins 1997; Ciesla 2005).

Impacts are also likely to fracture material, rather than melt it (Ciesla 2005) and are inconsistent

with multiple heating events (Taylor et al. 1983; Jones et al. 2000; Ciesla 2005). If formed through

impacts, one would also expect a wider range in chondrule ages (Taylor et al. 1983; Ciesla 2005).

However, the main problem with identifying a planetary setting with chondrule formation is the

lack of any quantitative model which calculates the thermal histories of chondrules (Taylor et al.

1983; Grossman 1988; Hewins et al. 1996; Connolly & Desch 2004; Ciesla 2005; Connolly et al.

2006).

2.3. Interaction of Chondrule Precursors with the Early Active Sun

Many have suggested that chondrule formation occurred as a result of interaction with the

early active Sun (Grossman 1988; Hewins et al. 1996), such as byproducts of bipolar outflows

(Liffman & Brown 1995; Liffman & Brown 1996; Liffman 2009) or solar flares (Shu et al. 1996,
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FIG. 1 — Cartoon drawing of the X-wind model. Figure from Shu et al. (2000).

1997, 2001). A major point in favor of these proposed formation mechanisms are the observations

of these phenomena in young stars. The models of Liffman & Brown (1995, 1996), in which

chondrules are produced by ablation from larger bodies entrained in outflows, predict cooling rates

(a few thousand K hr−1) that are considered too fast to produce porphyritic textures in chondrules

(Connolly et al. 2006). Additionally, these models do not address multiple heating events or the

total pressure or partial pressure of different elements during chondrule formation (Connolly et al.

2006).

X-wind. One proposed mechanism for chondrule formation involving interaction with the

early active Sun that has received considerable attention is the X-wind model of Shu et al. (1996,

1997, 2001). The X-wind model of Shu et al. (1996, 1997, 2001) proposes that chondrule precursors

located at ∼ 0.06 AU are lofted above the midplane of the disk by a magnetocentrifugally driven

wind, where they are either irradiated and melted by energetic flares or optical photons from the

early Sun (Figure 1). The newly formed chondrules are then transported via bipolar outflows to 2.5

AU (where chondritic parent bodies are believed to originate) and combined with local dust to form
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the chondritic parent bodies. Theories of star formation indicate that a bipolar outflow is present

in two of five stages of formation. During one of these stages, the central star is still embedded

within an infalling envelope of gas and dust. During the other, later stage, the outflowing wind

has reversed the flow of material, revealing the central star and surrounding accretion disk. The

X-wind model proposes that CAIs were formed during the embedded stage and that chondrules

were formed during both the embedded and revealed stages (Shu et al. 1996).

The presence of chondrules and the fine-grained matrix in chondritic meteorites, together,

results in a solar bulk composition. This naturally suggests that the chondrules and matrix formed

in the same vicinity within the solar nebula (Palme et al. 1993). The X-wind model does not

explain this chondrule/matrix complementarity. In fact, the model would seem to argue against

it. Micron-sized dust particles launched out of the midplane of the disk at ∼ 0.06 AU, would most

certainly escape the planetary system, failing to follow the chondrules out to the asteroid belt at

2-3 AU. It seems incongruous that chondrules formed at ∼ 0.06 AU would be complementary to

dust formed locally at 2-3 AU, resulting in a solar bulk composition, especially given the variations

in composition among chondrites.

In the X-wind model, chondrule formation is attributed to x-ray flares from the young Sun.

Although no detailed model (despite the substantial amount of literature on statistics of protostellar

x-ray flares) has been developed to predict the thermal histories of chondrules in the context of the

X-wind model, Jones et al. (2000) made some rough estimates of peak temperatures and cooling

rates of chondrules melted by x-ray flares. The model provides for rapid melting of chondrules

(tens of minutes) followed by cooling from peak temperatures over a period of days. This extended

cooling period, with temperatures in excess of 1000 K, contradicts the evidence for partial retention

of the volatile, Na, and is too slow to reproduce the textures observed in chondrules.

Additionally, the X-wind model provides no explanation for the evidence of multiple heating

events experienced by many chondrules. In other words, the model does not demonstrate how

chondrules heated near the Sun are flung out to 2-3 AU, then transported back to ∼ 0.06 AU to
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be melted yet again.

2.4. Nebular Shocks

As noted previously, the dominant model of chondrule formation is that chondrules were

melted in shock waves in the protoplanetary disk (Hewins 1997; Jones et al. 2000; Connolly &

Desch 2004; Connolly et al. 2006). A shock wave, or shock front, is a sharp discontinuity between

supersonic and subsonic gas, over an area only a few molecular mean free paths thick, typically

only meters in the solar nebula. The gas is slowed, compressed, and heated by the time it reaches

the other side of the shock front. Solids moving with the gas are heated not only by thermal

exchange upon entering the shocked region, but also by friction as they are slowed to the post-

shock gas speed, and by absorbing the infrared radiation emitted by other solids. The shock model

of chondrule formation appears able to resolve the chondrule formation mystery, because it makes

several detailed predictions about chondrule formation that are largely borne out by observation

and experimentation, especially regarding chondrule thermal histories.

Passage through nebular shocks satisfies nearly all the experimental constraints on chondrule

formation (Iida et al. 2001, hereafter INSN; Desch & Connolly 2002, hereafter DC02; Ciesla &

Hood 2002, hereafter CH02; Desch et al. 2005; Connolly et al. 2006; Krot et al. 2009). Prior to

passage through the shock front, chondrules are moderately heated by absorbing radiation emitted

by chondrules which have already passed through the shock front. Upon passage through the shock

front, the gas is immediately slowed, and compressed and heated, but the chondrules continue

at supersonic speeds through the gas. They achieve their peak heating during this stage, due to

absorption of radiation, thermal exchange with the gas, and especially supersonic frictional drag

heating. This stage lasts until the chondrules slow to the gas velocity, which takes an aerodynamic

stopping time, tstop = ρpap/ρgCs ∼ 1 minute (where ρp and ap are the particle density and radius,

and ρg and Cs are the post-shock gas density and sound speed). At this time, the gas and chondrules

are dynamically coupled and chondrules are heated only by absorption of radiation and thermal

exchange with the gas. Soon thereafter the solids and gas become thermally coupled as well, and
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both components achieve similar temperatures. Although the chondrules pass through the first 100

km of the post-shock region more rapidly than the gas, once they do, they will thermally equilibrate

to the gas temperature. Once this happens, the gas and chondrules cool together as fast as they

can either radiate away energy or leave the source of infrared radiation that heats them.

Most of the constraints on chondrule formation have been met by nebular shock wave models.

Shock waves produce the flash heating necessary for peak temperatures above the liquidus, while

still allowing for the retention of volatiles and lack of isotopic fractionation. They are large in scale,

leading to cooling rates consistent with observational constraints. Shock heating naturally results in

the mixing of chondrules with local dust. (The dust either was in the vicinity and escaped heating,

or recondensed from vapor after the shock, but before chondrite formation). Shock waves in the

disk can occur more than once. Thermal histories, multiple heating events, retention of volatiles,

and the complementarity of chondrules and matrix have all been addressed satisfactorily by shock

models. Even so, objections to the model exist because there is no direct observational evidence for

shocks in young stellar systems. However, many sources for nebular shocks have been proposed.

3. Shock Mechanisms

3.1. Planetesimal Bow Shocks

One possible source of shocks is a planetesimal in an eccentric orbit while gas is still present

in the disk (Hood 1998; Weidenschilling 1998; Ciesla 2004; Nelson & Ruffert 2005; Hood et al.

2005; Hood et al. 2009). In this scenario, the gas and dust at 2.5 AU (including chondrule

precursors) orbit the central star at the Keplerian velocity, vK = 20 km s−1. When at perihelion,

the planetesimal orbits faster than the gas, with a relative velocity between the planetesimal and

the gas of ∼ e vK , where e is the eccentricity of the planetesimal’s orbit. Planetesimals in resonance

with a proto-Jupiter can have eccentricities as high as e ∼ 0.3 - 0.5 (Weidenschilling 1998; Marzari

& Weidenschilling 2003; Hood et al. 2005; Hood et al. 2009). This results in a relative velocity of

∼ 8 km s−1, creating a bow shock around the planetesimal (Figure 2). Any solids in the region of
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FIG. 2 —Simulation of gas flow around a 1000 km diameter planetesimal moving at a velocity of 8
km s−1 relative to nebular gas with an upstream density of 10−9 g cm−3 and temperature of 400
K. Figure from Ciesla et al. (2004b).

the bow shock will be heated.

The most important consideration regarding shocks created by planetesimal bow shocks is

the scale of the region affected (Desch et al. 2005). The size of the bow shock will be comparable

to the size of the planetesimal (. 103 km), which places constraints on the fraction of the nebula

affected (Hood et al. 2005) and how long any entrained solids are heated (Ciesla et al. 2004b).

Ciesla et al. (2004) have shown that solids pass through a bow shock in ∼ three minutes, resulting

in cooling rates > 103 K hr−1, inconsistent with the thermal histories of chondrules.
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FIG. 3 — Results of MHD simulations of an X-ray flare event by Nakamoto et al. (2005). Global view
of the temperature (gray contour), magnetic field lines (solid curves), and the velocity distribution
(arrows) at (a) t = 4.00 days and (b) t = 6.665 days, respectively, after an X-ray flare event. The
X-ray luminosity of the X-ray flare is about 1025 W, which is close to the maximum value of the
observed X-ray flares in T Tauri stars. The major part of the momentum flows upward, and a
small fraction of it flows toward the disk, which generates shock waves in the disk. Figure from
Nakamoto et al. (2005).

3.2. X-ray Flares

Observations show T Tauri stars exhibit strong X-ray emission due to flares from the young

star (Feigelson & Montemerle 1999), many with energies of ∼ 1036 erg (Feigelson et al. 2002).

Although most of the energy from X-ray flares is directed perpendicular to the disk, modeling has

shown that some fraction of energy is carried by gas directed toward the disk (Figure 3; Nakamoto

et al. 2005). Shocks can be induced by collisions between this gas, which has been accelerated

by X-ray flares, and the disk gas (Nakamoto et al. 2005). Shocks triggered by X-ray flares are

expected to have velocities tens of km s−1, with densities on the order of 10−10 g cm−3 (Nakamoto

et al. 2005). Large energy flares, such as those observed in T Tauri stars, usually dissipate within

a few Myr, and may be the source of heating of solids early in the history of forming systems.

However, X-ray flares probably only affect material high above the midplane of the disk, where

micron-sized dust may be heated, but chondrule precursors are not likely to exist, due to settling

to the midplane.
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3.3. Gravitational Instability

It has been suggested that shocks due to gravitational disk instabilities may be responsible

for chondrule formation (Boss 2001; Boss & Durisen 2005; Boley & Durisen 2008). When a disk’s

self-gravity exceeds the vertical gravity due to the central star, bars or spiral arm patterns form

(Figure 4). These instabilities occur if the Toomre parameter, Q = csΩK/(πGΣ)<∼ 1, where cs is

the sound speed, ΩK is the orbital frequency, and Σ is the column density of gas at that location.

These bar and spiral patterns arising from disk instability can spontaneously form in massive disks,

and almost certainly occurred in the early solar nebula (Gammie 1996). In fact, Desch [2007] has

argued for a minimum mass solar nebula ten times that of Hayashi [1981]. (Alternatively, Boley &

Durisen (2008) found that mass can build up in dead zones, leading to gravitational instabilities in

otherwise low-mass disks). The gas densities within these bar and spiral regions are higher by an

order of magnitude than the rest of the disk and move at speeds that are a fraction of the Keplerian

velocity. When gas orbiting the disk at the Keplerian velocity collides with these high-density, slow-

moving regions, a shock results (Boss & Durisen 2005; Boley et al. 2005; Boley & Durisen 2008).

Models including median accretion rates for T Tauri stars (∼ 10−8 M⊙ yr−1; Gullbring et al. 1998)

and a turbulence parameter, α = 10−4, show that Q<∼ 1 beyond 5 AU (Bell et al. 1997), likely

for millions of years. Shocks due to gravitational instabilities propagate through the entire disk

(right down to the protostar) and will be driven into the asteroid belt midplane (Boss 2001), where

the gas density is ∼ 10−9 g cm−3 (Bell et al. 1997). At 2-3 AU, shock speeds of ∼ 6-10 km s−1

are predicted (Boss & Durisen 2005). In the simulations of Boley et al. (2005), chondrule-forming

shocks (judged by the results of DC02) occurred between 1.5 and 2.5 AU for perturbations at ∼ 5

AU. The chondrule-forming nature of these shocks was set by the density and temperature, which

is likely to change over time, shifting the location of the chondrule-forming region. This variation in

formation location would naturally explain differences in chondrule types and isotopic ratios (Boley

et al. 2005). The simulations of Boley & Durisen (2008) predict, however, that such high-speed

shocks (5 - 11 km s−1) should be rare, and must be triggered inside 2 AU, unless the disk was
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spiral-density waves

shock front at 2-3 AU, 

propagating at about

5-10 km s-1 relative to 

surrounding gas

FIG. 4 — Density contours in the midplane of a gravitationally unstable disk. A strong transient
shock front is shown at 9 o’clock, just outside the inner boundary of radius 2 AU. The radius of the
entire region is 20 AU. Cross-hatched areas denote regions with densities above 10−10 g cm−3. A
solar-mass protostar lies at the center of the disk. Solids rotating in the counterclockwise direction
between 2 and 3 AU encounter the shock front at a speed of ∼ 10 km s−1. Figure from Boss &
Durisen (2005).

on the verge of fragmentation. When gravitational instabilities did form in dead zones at 1-3 AU,

they produced chondrule-forming shocks at asteroid belt and cometary distances (Boley & Durisen

2005).

Global spiral shocks due to gravitational instabilities are appealing as the mechanism that

melted chondrules, because they meet many of the constraints on chondrule formation. They are

likely to be repeated, depending on the formation mechanism for the spiral waves; they are global,

but produce fairly local heating; they form chondrules in the disk; and they can work in the inner

disk as well as the outer disk (Boley & Durisen 2008).
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4. Shock Models

DC02 and CH02 assumed a one-dimensional (1-D) approximation, in which the gas prop-

erties vary only with x, the distance from the shock. In both models, changes in the properties of

the gas and solids are complete in tens of hours, or within distances of . 105 km from the shock.

In this case, the 1-D approximation is valid if the lateral scale of the shock front exceeds ∼ 105 km.

Shocks due to gravitational instabilities and X-ray flares are consistent with the 1-D approximation.

However, shocks due to planetesimal bow shocks are not, as the scale of the shocks are ∼ 103 km.

This does not rule out such shocks, but they cannot be modeled with a 1-D approximation.

It is important to point out that in all compressive shocks in physical materials, a rarefaction

wave follows the initial shock wave, during which time the medium experiences decompression. This

holds true for nebular shocks. The post-shock computational boundary of models such as DC02

and CH02 are much smaller than the rarefaction wave. Prior to passage of the shock, the scale

height of the disk is H = cs/ΩK, where cs is the sound speed and ΩK is the orbital frequency. As

the temperature increases with the passage of the shock, so does the scale height. The increase

in the scale height is ∼ c′sΩK. Gas will expand at the sound speed, cs, to achieve this new scale

height. It does so in a time ∼ 1/ ΩK. At 2.5 AU, the time it takes to reach the new scale height

is ≈ 1.5 years. In DC02, for example, it takes < 60 days for the material to reach the end of the

computational domain.

A standard procedure in nebular shock models is to calculate the dynamical and thermal

evolution of gas and chondrules separately, under the assumption of a fixed radiation field; once the

temperatures of dust and chondrules are known, the emission of radiation can then be calculated

and the radiation field updated. The solution is then iterated to convergence. While the nebular

shock model successfully explains many aspects of chondrule formation, there remain differences

between the models (INSN; DC02; CH02) that predict moderately different physical conditions in

the site of chondrule formation, as reviewed by Desch et al. (2005). These differences all involve
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the calculation of radiation effects, especially the radiative losses from molecular line emission, the

opacity of solids, and the input radiation field.

DC02 and CH02 include radiative transfer of chondrule radiation, where INSN neglect this

effect. The effect of line cooling—the cooling of gas by emission of so-called line photons by trace

molecules in the gas such as CO and H2O—in solar nebula shocks has been considered by INSN and

by Miura & Nakamoto (2006). In both cases the cooling rates of Neufeld & Kaufman (1993) were

used. INSN assumed a gas optically thin to the line radiation and found chondrule cooling rates

∼ 104 K hr−1 in many cases. Miura & Nakamoto (2006) allowed the gas to become optically thick

to this line radiation. They found that for plausible parameters the cooling rates of chondrules and

gas cluster around 5000 K hr−1, with line cooling playing an important role in the cooling of the

gas. DC02 and CH02 ignored the effect of line cooling, assuming an optically thick limit to the line

radiation.

A major input to calculations of the radiation field (more specifically, the frequency-

integrated mean intensity J at all locations) is the input radiation field at the boundaries of the

computational domain over which chondrule thermal histories are investigated. Far from the shock

front, in the pre-shock region, the radiation field is set to a blackbody radiation field at the ambient

temperature, Tpre, of the gas. The post-shock radiation field could also be set to the blackbody

radiation field at temperature, Tpost, but it is not clear what the temperature, Tpost, far beyond

the shock in the post-shock region should approach. Both INSN and CH02 set Tpost = Tpre, while

DC02 used the jump conditions of Hood & Horanyi (1991) to derive a much higher post-shock

temperature (Tpre ≈ 1100 K typically). The isothermal assumption Tpost = Tpre, strictly speaking,

violates the assumption of 1-D, but the jump conditions used by DC02 and Hood & Horanyi (1991)

were incorrect.

The question of opacity is also complicated. Only the opacity due to chondrules was con-

sidered by CH02, INSN and Miura & Nakamoto (2006). In contrast, DC02 considered opacity due

to both chondrules and a gray (no frequency or temperature dependence) opacity of micron-sized
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dust, κ = 1.14 cm2 g−1, up to a dust evaporation temperature Tevap = 2000 K, above which the

opacity vanished.

5. Purpose and Outline of Thesis

The purpose of this study is to investigate the formation of chondrules in solar nebula

shocks. Although previous shock models for chondrule formation exist, these models have been

lacking in some of the relevant physics. Previous shock models have used incorrect approximations

to the input radiation boundary condition, and the opacity of solids has been treated simply. Most

important, a proper treatment of cooling due to molecular line emission has not been included.

In this study, we significantly improve the shock model. We determine the appropriate boundary

condition for the input radiation, the proper method for calculation of the opacity of solids, and

include a complete treatment of molecular line cooling due to H2O.

In the following chapters we will discuss the physics of particle heating in nebular shocks,

both with and without radiation effects. We present a description of the hydrodynamic shock

code used in this study to predict the thermal histories of chondrules formed in nebular shocks,

and describe in detail the improvements we have made over previous shock models. Results are

presented and analyzed after each change is made to the model. New quantifications of line emission

and its role in chondrule-forming shocks will be presented. Cooling rates due to line emission from

H2O in a dense gas are calculated exactly. Initially, the effects of line cooling in chondrule-forming

shocks are estimated, through the use of a toy model. We then detail the complicated process of

incorporating molecular line cooling into the hydrodynamic shock code. Final results, after the

inclusion of line cooling, are presented and analyzed. Parameter studies are then performed to

determine the effect of changing initial conditions, such as the density of the pre-shock gas, water

abundance, and the concentration of chondrule precursors. Results of these parameter studies

performed using the updated shock code are presented. These results act as constraints on the

conditions in the early solar nebula, in order for chondrules to form in nebular shocks. Finally, we
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discuss the insight we have gained from this study, the implications of our results, and future work

planned in order to continue the investigation into the conditions during the birth of our Solar

System, and by extension, other forming planetary systems.



CHAPTER 2

UPDATED SHOCK MODEL

The shock model used in this study is based on the models of DC02 and CH02, with

substantial improvements. The discussion in §§1-3 largely follows that of DC02. As we have

noted previously in Chapter 1, §4, the jump condition used by DC02 for the boundaries of the

computational domain (far from the shock front) was incorrect, and the jump condition used

by CH02 formally violates the 1-D assumption. In §4 of this Chapter, we derive the formal jump

condition appropriate for use under the 1-D assumption, although we show that the CH02 condition

is physically justified. Additionally, the model of CH02 neglected opacity due to fine-grained dust

particles and DC02 assumed a constant dust opacity of 1.14 cm2 g−1. We have determined that

neither of these choices is appropriate. We discuss dust opacity in detail in §5. Finally, the model of

DC02 set the temperature at which dust evaporates at 2000 K. (CH02 did not consider evaporation

of fine-grained dust, as the opacity in their model arose solely from chondrule precursors). We have

determined that the temperature at which silicate dust evaporates is much lower than the 2000 K

assumed by DC02. We discuss dust evaporation in §6. In §§1, 2, and 3, we discuss the physics

of particle heating in shocks, as described by Desch et al. (2005), and the shock model of DC02

(similar to that of CH02), updated with new jump conditions at the computational boundary and

improved treatment of the dust opacity and dust evaporation.

1. Physics of Particle Heating in Shocks

Any shock generated in the solar nebula will heat solids in three ways: 1) by thermal

exchange between the hot, dense, post-shock gas and the particles in the post-shock region; 2) by

frictional heating, as the particles are slowed to the reduced post-shock velocity in the post-shock

region; and 3) by absorption of infrared radiation emitted by heated particles everywhere, in both

the pre-shock and post-shock regions. Here, we discuss the dynamical and thermal evolution of gas

and solids in shocks. Initially, we ignore absorption of radiation by solids.
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1.1. Basic Shock Equations Neglecting Radiation

1.1.1. Gas. To describe the heating of solids passing through a shock front, we must con-

strain the temperature Tg, pressure Pg, density ρg and velocity vg of the gas as it crosses the shock

front. We make the assumption that these quantities vary only with x, perpendicular to the shock

front. This assumption is known as the one-dimensional (1-D) approximation. We define x = 0

at the shock front, with x < 0 in the pre-shock region and x > 0 in the post-shock region. In

what follows, we label the quantities that have not passed the shock front with the subscript “1”,

and label the quantities that have passed the shock front with the subscript “2”. In all cases, we

measure velocities in the frame of the shock.

In a one-dimensional, steady-state flow, the equation of conservation of mass (the “continu-

ity” equation) is (e.g., Shore 1992)

∂

∂x
(ρgvg) = 0. (2.1)

This tells us that the quantity ρgvg is constant and that ρg1
vg1

= ρg2
vg2

. We know that the gas

will slow from supersonic to subsonic speeds across the shock front. Since ρg1
vg1

= ρg2
vg2

this

means that the gas must be compressed in the post-shock region. The equation of conservation of

momentum (the “force” equation) is

∂

∂x

(

Pg + ρgvg
2
)

= 0. (2.2)

Since the gas is compressed following passage through the shock front, it follows that it will be

heated, but its final temperature depends on the nature of energy transfer. If no exchange of

energy occurs between the gas and its surroundings, conservation of energy (including kinetic

energy, internal energy, and mechanical work done by pressure) demands

(ρgvg)
∂

∂x

[

γ

γ − 1

Pg

ρg
+

1

2
vg

2

]

= 0, (2.3)

where γ is the adiabatic index, or ratio of specific heats (e.g. γ = 7/5 for H2 gas). With these three

equations, one can solve for the three unknowns vg, ρg and Pg as functions of x.
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In this simple example, in which radiation is neglected, the pre-shock gas does not experience

any physical effects until it crosses the shock front. The pre-shock gas density and temperature ρg1

and Tg1
equal the ambient gas density and temperature, and the pre-shock gas velocity vg1

= vs,

the speed of the shock. Upon crossing the shock front, the gas density, temperature, and velocity

attain new values ρg2
, Tg2

, and vg2
. These post-shock values are related to the pre-shock values

using the Rankine-Hugoniot relations, or jump conditions, which are discussed in detail in §3.2.

These jump conditions describe the state of the gas immediately after it passes through the shock

front. In the absence of radiation, the post-shock gas properties do not vary with x.

1.1.2. Particles. Once the properties of the gas are known, the thermal histories of particles

passing through the shock front can be calculated. In the pre-shock region, solid particles, such

as chondrule precursors, move with the gas at a speed vp1
= Vs (in the frame of the shock front).

Neglecting radiation, the particle is in thermal equilibrium with the surrounding gas, at temper-

ature, Tg1
. Upon passage through the shock front, the gas is suddenly slowed, compressed, and

heated. The shock front itself is only a few molecular mean free paths thick, or ∼ 1/(nσ), where n

is the number density and σ is the collisional cross section of the gas molecules. Typical values for

the solar nebula are n ∼ 1014 cm−3, and σ ≈ 5 × 10−16 cm2, giving a mean free path of <∼ 1 meter.

Therefore, the shock front is only meters thick and the deceleration of the gas occurs in much less

than 1 ms. As such, particles are suddenly out of dynamical and thermal equilibrium with the gas.

The continuity equation for particles, in analogy to equation 2.1 for the gas, assumes that

both the total mass and number of particles are conserved:

∂

∂x
(npvp) = 0, (2.4)

where np is the number density of particles. Immediately after passing through the shock front,

the particle continues to move at speed vp ≈ Vs, as opposed to the gas, which has slowed almost

immediately to a speed ≈ Vs/6. This results in the exertion of a drag force on the particle, which

is dependent on the relative velocity between the gas and particle. The force equation for the
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particles, reflecting conservation of momentum, therefore includes the drag force, rather than a

pressure force (∂Pg/∂x), as in equation 2.2 for the gas. The drag force, Fdrag, the rate at which

momentum is transferred from the gas to dust grains, has been calculated by Probstein (1968):

Fdrag = −πa2
p

CD

2
ρg2

(

vp − vg2

) ∣

∣vp − vg2

∣

∣ , (2.5)

where ap is the radius of the (spherical) particle , and CD is the drag coefficient. The drag coefficient

is a complicated function of particle speed and temperature. The mean free paths of gas molecules

in the solar nebula (∼ 1 meter) greatly exceed the typical sizes of particles, so the mean molecular

flow approximation can be used (Cuzzi et al. 1996). In this approximation, molecules tend to

interact (exchanging momentum) with the particles by sticking to them, leaving the surface in a

random direction once they have reached equilibrium temperature with the particle. Upon leaving

the surface, the molecules possess kinetic energy set by the particle temperature, Tp. Under these

conditions,

CD =
2

3s

(

πTp

Tg

)1/2

+
2s2 + 1

π1/2s3
exp

(

−s2
)

+
4s4 + 4s2 − 1

2s4
erf(s), (2.6)

where s ≡ |vp − vg| /(2kTg/m̄)1/2 and erf denotes the error function (Probstein 1968; Gombosi et

al. 1986). In the supersonic limit s ≫ 1, CD → 2, while in the limit s ≪ 1, CD ≈ 3/s. The force

equation for the particles can now be written:

npmpvp
∂vp

∂x
= npFdrag, (2.7)

where mp = 4πρpa
3
p/3 is the particle mass, and ρp its internal density.

As the solids are slowed due to the drag force, the gas is accelerated, due to the exertion of a

force on the gas by the solids that is equal and opposite to the drag force. As such, the momentum

of the gas is no longer conserved and equation 2.2 must be replaced with

∂

∂x

(

Pg + ρgvg
2
)

= −npFdrag. (2.8)

In the post-shock region, solids are heated by frictional drag and thermal collisions with hot
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gas. The rate at which particles are heated by the gas is

q = ρg2
CH

(

Trec − Tg2

)
∣

∣vp − vg2

∣

∣ , (2.9)

where

CH =
γ + 1

γ − 1

k

8m̄s2

[

s

π1/2
exp(−s2) +

(

1

2
+ s2

)

erf(s)

]

,

and

Trec = Tg2

(

γ − 1

γ + 1

)

[

2γ

γ − 1
+ 2s2 −

(

1

2
+ s2 +

s

π1/2
exp(−s2)erf−1(s)

)−1
]

where erf−1(s) = 1/erf(s) (Probstein 1968; Gombosi et al. 1986). When determining the heating

rate, q, the same gas temperature, Tgas, is used for each species, but γ = 7/5 for H2 and SiO and

γ = 5/3 for H and He. Additionally, s will be different for each species as well, since m̄ = 1mH for

H, 2mH for H2, 4mH for He, and 44mH for SiO. In the limit s ≫ 1,

q → ρg2

(

vp − vg2

)3
/ 8, (2.10)

In this case, gas-drag heating dominates over thermal exchange and is seen to scale as the cube

of the relative velocity. In the opposite limit s ≪ 1, thermal exchange dominates over gas-drag

heating, Trec → Tg2
, and the particle’s temperature is forced to come into equilibrium with the gas

temperature. In this case,

q →
(ρg

m̄

) 1

4

(

8kTg

πm̄

)1/2 1

2

(

γ + 1

γ − 1

)

k (Tg − Tj) . (2.11)

Drag heating will dominate the heating of a particle while it is moving supersonically with respect

to the gas, for a time ≈ tstop, after which thermal exchange dominates. In either limit, the energy

absorbed by solid particles is balanced by a loss of energy from the gas.

If the particles do not radiate, then the energy equation for the particles becomes

npmpvp
∂

∂x
(CPTp) = np 4πa2

p q, (2.12)

where CP ∼ 107 erg g−1 K−1 is the specific heat capacity of the particle (Wasson 1996) .
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Including interactions with solids, the gas energy flux equation becomes

(ρgvg)
∂

∂x

[

γ

γ − 1

Pg

ρg
+

1

2
vg

2

]

= −npvpFdrag − np 4πa2
p q. (2.13)

The term, −npvpFdrag, accounts for increased kinetic energy of the gas due to interactions with the

particles via the drag force, while the term that includes q accounts for direct energy exchanges.

Combining the energy equations for the gas and particles demonstrates that energy is conserved:

(ρgvg)
∂

∂x

[

γ

γ − 1

Pg

ρg
+

1

2
vg

2

]

+ npmpvp
∂

∂x
(CPTp) = −npvpFdrag. (2.14)

Neglecting radiation, the gas and particle properties are determined entirely by their ex-

change of momentum and energy. Both gas and particles enter the shock front with temperature

Tg1
and speed Vs. The gas, however, rapidly slows, compresses, and heats. The particles initially

continue at speed Vs, but in a time, ∼ tstop, come into dynamical equilibrium with the gas. They

eventually come into thermal equilibrium with the gas as well. Until the particles come into com-

plete equilibrium with the gas, their velocities and temperatures are found by integrating the gas

equations 2.1, 2.8, and 2.13, and the particle equations 2.4, 2.7 and 2.12. After the particles reach

thermal and dynamical equilibrium with the gas, both gas and solids continue onward at the same

velocity and temperature.

2. Radiation Effects

Both gas and solids will radiate away excess energy, mostly in the infrared. This radiation

will affect the temperature and density of the gas, which in turn will affect the heating and cooling

of chondrule precursors and chondrules embedded in the gas. In the case of solar nebula shocks, this

radiation carries negligible mass and momentum, and the equations of mass flux and momentum

flux for both gas and solids will not change (equations 2.1, 2.8, 2.4 and 2.7) i.e., it is not necessary

to adopt a radiation hydrodynamics approach. However, the equations of energy flux for both gas

and solids (equations 2.12 and 2.13) will change, due to the effects of this radiation. Because of the
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difference in the way gas and solids radiate away excess energy, we treat each of the two equations

of energy flux separately.

2.1. Effects of Gas Radiation

Gas molecules emit radiation at very specific wavelengths. Shocked nebular gas tends to be

heated to <∼ 2500 K, which is too low to excite molecules to higher electronic states but sufficient to

excite them to higher vibrational or rotational states. Because these states are quantized, transitions

between excited states emit photons at very specific infrared wavelengths. These photons are known

as line photons, and their emission is known as line emission. The most common gas molecules in

a nebular gas, hydrogen molecules (H2), lack a permanent electric dipole moment and are rather

inefficient emitters of line photons. However, CO and H2O, the next most abundant molecules in

the gas, do have permanent electric dipoles. The line photons these molecules emit can carry away

sufficient energy to cool the gas. In the context of a solar nebula shock, we are concerned with

whether CO and H2O molecules in the hot, post-shock gas (x > 0), in particular, emit line photons

and cool the gas. In order to cool the post-shock gas, line photons must escape to the pre-shock

region (x < 0). These line photons appear Doppler-shifted to the pre-shock molecules, because the

molecules in the post-shock region move relative to the pre-shock gas by several km/s. Because

of this frequency discrepancy, the line photons cannot be absorbed by the pre-shock molecules

and may be lost from the system, thereby cooling the gas. Solids, however, can absorb these line

photons. Line photons emitted by the hot, post-shock gas, therefore, are either absorbed by nearby

gas molecules, absorbed by solids, or they escape to the pre-shock region and their energy is, for

all practical purposes, lost from the region. We discuss the calculation of line cooling in detail in

Chapter 3.

2.2. Effects of Particle Radiation

Unlike gas molecules, solid particles emit and absorb radiation over a continuous range of

wavelengths. This means that Doppler shifts of the radiation are irrelevant. Radiation emitted

by solid particles can be absorbed by solid particles anywhere else in the region. Particles that
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absorb this radiation will heat and, as a consequence, emit more radiation. This feedback requires

an entirely different approach to the treatment of radiation by solid particles.

2.3. Radiative Transfer

In our model, the gas is divided into four populations: atomic hydrogen (H), molecular

hydrogen (H2), helium atoms (He), and molecules resulting from the evaporation of solids, which

we represent with SiO. The adiabatic index, γ, is defined as 5/3 for the two atomic species, and 7/5

for the two molecular species. There is a chemical energy of 4.48 eV associated with the dissociation

of each H2 molecule. The properties of solids are the number density, np, the velocity, Vp, the

temperature, Tp, the radii, ap, the material density, ρp, and the heat capacity, CP. We must also

define the latent heat of fusion, lmelt, and the temperature range, ∆Tp, over which melting of solids

takes place, as well as the latent heat of evaporation, levap, and the temperature, Tevap, at which

evaporation occurs. Melting effectively increases the heat capacity over the range of temperatures

at which melting occurs, by an amount lmelt/∆Tp. We make the following assumptions: CP =

1.0 × 107 erg g−1 K−1, lmelt = 5.0 × 109 erg g−1, and levap = 1.1 × 1011 erg g−1 (Wasson 1996). We

discuss Tevap in §6. Melting is assumed to take place between temperatures of 1400 K and 1820 K,

so that ∆Tp = 420 K. Over this temperature range, the heat capacity is effectively 2.19 × 107 K.

The fraction of the chondrule melted is assumed 0% at 1400 K, and rises linearly to 100% at 1820 K.

A final needed parameter is the radiative emissivity ǫ. Since the chondrule precursors are heated to

temperatures 1500 − 2000 K, the wavelength of peak thermal emission is (by Wien’s law) ≈ 2 µm.

The Planck-averaged emissivity ǫ is proportional to the particle radius a for small silicate particles,

but independent of size for large particles (Draine and Lee 1984). We adopt the following emissivity,

to conform with the results of Draine and Lee (1984):

ǫ = 0.8 × min

[

1,

(

ap

2 µm

)]

. (2.15)

We adopt the same wavelength-averaged emissivity for absorption and emission since the absorption

spectra and emission spectra for solids are both in the near infrared.
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We also include the effects of dust, fine-grained (radii < 1 µm) silicate particles. Because

of their small sizes, the thermal and aerodynamic timescales of the dust are too small to explicitly

follow their evolution in our numerical code. We therefore assume that the fine-grained dust is

thermally and dynamically well-coupled to the gas. The assumption of good dynamical coupling

between gas and dust underestimates the temperature reached by the dust, as it neglects the

effect of frictional drag heating. Using an emissivity ǫ = 0.2, appropriate for grains of radii ∼ 0.5

µm (and in agreement with the NIR albedo of interstellar dust; Li & Greenberg 1997), we calculate

the temperature of the dust particles using equation 2.24, with the derivative set to zero. Within

the code, we modify the particle temperature. If the equilibrium temperature is greater than Tevap,

we assume that dust is destroyed by evaporation from that point on, until the end of the post-shock

region. The presence or absence of dust is crucial in the calculation of the opacity of the gas, which

in turn, is used to properly calculate the radiation field.

Solids are allowed to absorb and emit radiation, affecting their total energy budget. The

radiation emitted by some particles may be absorbed by other particles at a distant location.

The determination of the radiation field at all locations is therefore a critical calculation. As

discussed above, the gas itself may also radiate, primarily due to vibrational modes of H2O near

6 µm (Neufeld and Kaufman 1993; Morris et al. 2009). Treatment of the especially difficult problem

of line radiation in a dusty medium has been discussed in Hollenbach and McKee (1979) and Morris

et al. (2009). Initially, we neglect cooling of the gas due to line emission in our treatment of the

radiation field. Discussion of line cooling and its treatment in our numerical code is discussed in

Chapter 3. Here, we follow the approach outlined in Mihalas (1978) for radiation emergent from a

plane-parallel, temperature-stratified slab atmosphere.

In order to describe the radiation field, the first parameter to be defined is the (frequency-

averaged) optical depth at all locations. At the beginning of our computational boundary, the

optical depth τ(x = −xpre) = 0, increasing to a maximum value τ(x = +xpost) = τm at the
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post-shock computational boundary. At other locations,

τ(x) =

∫ x

0

[

ρgκ + np(x)πa2
pǫp(λ)

]

dx, (2.16)

where κ is the opacity of the gas (with density, ρg) due to dust associated with the gas. A complete

treatment of the dust opacity is given in §5. If at some point the dust is destroyed through

evaporation (§6), then κ, from that point on, is set to 0.001 times the value it would have by

Eqn. 2.63. It is not set to zero, in order to account for ultra-refractories (Lenzuni et al. 1995).

The second parameter to be defined is the (frequency-integrated) source function, S. The

source function from a blackbody at temperature T is the Planck function B, which after integrating

over wavelength is B = σT 4/π, where σ is the Stefan-Boltzmann constant. If all the particles

in a region are held at temperature T , the source function must approach B, regardless of the

emissivities of the particles. If the particles are at different temperatures, the source function is

weighted according to their emissivities:

S =
ρgκσT 4

g + npπa2
pǫ σT 4

p

ρgκ + npπa2
pǫ

. (2.17)

This reduces to σT 4
g /π in the event that Tp = Tg. (Although the temperature of dust is approxi-

mated in the code, the gas temperature is used for the source function from dust to avoid numerical

instabilities, as well as for the reason that the two temperatures are very similar.) The last param-

eter to be specified is the radiation entering through the two computational boundaries (integrated

over wavelength). The radiation field entering the pre-shock computational boundary is given by

Ipre = σT 4
0 /π, where T0 is the temperature of the ambient medium. The specific intensity of the

radiation field entering the post-shock boundary is given by Ipost = σT 4
post/π, where Tpost is the

post-shock equilibrium temperature, using the radiative jump conditions of §4.

Given the incident radiation fields and the source function at all optical depths, S(τ), the

mean intensity of radiation, J(τ) (integrated over wavelength) can be found:

J(τ) =
Ipre

2
E2(τ) +

Ipost

2
E2(τm − τ) +

1

2

∫ τ

0

S(t)E1(τ − t) dt
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+
1

2

∫ τm

τ
S(t)E1(t − τ) dt, (2.18)

where E1 and E2 are exponential integrals. Using the properties of the exponential integrals, namely

that dEn(x)/dx = −En−1(x), it can be shown by direct integration that if S(t) = Ipre = Ipost = I0

everywhere, then J(τ) = I0. We can also solve for the net flux of radiation energy, Frad(τ):

Frad(τ) = 2πIpreE3(τ) − 2π

∫ τm

τ
S(t)E2(t − τ) dt

−2πIpost E3(τm − τ) + 2π

∫ τ

0

S(t)E2(τ − t) dt. (2.19)

It is again possible to show by direct integration that in the case S(t) = Ipre = Ipost = I0 everywhere

that the net flux Frad = 0. It is also straightforward to demonstrate that in general

∂Frad

∂x
= −4πρgκ

[

Jr − σT 4
g /π

]

− np4π2a2
p ǫ
[

Jr − σT 4
p/π

]

, (2.20)

where κ is the opacity of the gas (via the well-coupled dust component). That is, changes in

radiative flux are due to net absorption of radiation by gas and dust.

2.4. Basic Shock Equations Including Radiation

In practice, we treat the four gas species (H, H2, He, SiO) separately, then combine their

separate heating rates into one overall heating rate. The net particle heating rate per unit surface

area is then q (equation 2.9) plus the radiative terms: q+ǫ(Jr−σT 4
p/π). This net heating rate goes

into raising the particle’s temperature, thereby melting it or causing it to evaporate. If Tp < Tevap,

or if Tp = Tevap and the net heating is negative, then there is no evaporation, mp is constant, and

∂ap

∂x
= 0, (2.21)

∂

∂x
(CPTp) =

3

ρpapVp

[

q + ǫ
(

Jr − σT 4
p/π

)]

. (2.22)

If Tp ≥ Tevap and the net heating is positive, then all the heat goes into evaporating the particle:

∂ap

∂x
= − 1

ρplevapVp

[

q + ǫ
(

Jr − σT 4
p/π

)]

, (2.23)



34

and

∂Tp

∂x
= 0. (2.24)

(That is, Tp is held constant at Tevap.) These four equations can be used to immediately solve for

the four unknowns for solids, np, Vp, ap and Tp. (In reality, of course, evaporation is over a range

of temperatures, and is not a step function).

The gas equations, modified for dissociation and recombination, are as follows. Hydrogen

atoms and molecules obey the following continuity equations:

∂

∂x
(nHVg) = −2R, (2.25)

and

∂

∂x
(nH2

Vg) = +R, (2.26)

where R is the net rate (per unit volume and unit time) of the reactions H + H → H2, given in

Appendix B. The total number of hydrogen nuclei are conserved. Helium atoms are neither created

or destroyed:

∂

∂x
(nHeVg) = 0. (2.27)

Other molecules formed by the evaporation of solids are created at a rate

∂

∂x
(nSiOVg) = −

npVp4πρpa
2
p

44mH

∂ap

∂x
≡ ṄSiO. (2.28)

Because the gas species are assumed to be dynamically and thermally well-coupled and to

share the same velocity and temperature, we need just one force equation for the gas.

[

ρgV
2
g − Pg

]

(

1

Vg

∂Vg

∂x

)

+ [Pg]

(

1

Tg

∂Tg

∂x

)

= Fdrag,j −
RkTg

Vg
+

ṄSiOkTg

Vg
. (2.29)

The last term accounts for the momentum flux lost from the particles as they evaporate and lose

mass. (This evaporated mass transfers momentum to the gas as it becomes part of the gas).

We now turn to the energy equation to complete our description of the evolution of the gas.

Like the solids, the gas can be heated by frictional drag as well as by collisional transfers of thermal
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energy. Because total energy must be conserved, we first begin with a combined energy equation

for the solids and gas. All stores of energy are moving with the gas or particles, except for the

radiation, so that, in terms of number densities:

∂

∂x

[

nHVg

(

1

2
mHV 2

g +
5

2
kTg

)

+ nHVgediss + nH2
Vg

(

1

2
2mHV 2

g +
7

2
kTg

)

+nHeVg

(

1

2
4mHV 2

g +
5

2
kTg

)

+ nSiOVg

(

1

2
44mHV 2

g +
7

2
kTg

)

+npmpVp

(

1

2
V 2

p + CPTp

)]

= −∂Frad

∂x
+ ė (2.30)

= +4ρgκ
(

Jr − σT 4
g /π

)

+ np4πa2
pǫ
(

Jr − σT 4
p/π

)

+ ė,

where ediss = 2.24 eV and ė is the net energy due to molecular line emission (for now, ė = 0). After

subtracting the terms that describe the dust energy evolution (and simplifying using the continuity

equations) all the radiative terms involving particle opacities drop out, and only the terms involving

gas opacity remain. What remains is
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(nH + nH2
+ nHe + nSiO)V 2

g

(

∂Vg

∂x

)

+

(

5

2
nH +

7

2
nH2

+
5

2
nHe +

7

2
nSiO

)

Vg

(

∂C2

∂x

)

= +
4ρgκ

mH

(

Jr − σT 4
g /π

)

− np4πa2
p

q

mH

− npVp

Fdrag

mH

−npVp

(

4πa2
pρp

mH

∂ap

∂x

)

(

1

2
V 2

p − 1

2
V 2

g

)

+ R

(

3

2
C2 − 2ediss

mH

)

− ṄSiO

(

7

2
C2

)

+ ė. (2.31)

The first term on the right-hand side of equation 2.31 accounts for energy absorbed by

the gas from the radiation field, and radiation emitted by the gas (through the well-coupled dust

component). The second term accounts for the loss of thermal energy from the gas to the particles.

The third term includes work done by the gas on the particles via the drag force. The fourth

term accounts for changes in the gas kinetic energy due to the creation of new gas molecules

by evaporation. The fifth term accounts for changes in the thermal and chemical energy due to

dissociation and recombination of molecules. The sixth term accounts for changes in the thermal

energy due to the addition of new molecules by evaporation of solids. Finally, the seventh term is

the net energy due to molecular line emission.

Expressing the energy equation in terms of pressure, as opposed to number densities, gives:

ρgV
2
g

(

1

Vg

∂Vg

∂x

)

+

[

5

2
Pg + nH2

kTg

](

1

Tg

∂Tg

∂x

)

=
1

Vg

[

4ρgκ
(

Jr − σT 4
g /π

)

− np4πa2
pq − npVpFdrag − npVp

(

4πa2
pρp

∂ap

∂x

)(

1

2
V 2

p − 1

2
V 2

g

)

−R

(

3

2
kTg + ediss

)

+ ṄSiO

(

7

2
kTg

)

+ ė

]

. (2.32)

3. Hydrodynamic Shock Code

3.1. Inputs

Our calculation of the evolution of gas and solids encountering a shock is restricted to a range

of distances, x, from the shock front. Our computational domain extends a distance x = −xpre in

the pre-shock region, to x = +xpost in the post-shock region, with x = 0 at the shock front. The

lateral extent of the shock front is assumed to greatly exceed either of these two values, so that the
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one-dimensional approximation can be assumed. We typically use xpre ∼ xpost ∼ a few × 106 km,

regions that are much smaller than the scale height of the nebula at 2 − 3 AU (∼ a few × 107 km),

so that our one-dimensional calculation is applicable to nebular shocks generated by diskwide

gravitational instabilities, but not to bow shocks of planetesimals. (We remind the reader that the

post-shock region is well within the rarefaction wave of the shock). Our computational domain is

divided into 1000 zones.

The particles and gas are started at the pre-shock computational boundary with imposed

initial conditions. Both gas and solids begin with the same temperature, T0, and velocity, Vs.

There is initially no SiO vapor or atomic H. The number density of He atoms is 0.2 times the

density of H2 molecules. All necessary equations are numerically integrated using a fourth-order

Runge-Kutta routine with variable step size. The variable step size refers to the steps needed to

integrate across each grid zone. Integration using the Runge-Kutta routine relies on solving for

the spatial derivatives of each variable in the proper order. First the particles’ radii, temperatures

and velocities are found directly from equations 2.22 and 2.7, and the particle densities are found

from the continuity equation 2.4. Next, equations 2.32 and 2.29 are combined to solve for the

two unknowns, Vg and Tg. Substituting the derivative of Vg allows us to find the derivatives of

all the gas densities, except at the shock front, where the jump conditions (§3.2) result in a near-

instantaneous change in the gas properties. (The properties of solids do not changed across the

shock front). Additionally, if the relative velocity between gas and solids drops under 1 m s−1 in

the post-shock region, the relative velocity is set to zero, resulting in the movement of the particles

and the gas together from that point on. The numerical integration has an internal accuracy of

10−6.

During the integrations, the radiation field is considered fixed. Initially, J = σT 4
pre/π in the

pre-shock region, and J = σT 4
post/π (§4) in the post-shock region. After all other variables have

been integrated across the entire computational domain, the radiation field is then recalculated

based on the updated particle densities, radii and temperatures. The temperatures of both gas
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and solids are then recalculated based on the new radiation field. The solution is iterated until the

radiation field and the particle temperatures are self-consistent. Our convergence criteria is set so

that, in all zones, particle temperatures converge to within 1% (2.5 - 5 K) and the mean intensity,

Jr, converges to within 0.2%. In the standard (“canonical”) run, convergence is achieved in less

than 800 iterations.

3.2. Jump Conditions at the Shock Front

Jump conditions are needed to specify how the gas properties change across the shock front,

the viscous layer in which the velocity of the gas changes from supersonic to subsonic and kinetic

energy is converted into heat. The shock front is only a few gas mean-free-paths thick. The cross

section of an H2 molecule is ∼ 5×10−16 cm2, so that for typical densities nH2
∼ 1014 cm−3, the shock

front is only meters thick. Gas and solids will pass through this layer in ∼ 10 µs. By integrating

equation 2.30 across the shock front, starting only a few meters ahead and ending a few meters

behind, there is not enough time for many of the terms in equation 2.30 to change appreciably.

The dissociation of hydrogen takes >∼ 1 s, and no evaporation occurs in the first several seconds.

Likewise, the flux, Frad, just ahead of the shock front will be virtually identical to the flux behind

it. Finally, the particles are unable to heat a significant amount in less than a millisecond, and

their velocities do not vary on timescales less than ∼ 10 s. So we need only consider the species

H, H2 and He. Although their densities will increase behind the shock, the proportions of these

three species will not change. Thus we can use the standard jump conditions (e.g., Shore 1992, pp.

107-108):

ρ2 = ρ1
(γ + 1)M2

(γ − 1)M2 + 2
(2.33)

V2 = V1
n1

n2
(2.34)

T2 = T1

[

2γM2 − (γ − 1)
] [

(γ − 1)M2 + 2
]

(γ + 1)2M2
, (2.35)
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where

M2 =
V 2

γP/ρ
=

1

γ

[

nH + 2nH2
+ 4nHe

nH + nH2
+ nHe

]

mHV 2
1

kT1
(2.36)

is the square of the Mach number (recall that the subscript 1 denotes pre-shock conditions and the

subscript 2 describes post-shock conditions). To accommodate the multiple species of the gas, we

need to interpret the ratio of specific heats, γ, correctly:

γ =
5
2
nH + 7

2
nH2

+ 5
2
nHe

3
2
nH + 5

2
nH2

+ 3
2
nHe

. (2.37)

For a solar composition gas at ≈ 300 K, nH ≈ 0, and nHe/nH2
≈ 0.2, so γ ≈ 1.429. Immediately

behind a very strong shock, the gas should be compressed by a factor of 5.67. Behind a shock with

Vs = 7 km s−1, ρ1 = 10−9 g cm−3 and T1 = 300 K, the density increases by a factor of 5.14, and the

temperature increases by a factor of 10.51.

We discuss the jump condition needed far from the shock front in the next section.

4. Jump Conditions Far from the Shock

A major input to calculations of the radiation field (more specifically, the frequency-

integrated mean intensity, J , at all locations) is the input radiation field at the boundaries of

the computational domain over which chondrule thermal histories are investigated. Far from the

shock front, in the pre-shock region, the radiation field is set to a blackbody radiation field at the

ambient temperature, Tpre, of the gas; but it is not immediately clear what the temperature, Tpost,

in the post-shock region should approach. Both INSN and CH02 set Tpost = Tpre, while DC02 used

the jump conditions of Hood & Horanyi (1991) to derive a much higher post-shock temperature

(typically, Tpost ≈ 1100 K). The isothermal assumption, Tpost = Tpre, violates the assumption of

1-D, but the jump conditions used by DC02 and Hood & Horanyi (1991) were incorrect. Their

jump condition did not consider energy carried by solids and used an incorrect calculation for

the radiative flux. Below we derive the proper jump conditions, then discuss why the isothermal

assumption is probably best after all.
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As discussed in the previous section, jump conditions relate physical conditions (e.g., density

ρ, pressure P , temperature T , velocity V ) at a point before the shock to those after the shock (see

Mihalas & Mihalas 1996). Immediately before and after the shock (i.e., a few meters), the jump

conditions are those of an “adiabatic” shock because insignificant energy is radiated in that interval.

The compression of the gas is then ρ2/ρ1 = η−1
AD, where

ηAD =
2γ

γ + 1

1

γM2
+

γ − 1

γ + 1
(2.38)

(Mihalas & Mihalas 1996). We have included radiative fluxes and the effects of solids in the

equations of mass, momentum and energy conservation and have derived new jump conditions

appropriate far from the shock. There are essentially three needed jump conditions. As is standard,

brackets refer to a difference in the bracketed quantity between two positions; in this case, they are

far before the shock and far after the shock. For mass:

[ρgVg + ρcVc] = 0. (2.39)

For momentum:

[

ρgV
2
g + Pg + ρcV

2
c

]

= 0. (2.40)

Finally, for energy:

[

ρgVg

(

1

2
V 2

g +
γ

γ − 1

Pg

ρg

)

+ ρcVc

(

1

2
V 2

c + CPTc

)

+ Frad

]

= 0. (2.41)

We now define

γ

γ − 1
Pg + ρcCpTc ≡

γ′

γ′ − 1
Pg. (2.42)

Because solids quickly reach dynamical equilibrium with the gas, Vg = Vc, far from the shock ≡ V ,

so

γ′

γ′ − 1
Pg =

γ

γ − 1
+ δ, (2.43)

where

δ = (ρcCpTc)0/P0. (2.44)
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This results in a new effective adiabatic index

γ′ =
γ + δ (γ − 1)

1 + δ (γ − 1)
, (2.45)

As δ → 0, γ′ = γ, and if δ ≫ 1, γ′ = 1. We can now rewrite equation 2.41 as

[

(ρgV + ρcV )
1

2
V 2

g +
γ′

γ′ − 1
PgV + Frad

]

= 0. (2.46)

In either case, dynamical, thermal, and chemical equilibria are achieved. We can assume that

all hydrogen is molecular. Well before the shock, all components have identical velocity V0 and

temperature T0; well after the shock, they have identical velocity Vf and temperature Tf . By

the equations of continuity, nH2V and nHeV are conserved. We can therefore rewrite the jump

conditions as

[(ρgVg) + (ρcVc)]0 [V0 − Vf ] = P0

[(

V0

Vf

) (

Tg,f

Tg,0

)

− 1

]

, (2.47)

and

[ρgVg + ρcVc]0

[

1

2
V 2

0 − 1

2
V 2

f

]

+
γ′

γ′ − 1
P0V0

(

1 − PfVf

P0V0

)

= Frad(τ = τm) − Frad(τ = 0) = ∆F. (2.48)

Note that when written in this format, all terms in both equations are positive: Frad(τ = 0) < 0

and Frad(τ = τm) > 0, because radiation is emitted from the region near the shock front, and

V0 > Vf and Tf > T0.

We now simplify the equations using the following definitions:

η =
Vf

V0
< 1 (2.49)

y =
Tf

T0
> 1 (2.50)

γM2 =
(ρg + ρc)V 2

0

P0
(2.51)

Note that all quantities are dimensionless. Using these definitions, and combining the jump condi-

tions, we arrive at the following quadratic for η:

(

γM2
) (

1 − η2
)

+
2γ′

γ′ − 1
(1 − y) =

2∆F

P0V0
. (2.52)
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If ∆F = 0, i.e., there are no radiative losses, then

η =
γ′ − 1

γ′ + 1
+

2γ′

γ′ + 1

1

γM2
≡ ηAD. (2.53)

For ∆F 6= 0,

(η − ηAD) (1 − η) = −γ′ − 1

γ′ + 1

1

γM2

2∆F

P0V0
, (2.54)

so that

η =
ηAD + 1

2
− 1 − ηAD

2
(1 + ǫ)1/2 , (2.55)

where ǫ is the ratio of net outward radiative fluxes to kinetic energy flux, given by

ǫ =
γ′ − 1

γ′ + 1

F2 − F1

ρ1V 3
1 /2

. (2.56)

If radiation carries energy away from the shock front, the signs of F2 and F1 (or ∆F ) guarantee

ǫ > 0. (The neglect of the sign of the radiative fluxes is one of the flaws of the jump conditions

used by Hood & Horanyi (1991) and DC02 as described in Desch et al. (2005)). In terms of these

quantities, the new compression is ρ2/ρ1 = η−1, where η solves the quadratic equation

(1 − η) (ηAD − η) = ǫ. (2.57)

The post-shock temperature is then easily found:

Tpost = Tpre η [1 + γM2(1 − η)]. (2.58)

Using the proper jump conditions for the 1-D approximation, we have calculated the final

temperature for a range of initial densities and shock velocities and found the final temperature is

always greater than the initial temperature, Tpre = 300 K (Figure 5). In fact, the final temperature

is usually quite large (> 1300 K), unless the shock speed is small. We can calculate the peak

temperature achieved by solids using the relationship 1
8
ρgV

3
rel = σT 4

peak, where Vrel is the relative

velocity between the gas and solids. For chondrule formation to occur, solids need to reach a peak

temperature, Tpeak > 1800 K and cool to Tfinal < 1400 K. We find this condition occurs only in

cases of high density and low initial shock velocity ( ρg > 10−9 g cm−3 and Vs ∼ 4 − 7 km s−1; see
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FIG. 5 —The limits on initial density, ρ0, and shock velocity, Vs, necessary for chondrule-forming
shocks in the 1-D approximation. The cross-hatched region is the area consistent with chondrule-
formation, with Tpeak > 1800 K and Tfinal < 1400 K.

Figure 1). These high densities and low shock speeds are largely incompatible with the formation

of chondrules in the solar nebula. The minimum mass solar nebula is assumed to have a density

of ∼ 10−10 g cm−3 at 2.5 AU according to Weidenschilling (1977), although Desch (2007) finds

a more massive minimum mass solar nebula. We find that densities over 10 times that of the

Weidenschilling (1977) minimum mass solar nebula (ρg > 10−9 g cm−3) are needed in order for

temperatures consistent with chondrule melting by shocks in a 1-D assumption with no radiative

losses. Additionally, it has been demonstrated that shock speeds of 4-6 km s−1 will not sufficiently

melt chondrules (DC02). So although there may be a small range of densities and initial shock

speeds where chondrule formation is possible in the strict 1-D approximation (the extreme left

“wedge” of the cross-hatched region in Figure 5), under most conditions, the 1-D approximation is

not appropriate. We therefore abandon the strict 1-D assumption and explore the effect of radiative

losses parallel to the shock.
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In an adiabatic shock with no radiative losses, ǫ = 0 and η = ηAD, but as radiative losses

increase, ǫ increases, η decreases, and the compression η−1 increases. When ǫ is such that η−1 =

γM2, the solution is the familiar “isothermal” shock.

The above solution for a shocked radiating flow is discussed in the gas-only case by Mihalas

& Mihalas (1996), assuming there is no input radiation. This guarantees that F2 > 0 and F1 < 0

so ǫ > 0. We are not aware of solutions for shocked radiating flows that include input radiation. To

include input radiation, it would seem appropriate to alter the flux F1 by an amount −σT 4
pre, and

the flux F2 by an amount −σT 4
post, so that the pre- and post-shock gas can radiative back into the

computational domain. Unfortunately, this “reflecting” boundary condition typically drives ǫ to

negative values, and is actually incompatible with a shock. It is therefore not appropriate to set the

input radiation field to a blackbody at Tpost, with Tpost calculated in the purely 1-D approximation.

Violation of the 1-D approximation, at some level, may be necessary for maintenance of a shock in

a radiating flow.

One easily understood violation of the 1-D approximation involves radiative diffusion car-

rying energy away parallel to the shock front (for example, out the tops and bottoms of a disk in

which the shock propagation direction lies in the plane of the disk). The radiation generated by a

nebular shock with lateral extent L will diffuse on a timescale

trd =
3ρCVL2

64π2 λ σT 3
(2.59)

(Mihalas & Mihalas 1996), where λ is the mean free path of photons. For our preferred dust opacity

(see §5), a post-shock density ρ = 6×10−9 g cm−3 and temperature 2000 K, trd = 1.3×107 (L/H)2 s,

where H ≈ 0.2 AU is the scale height of the disk. For opacity due to a solar composition of 300µm

chondrules, i.e., where dust evaporates, trd is lowered by a factor of 200. These are to be compared

to the time for gas and chondrules to reach the computational boundary in simulations, typically

(5× 106 km)/(1 km s−1) ≈ 5× 106 s. If dust evaporates and L < 0.3H, then gas will definitely cool

to the ambient temperature by the time the post-shock boundary is reached, and thereby justifies
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setting Tpost equal to Tpre, as in CH02. If L > 0.3H, it is unlikely that Tpost will drop to Tpre by

the time the gas and chondrules reach the computational boundary, in the 1-D approximation. To

model such a case, it would be necessary to model the whole disk, developing, at minimum, a 2-D

simulation, and preferably a 3-D simulation.

5. Dust Opacities

Previous shock models have crudely estimated dust evaporation temperatures and dust opac-

ities. Only the opacity due to chondrules was considered by CH02, INSN and Miura & Nakamoto

(2006). In contrast, DC02 considered opacity due to both chondrules and a gray (no frequency

or temperature dependence) opacity of micron-sized dust, κ = 1.14 cm2 g−1, up to a dust evapo-

ration temperature Tevap = 2000 K, above which the opacity vanished. For meteoritic abundances

of micron-sized dust and chondrules, dust opacity dominates over chondrules, so it is important

to include dust opacity, especially as such opacity will be important in shutting off cooling by line

emission (Morris et al. 2009). Ideally, the opacity is calculated at each wavelength. Assuming a

dust-to-gas ratio ρd/ρg = 5× 10−3, a particle radius ap = 0.5 µm, and an absorptivity Qabs = 1 for

λ < 2πas and Qabs = 2πas/λ for λ > 2πas, we derive

κλ = 30 min
[

1, (λ/3.1 µm)−1
]

cm2 g−1 (2.60)

Our estimates are similar to those derived by Henning & Stognienko (1996) using a particle size

distribution, instead of our simplified monodispersion. We have found that the calculation of the

opacity at each wavelength is prohibitively computationally expensive, however. Using only a range

of 30 frequencies would increase our computational time for each simulation from ∼ 10 days to > 30

days. We therefore desire an approximation to the opacity that is not wavelength-dependent. We

use the Planck-averaged opacity and the Rosseland mean opacity as starting points in our search

for such an approximation.
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Both the Planck-averaged opacity and the Rosseland mean opacity are functions of both

wavelength and temperature:

κP =

∫

λ κλBλ(T ) dλ
∫

λ Bλ(T ) dλ
, (2.61)

κR =

∫

λ κλ
∂Bλ
∂T dλ

∫

λ
∂Bλ
∂T dλ

. (2.62)

where κλ is the wavelength-dependent gas opacity due to dust and Bλ is the Planck function at

temperature, T . The Rosseland mean intensity is important in modeling the radiative flux, and

would be the most appropriate approximation to use in modeling stellar atmospheres. The Planck-

averaged opacity is more appropriate for absorption of radiation. In all heating and cooling terms

that involve using the mean intensity, J , the Planck-averaged opacity, κP, should be used. In the

calculation of the optical depths necessary to determine the mean intensity, J , at all zones, the

Rosseland mean intensity, κR, is appropriate. As we are most concerned with the absorption of

radiation by solids, the Planck-averaged opacity is the logical choice, even at the expense of the

flux calculation. Fortunately, we have determined that at a given opacity, κλ, κP ≈ κR, as shown

in Figure 2. Additionally, we have found a single, temperature-dependent approximation to the

opacity that provides a good fit to the Planck-averaged opacity up to the evaporation temperature

of 1500 K (see §6), as shown in Figure 3. This eliminates the need to calculate the opacity at each

wavelength. For a solar composition (ρd/ρg = 5 × 10−3), our approximation to the opacity is

κapp = 12.161 ln(T ) − 62.524 cm2 (2.63)

per gram of gas. We have used this approximation, dependent only on temperature, in the calcu-

lation of the dust opacity.

6. Dust Evaporation

Dust grains will typically evaporate in chondrule-forming shocks (Wasson 2008), affecting

the opacity of the gas. In other words, the change in specific kinetic energy (V 2/2) exceeds the
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FIG. 6 — Planck-averaged opacity, κP, and Rosseland mean opacity, κR, as a function of tempera-
ture.

latent heat of evaporation (levap ∼ 1011 erg g−1) for chondrule-melting shock speeds (∼ 7 km s−1).

Unlike chondrules, which take minutes to slow (during which time they can radiate), micron-

sized dust grains slow in milliseconds and are very poor radiators (being smaller than the wavelength

of maximum emission). Thus, most of their kinetic energy is converted into heat and they evaporate

in milliseconds. So it is appropriate to assume dust grains instantaneously evaporate (as in DC02);

however, the evaporation temperature of olivine dust should be taken as ∼ 1500 K, not 2000 K, as

we show here.

Richter et al. (2002) present a temperature-dependent evaporation rate for materials,

Ji =
n
∑

j=1

nijγijP
sat
ij

√

2πmijRT
, (2.64)

in units of mol cm−2 s−1, where i is the isotope or element considered, j is the gas species containing

i, n is the number density of i, γ is the evaporation coefficient of i, P sat is the saturation vapor

pressure for j, m is the molecular weight of j, R is the gas constant, and T is the temperature.
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FIG. 7 — A comparison of our approximation to the opacity, κapp, (see text) with the Planck-
averaged opacity, κP, as a function of temperature, up to the evaporation temperature discussed
in §6.

Davis & Richter (2005) give the temperature-dependent evaporation coefficients for

forsterite, and calculate the vacuum evaporation rate as a function of temperature. They also

calculate the evaporation rate at 1773 K as a function of pressure (Davis & Richter 2005). Ne-

glecting any temperature-dependence of the saturation vapor pressure (a small effect; at most, a

few times 10−2 g cm−2 s−1), it can be seen from equation 2.64 that the only other quantities that

will vary with temperature are the evaporation coefficient and, of course, the temperature. There-

fore, we need only substitute the appropriate ratio γ/T into the given evaporation rate at 1773

K to calculate the evaporation rates at other temperatures. In so doing, we have determined the

temperature-dependent evaporation rates for forsterite at pressures applicable to the solar nebula.

The time it takes a grain to evaporate is given by

tevap =
ρpap

3JA
. (2.65)

where A is the molar mass of the element considered. (The molar mass is needed to convert J from
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TABLE 3

Evaporation Rates and Timescales for Fine-grained Silicate Dust at 10−3 bar

T (K) J (g cm−2 s−1)a tevap(s)

1473 1.7 x 10−8 56.6
1573 5.3 x 10−8 18.1
1673 9.3 x 10−8 10.3
1773 10−7 9.6
1873 1.2 x 10−7 8.0
1973 1.7 x 10−7 5.7
2073 2.1 x 10−7 4.6

aThe value J at T = 1773 K is
given by Davis & Richter (2005).

mol cm−2 s−1 to g cm−2 s−1). Tables 1-3 show the evaporation rate, J , and time to evaporation,

tevap, for silicate dust particles of a = 0.5 µm.

This confirms that the dust grains will nearly instantaneously evaporate at the shock front

(as in DC02), as the temperatures there will exceed 2000 K, decreasing the time to evaporate to

milliseconds. Additionally, we have shown that at pressures typical of the solar nebula, it takes a

matter of seconds for fine-grained dust to evaporate even at temperatures well below 2000 K. In

many cases, temperatures in the pre-shock region will likely allow for these timescales to be achieved

before the dust reaches the shock front. Although DC02 allowed for dust evaporation in the pre-

shock region, temperatures in their model never reached their assumed high dust evaporation

temperature (2000 K) prior to the shock front. Conversely, we have found that at all pressures

considered here, upon reaching a temperature of ∼ 1500 K, the dust will evaporate before it travels

one optical depth in the pre-shock region. In other words, tevap < tτ = 1/ρgκV ∼ 1 minute. As

a result, we have set the dust evaporation temperature to 1500 K, and allow for the evaporation

of dust in the pre-shock region. This does not eliminate opacity due to dust entirely, however, as

there will always be some opacity due to ultra-refractories, such as Al, (Lenzuni et al. 1995) and

the chondrules themselves.
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TABLE 4

Evaporation Rates and Timescales for Fine-grained Silicate Dust at 10−4 bar

T (K) J (g cm−2 s−1)a tevap(s)

1473 5.1 x 10−9 188.6
1573 1.6 x 10−8 60.1
1673 2.8 x 10−8 34.3
1773 3.0 x 10−8 32.1
1873 3.0 x 10−8 32.1
1973 5.1 x 10−8 18.9
2073 6.2 x 10−8 15.5

aThe value J at T = 1773 K is
given by Davis & Richter (2005).

TABLE 5

Evaporation Rates and Timescales for Fine-grained Silicate Dust at 10−2 bar

T (K) J (g cm−2 s−1)a tevap(s)

1473 5.1 x 10−8 18.8
1573 1.6 x 10−7 6.0
1673 2.8 x 10−7 3.4
1773 3.0 x 10−7 3.2
1873 3.0 x 10−7 3.2
1973 5.1 x 10−7 1.9
2073 6.2 x 10−7 1.6

aThe value J at T = 1773 K is
given by Davis & Richter (2005).
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Dust evaporation past the shock front will have an effect on line cooling (Morris et al.

2009), as discussed in Chapter 3. However, because the opacity will not be exactly zero, because of

chondrules and refractories, the line cooling will likely shut down after about 8 minutes, as shown

in Morris et al. (2009).



CHAPTER 3

RESULTS WITH UPDATED INPUTS

We initially began with the original code of DC02, updated from Fortran 77 to Fortran

90, with small corrections for compatibility. To determine the veracity of the new version of the

code, we first attempted to duplicate the results of DC02 (Table 6, Case 1). As demonstrated by

Figures 8 and 9, our results are consistent with those of DC02. In fact, our figures are identical

to their Figures 1 and 4. Once this important verification was made, we set out to include the

improvements outlined in the previous chapter. Table 6 summarizes our results after each change

to the model.

First, the new jump condition, as described in Chapter 2, §4, was implemented (Table 6,

Case 2). All other parameters remain the same as in DC02 (pre-shock density, ρg = 10−9 g cm−3,

Vs = 7 km s−1, solids-to-gas ratio, ρs/ρg = 5 x 10−3, and C = 1, where C = (ρc/ρg) /3.75 × 10−3 is

the “concentration” of chondrules; with the chondrules-to-gas mass ratio normalized to 3.75×10−3

(where a chondrule radius 300µm has been assumed). As expected, the gas temperature at the

post-shock computational boundary has returned to the initial, ambient temperature of 300 K

(Figure 10). Figures 11 and 12 show the gas properties, chondrule temperatures, and cooling

rates after the inclusion of the new jump condition. Figure 11 shows that this change results in a

higher density and a slightly slower shock velocity in the post-shock region than in the results of

DC02. Because of the lower temperature, higher pressure results, thereby slowing the gas. Since,

ρ1V1 = ρ2V2, this leads to higher density in the post-shock region. Because of the higher density,

there is an increase in drag heating of chondrules in the post-shock region. This is clearly seen in

Figure 12, which reflects a higher peak chondrule temperature (1900 K vs. ∼ 1860 K) than that of

DC02. Cooling rates of chondrules have remained relatively unchanged, although the rapid initial

cooling occurs at higher temperatures, naturally (Figure 12). The cooling rates of chondrules in

this case are still well within the the chemical and petrological constraints.

It is important to recall that in a steady shock, upstream material is preheated by a radiation

precursor over distances determined by the opacity (Mihalas & Mihalas 1984). In a “supercritical”

shock (where the pre-shock temperature is equal to the temperature in the post-shock region
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immediately following the initial temperature spike), a Marshak wave is driven into the pre-shock

material from the shock front and flows until it reaches equilibrium with the surrounding gas. In

opaque material, this radiation from the hot downstream material is absorbed in a layer within the

cooler upstream material into which it can penetrate by diffusion. Mihalas & Mihalas (1984) derive

the thickness of this layer by equating the time required for the radiation to diffuse a distance l

from the shock front, (l/λp)
2 / (λp/c), to the time required for the material to be swept back into

the shock front, (l/Vs), obtaining

l = (c/Vs)λp, (3.1)

where λp is the mean free path of a photon. However, this equation does not include the thermal

inertia of the gas, assuming a diffusion coefficient, D = 1/3 λ c. If we include the thermal inertia

of the gas, we write l as

l = D/Vs, (3.2)

where

D = Veffλp, (3.3)

with

Veff =
1

3
c, (3.4)

if the radiation energy density >∼ the gas energy density, or

Veff =
c

3

64π2σT 4/c

ρgCvT
, (3.5)

if the gas energy density >∼ the radiation energy density. We can use this formulation to determine

the optical depth through which the Marshak wave travels, which essentially tells us the boundary

location of the Marshak wave:

τM =
l

λp
=

Veff

Vs
=

1

3

c

Vs
min

[

1,
64π2σT 4/c

ρgCvT

]

. (3.6)

Using a gas density of ρg = 10−9 g cm−3 and T = 1500 K (the gas at which dust evaporates in our

model) as inputs, this gives τM ∼ 400. In order to encompass the Marshak wave, we need a large
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enough grid space to resolve this much optical depth.

When the upstream material is relatively transparent, the mean free path increases, and

as a result, l increases. In this case, the net flow of radiation into the pre-shock material raises

the pre-shock temperature and decreases the temperature jump and increases the density jump

(Mihalas & Mihalas 1984). This is precisely the effect we see in Figure 13, which shows the results

of the shock model after the dust evaporation temperature was lowered to 1500 K, as described in

Chapter 2, §6 (Table 6, Case 3).

Additionally, because micron-sized dust evaporates prior to the shock front, the gas cools

much more rapidly in the post-shock region (as opposed to the case where the dust does not

evaporate in the pre-shock region). This is because the radiation generated at the shock is able

to diffuse further into the pre-shock region. Although the higher density would normally result in

more drag heating and, therefore, higher peak chondrule temperatures, the gas cools so rapidly that

the peak chondrule temperature is actually substantially less in this case (Figure 14). Chondrule

cooling rates are orders of magnitude higher than in the case where dust does not evaporate, and

are inconsistent with experimental constraints. This is also the case when the concentration of

chondrule precursors is increased by a factor of ten, as shown in Figures 15 and 16 (Table 6,

Case 4). Accumulating evidence from the frequency of compound chondrules and the evidence

for the retention of volatiles during chondrule formation (Cuzzi 2001; Ciesla et al. 2004a; Cuzzi

& Alexander 2006; Alexander et al. 2008; Cuzzi 2008) increasingly has led to the belief that

concentration of chondrule precursors were 10-100 times the solar value for solids, motivating this

change in the model.

We next applied our approximation for the dust opacity, as described in §5 (Table 6, Case

5). With the inclusion of both the new dust evaporation temperature and the new dust opacity, the

results are much more similar to those of DC02. However, the much higher dust opacity does not

allow the radiation precursor to propagate far into the pre-shock region (l is small). As a result,

less “pre-heating” of the upstream material occurs (Figure 15). Once the gas and dust reach the
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FIG. 8 — Case 1 (see Table 6). Gas properties [(a) velocity, (b) density, (c) temperature, and (d)
pressure] as a function of the distance z from the shock front. The pre-shock region here is on the
left. A steady state is assumed; the properties of an individual gas parcel as a function of time are
found by reading these graphs from left to right. These results are consistent with those of DC02.

shock, the dust evaporates, resulting in lower peak temperatures for the chondrules (Figure 16).

In this case, only partial melting of chondrules occurs, for the same shock speed, density, etc.

Initial cooling rates are similar to those of DC02 (a few times 104 K hr−1), however cooling rates

are higher through the hotter end of the crystallization range, although they are mostly within the

range matching experimental constraints. It is obvious that with the updated inputs, a shock speed

slightly faster than 7 km s−1 is necessary to result in complete melting of chondrules.

We present the results of the updated model with an increased shock speed of 8 km s−1
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in Figures 19 and 20 (Table 6, Case 6). Micron-sized dust clearly evaporates in the pre-shock

region, around 105 km ahead of the shock front (Figure 19c). In this case, the peak temperatures

achieved by chondrules is ∼ 2000 K, resulting in complete melting. The cooling rates are consistent

with experimental results. The chondrules experience rapid initial cooling at several times 104 K

hr−1, and experience cooling rates of 10-20 K hr−1 through their crystallization temperatures. We

consider these to be the results of our “canonical” case: pre-shock density, ρg = 10−9 g cm−3,

Vs = 8 km s−1, ρs/ρg = 5 x 10−3, and C = 10.

The results of increasing the shock speed yet again, to 9 km s−1, are shown in Figures 21

and 22 (Table 6, Case 7). The gas now reaches an initial peak temperature of > 4500 K. The

peak temperature of chondrules artificially remains at 2000 K, and does not climb any higher,

because we have set the evaporation temperature of chondrule-sized particles to 2000 K. At this

temperature, chondrules evaporate from an initial radius of 300 µm, to ∼ 210 µm by the end of

the computational domain, losing 65% of their mass.

Leaving all other parameters unchanged from the canonical case, we then investigated the

effect of increasing/decreasing the gas density (Table 6, Case 8). Figures 23 and 24 show the results

when the density is decreased by a factor of 10. Chondrule precursors just barely begin to melt in

this case, only reaching peak temperatures of ∼ 1500 K. Cooling rates are much too high to match

the constraints on chondrule thermal histories. When we attempted to increase the density, the

code became unstable, and no results were obtained.

We now have results in our canonical case (neglecting the effects of line cooling) that describe

the thermal histories of chondrules in a manner consistent with the chemistry and petrology of

chondrules. The task remains to investigate the effects of line cooling.
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TABLE 6

Results of Parameter Study, Neglecting Line Cooling

Case No. C Vs ρg (g cm−3) H2O
a Tpeak (K) Cooling rate (K hr−1)b Cooling rate (K hr−1)c

1 1 7 10−9 1 1800 > 2 x 104 14-50
2 1 7 10−9 1 1900 > 2 x 104 24-40
3 1 7 10−9 1 1500 > 3 x 105 N/A
4 10 7 10−9 1 1500 > 3 x 105 N/A
5 10 7 10−9 1 1640 > 2 x 104 37-100e

6 10 8 10−9 1 2000 > 5 x 104 5-20
7 10 9 10−9 1 2000d 1100 8-20
8 10 8 3 x 10−10 1 1500 N/A 6 x 104

aWater abundance with respect to our assumed water-to-gas ratio, 8 x 10−4.

bCooling rates at Tpeak

cCooling rates through 1400-1800 K, the crystallization temperature range of chondrules.

dArtificial peak temperature due to evaporation. See text for final radius of chondrules.

eCooling rates through 1400-1499 K; rates are ∼ 2 x 104 from 1500-1640 K.
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FIG. 9 — Case 1 (see Table 6). Thermal history of chondrules in a shock. The chondrules’
temperatures (solid line) over the course of hours (a), and also minutes (b), where it is contrasted
with the temperature of the gas (dotted line). Chondrules in the pre-shock region are heated by
radiation. The cooling rates of chondrules as a function of temperature through the crystallization
temperatures (c), and at higher temperatures (d), when heating is dominated by gas drag. These
results are consistent with those of DC02.
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FIG. 10 — Gas temperature as a function of the distance z from the shock front.
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FIG. 11 — Case 2 (see Table 6). Same as Figure 8, except with Tpost = Tpre = 300 K, as described
in Chapter 2, §4.
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FIG. 12 — Case 2 (see Table 6). Same as Figure 9, except with Tpost = Tpre = 300 K, as described
in Chapter 2, §4.
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FIG. 13 — Case 3 (see Table 6). Same as Figure 11, except in this case, dust evaporates at 1500
K, as described in Chapter 2, §6.
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FIG. 14 — Case 3 (see Table 6). Same as Figure 12, except in this case, dust evaporates at 1500
K, as described in Chapter 2, §6.
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FIG. 15 — Case 4 (see Table 6). Same as Figure 13, except this case assumes a chondrule precursor
concentration 10 times that of DC02 (C = 10).
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FIG. 16 — Case 4 (see Table 6). Same as Figure 14, except this case assumes a chondrule precursor
concentration 10 times that of DC02 (C = 10).
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FIG. 17 — Case 5 (see Table 6). Same as Figure 15, except in this case, we use the new dust opacity
as described in Chapter 2, §5.
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FIG. 18 — Case 5 (see Table 6). Same as Figure 16, except in this case, we use the new dust opacity
as described in Chapter 2, §5.
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FIG. 19 — Case 6 (see Table 6). Same as Figure 17, except with a shock velocity, Vs = 8 km s−1.
This is our “canonical” case neglecting line cooling.
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FIG. 20 — Case 6 (see Table 6). Same as Figure 18, except with a shock velocity, Vs = 8 km s−1.
This is our “canonical” case neglecting line cooling.
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FIG. 21 — Case 7 (see Table 6). Same as Figure 19, except with shock speed, Vs = 9 km s−1.
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FIG. 22 — Case 7 (see Table 6). Same as Figure 20, except now the shock speed, Vs = 9 km s−1.
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FIG. 23 — Case 8 (see Table 6). Same as Figure 19, except with ρ0 = 3 x 10−10 g cm−3.
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FIG. 24 — Case 8 (see Table 6). Same as Figure 20, except with ρ0 = 3 x10−10 g cm−3.



CHAPTER 4

LINE COOLING

1. Radiative Transfer and Line Cooling

NOTE: Material in this chapter was published in The Astrophysical Journal (Morris et al.

2009).

In many astrophysical settings, emission of radiation via rotational and vibrational tran-

sitions of molecules plays an important role in cooling warm gas. Because the emission of such

radiation is in sharp spectral lines, this mechanism is referred to as line cooling. Line radiation

from the water molecule H2O, with its permanent electric dipole and its high cosmochemical abun-

dance, is significant in a variety of settings ranging from molecular clouds to protostellar envelopes

(e.g., Cernicharo & Crovisier 2005). More recently, line cooling from H2O molecules has been rec-

ognized to play a pivotal role in the energetics following the passage of a shock wave through the

dense gas in the solar nebula protoplanetary disk (see Desch et al. 2005).

The rate of emission of line radiation from a warm gas containing water molecules is difficult

to calculate, because there are so many accessible rotational and vibrational energy levels, and

therefore a great many transitions. In dense molecular gas (nH2 > 1010 cm−3), these energy levels

are populated according to Boltzmann statistics (i.e., are in local thermodynamic equilibrium, or

LTE), but at lower densities the populations must be calculated by balancing transition rates.

Finally, the cooling of gas by line radiation relies on the ability of the photons to escape the system

without being reabsorbed, to the extent that other, nearby molecules can absorb the emitted

photons, the gas does not cool. Photons generated during a molecular transition are emitted and

also reabsorbed over a small range of frequencies centered on the line frequency, with an efficiency

that depends on the frequency shift from the line center. Rather than integrating the equations

of radiative transfer over all frequencies within the line, all standard treatments of the problem

instead assume integration over this “line profile” and use a frequency-integrated escape probability

of photons. This escape probability is a function of the column density of the molecule within the

system. This is the approach taken by Neufeld & Kaufman (1993; hereafter NK93), in particular.
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The calculation of NK93 of the rate of line cooling from H2O molecules has remained the

state of the art for 15 years; but, as we discuss below, several aspects of the NK93 calculation are

now out of date. Their calculation uses a limited database of transitions, an oversimplified escape

probability formulism, and ignores absorption by dust grains. It is one of the goals of the work here

to update the H2O line cooling rates to improve on the calculations of NK93. A second goal is to

assess whether or not line cooling plays a significant role in cooling the gas following the passage

of a shock through the dense gas of the solar nebula. As discussed by Desch et al. (2005), previous

modeling has not determined whether or not line cooling can be neglected. This has significant

implications for the issue of chondrule formation.

2. Estimates of Line Cooling in Shocks

Chondrules and gas are thermally coupled only a few minutes after passing through the

shock front (INSN; DC02; CH02), so these chondrule cooling rates are controlled by the rate at

which gas cools by emission of line radiation. To understand the essence of their results without

reproducing all of their calculations in detail, we now estimate the cooling rate of chondrules and

gas following the shock, using the tabulations of NK93.

We first examine how the cooling rates predicted by NK93 and used by INSN and Miura &

Nakamoto (2006) are calculated. For a wide range of densities and temperatures, NK93 calculated

the steady-state level populations of H2O and CO molecules (denoted ‘M ’), and the rates of emission

of photons. The escape of these photons from a system was considered under the large velocity

gradient (Sobolev) approximation as a function of column density n(M)d, via use of the parameter

Ñ ≡ n(M)

dvz/dz
, (4.1)

These results were adapted to a large range of geometries of interest, including those not consistent

with the Sobolev approximation, in particular the one of relevance to nebular shocks, a static,

plane-parallel slab of thickness d. According to NK93, the cooling rate at the center of the slab (at
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depth d/2) will depend on the similar parameter

Ñ =
n(M) d

∆v
, (4.2)

where ∆v is the thermal velocity of the molecules M . An important assumption made by NK93 is

that if the line photons can escape to the edge of the slab, then the gas is cooled; if the photons

do not escape to the edge of the slab, they are essentially reabsorbed on the spot and there is

no cooling. The cooling rate per volume is then n(m)LLTE(Ñ), where the subscript ‘LTE’ is the

notation used by NK93 to denote cooling rates derived under the assumption that the population

levels follow a Boltzmann distribution, which is the regime of interest for solar nebula shocks. NK93

have tabulated LLTE(Ñ) for both vibrational and rotational lines of H2O and CO, for every decade

in Ñ .

The plane-parallel slab is equivalent to the nebula shock geometry because of the large

velocity jump at the shock front. In a typical chondrule-forming shock, the gas velocity changes

nearly instantaneously from ≈ 7 km s−1 to ≈ 1.6 km s−1, a jump of over 5 km s−1. This velocity

difference is much larger than the thermal velocities of the H2O molecules [∆v = (2kT/mH2O)1/2

= 1.36 km s−1 at 2000 K] that control the width of the line profile. Essentially, once a line photon

emitted from the post-shock gas escapes to the shock front, it will continue to travel relatively

unimpeded by gas. Only one change to the NK93 formulation must be made before it is adopted

to the nebular shock geometry. For gas a distance z past the shock front, the equivalent thickness

of the slab is d = 2z, and the cooling rate is only half the cooling rate calculated by NK93, who

assumed radiation could escape either side of the slab.

The cooling rate of the gas yields

∂e

∂t
=

∂

∂t

(

p

γ − 1

)

= 2.8 nH2 k
∂T

∂t
= −1

2
n(H2O) LLTE(Ñ), (4.3)

where we have ignored compression of the gas after passing through the shock front in this toy model,

and we have assumed an abundance of He of 10% by number. Converting the time derivative to a
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spatial derivative by assuming a constant gas velocity Vg past the shock front, we find

∂T

∂Ñ
= − ∆v

5.6nH2Vgk

LLTE(Ñ)

2
, (4.4)

where we have assumed a constant ∆v throughout the post-shock region. In actuality, ∆v would

decrease past the shock front, but that would merely reduce the total cooling, so our assumption

overestimates the degree of cooling. This formula provides the gas temperature as a function of Ñ ,

the effective column density past the shock front.

Fedkin & Grossman (2006) showed that the nH2O/nH2 ratio in the solar nebula probably

varied with temperature, but found that nH2O/nH2 = 5× 10−4 was a good average for the temper-

atures of interest. We have adopted a canonical ratio nH2O/nH2 = 8 × 10−4. This is only slightly

higher than some commonly assumed canonical ratios but is consistent with the abundance of Lod-

ders (2003), nH2O/nH2 = 8.88 × 10−4. We note that the exact value of nH2O/nH2 in the chondrule

formation environment is likely variable with time within the solar nebula (Ciesla & Cuzzi 2006),

and consider variations in this ratio later in the paper. Some dissociation of H2O is likely to occur

at the peak post-shock temperatures we consider, but we are interested in the maximum cooling

possible by line photons, so we neglect dissociation in our calculations.

Interpolating between the tabulated values of LLTE(Ñ) provided by NK93, we have inte-

grated equation 4.4 to find the total drop in temperature by the time the gas is at the equiv-

alent of Ñ = 1021 cm−2 km−1 s past the shock front. For typical parameters (pre-shock density

nH2 = 2 × 1014 cm−3 and velocity Vg = 7 km s−1; mixing ratio nH2O/nH2 = 8 × 10−4; post-shock

density nH2 = 1.2 × 1015 cm−3 and velocity Vg = 1.2 km s−1; and post-shock thermal velocity

∆v = 1.6 km s−1), this equates to d = 1.3 × 104 km, a distance z = 6.6 × 103 km, and a time 1.6

hours after passing through the shock front. (Again, this toy model neglects the compression and

slowing of the gas. It also assumes wrongly that ∆v is constant, whereas it should decrease slightly

as the gas cools. It is nonetheless illustrative.) At these distances past the shock front, the total

cooling due to rotational lines of H2O and CO is completely negligible, < 4 K. This illustrates that
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the rotational lines become optically thick so quickly that they are unable to escape the post-shock

region and cool the gas. On the other hand, the total cooling from CO vibrational line photons is

roughly 72 K. This leads to an average cooling rate of ∼ 40 K hr−1, which is important, but not

significantly greater than the cooling rates of chondrules (∼ 102 K hr−1). The assumption of INSN

that the lines of H2O and CO are optically thin is therefore invalidated, because these lines are

indeed optically thick. The final line cooling mode (not considered by INSN, but considered by

Miura & Nakamoto 2006) is vibrational line cooling from H2O. We find a total cooling due to these

line photons on the order of 800 K. This is a significant cooling of the gas: the average cooling over

1.6 hours is ∼ 500 K hr−1, with even higher cooling rates obtained early on. The cooling of the gas

by vibrational line photons of H2O, despite being somewhat optically thick, is the source of the

high chondrule cooling rates predicted by Miura & Nakamoto (2006). We confirm the statement

made by Miura & Nakamoto (2006) that “...line emission is important for the gas cooling.” We

hereafter focus on cooling due to H2O alone, as the dominant coolant is expected to be water.

Clearly, any model of chondrule cooling rates in solar nebula shocks must account for the

emission of line photons from H2O. However, incorporating the cooling rates of NK93 directly into

a shock code, as Miura & Nakamoto (2006) did, is not ideal. First, line cooling due to rotational

and vibrational transitions of H2O was calculated by NK93 using roughly 50,000 transitions from

the HITRAN database (Rothman et al. 1987). While this was the best available data at the time,

much more extensive databases now exist. Second, NK93 calculated escape probabilities under the

large velocity gradient (Sobolev) approximation, and asserted, but did not demonstrate, that the

results will apply to the case of a static, plane-parallel slab if Ñ is defined as described above. Third,

NK93 assumed a one-sided escape probability for line photons equal to 0.5/(1+3τ), where τ is the

Sobolev optical depth; more exact escape probabilities exist, as described below. Fourth, it is not

necessarily the case that if photons do not escape to the edge of the slab that the gas does not cool

locally; photons reabsorbed halfway to the edge still cool the gas at the slab center. Finally, NK93

did not consider the absorption of line photons by intervening dust. Inclusion of dust is absolutely
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mandatory, as the following argument makes clear: For a solar-composition gas with 0.5% of the

mass in the form of a = 0.5 µm radius grains (similar to the size of matrix dust grains in meteorites),

the opacity to short-wavelength radiation is as high as κ = (ρdust/ρgas) (3/4ρsa) = 30 cm2 g−1, where

the internal density of the dust grains is ρs ≈ 2.5 g cm−3 . Over the distance for which the optical

depth in dust is unity, the parameter Ñ is therefore less than 1019 cm−2 km−1 s, assuming a ratio

nH2O/nH2 = 8× 10−4. This corresponds to distances ∼ 103 km, or times of about 10 minutes after

passage through the shock front. As this is smaller than the Ñ for which the most significant

cooling takes place, dust grains are capable of absorbing photons that would otherwise cool the

gas. A thorough treatment of line cooling should improve on the calculations of NK93 in the areas

identified above.

3. Calculation of H2O Cooling Rates

We have used the SCAN-H2O database of Jørgensen et al. (2001) of 1.2 million lines

(rotational plus vibrational) of the H2O molecule to calculate the cooling rates due to emission

of line photons from H2O. We continue to assume, as NK93 did, that if photons are not able to

escape the region entirely, they are reabsorbed on the spot. This assumption will be relaxed in

future work, but for now it allows a crude estimate of the importance of line radiation. In other

respects, we improve on the NK93 calculation by more accurately calculating escape probabilities,

and by including the possibility of absorption by dust grains.

3.1. Escape Probabilities Without Dust

The probability that a line photon will escape a semi-infinite volume, otherwise known as

the one-sided escape probability, Pesc, is given by

Pesc =
1

2

∫ ∞

−∞

Φ(x) E2(τΦ(x)) dx, (4.5)

x ≡ λ − λ0

∆λD
, (4.6)
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∆λD =
c

λ0

√

2kT

mH2O

(4.7)

(Avrett & Hummer 1965; Hummer & Rybicki 1971; Rybicki & Lightman 1979; Bowers & Deeming

1984). Here Φ(x) is the line profile, x is the frequency measured from line center in Doppler

widths (∆λD), and E2 is the second exponential integral. In equation 4.5, τ refers to the optical

depth integrated over the line, which is
√

π times the optical depth at line center. Considering the

combined effect of both Doppler and Lorentz broadening, the line profile is given by the normalized

Voigt profile

Φ(x) =
a

π3/2

∫ ∞

−∞

e−y2

(x − y)2 + a2
dy, (4.8)

(Avrett & Hummer 1965; Rybicki & Lightman 1979; Bowers & Deeming 1984), where a is the

ratio of Lorentz to Doppler width (Avrett & Hummer 1965). In astrophysical situations a ≪ 1,

perhaps as large as 0.1 (Mihalas 1978; Bowers & Deeming 1984). In this study, the Voigt profile

was calculated using the algorithm of Zaghloul (2007), where the Voigt function is written as a

single proper integral with a damped sine integrand:

Φ(x) = exp (a2)erfc(a) exp (−x2) cos(2ax) +
2√
π

∫ x

0

exp
[

−(x2 − y2) sin(2a(x − y)
]

dy, (4.9)

where erfc is the complimentary error function. Using 4.9, Voigt functions were calculated for

three different values of a and are shown in Figure 2. These results are consistent with the results

of Zaghloul (2007). Utilizing these values for Φ(x), straightforward numerical integration was

performed to calculate the “exact” one-sided escape probability Pesc in the absence of dust.

Besides the form adopted by NK93, several other approximations to the one-sided escape

probability exist in the literature. Hollenbach & McKee (1979) give the following approximation

to the one-sided escape probability:

Pesc =
1

2

1

1 + τ (2 ln (2.13 + τ2/π))1/2
. (4.10)
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FIG. 25 — Voigt functions calculated using the formulation of Zaghloul (2007), for three values of
a.

The approximation given by Collin-Souffrin et al. (1981) is

Pesc =
1

2

1

1 + 2τ (ln (τ/
√

π + 1))
1/2

. (4.11)

Mathews (1992) estimates

Pesc =
1

2

1

1 + 2τ (ln (τ
√

π + 1))
1/2

, (4.12)

and Dumont et al. (2003) give

Pesc =
1 − e−2τ

4τ
, τ < 1, (4.13)

Pesc =
1

2
√

π τ
(

1.2 + ln τ1/2

1+10−5τ

) , τ > 1. (4.14)

These approximations are all in the Doppler limit, in which a = 0 and the line profile is given

by π−1/2 e−x2

. We have evaluated the approximations to the escape probabilities of Hollenbach &

McKee (1979), Collin-Souffrin et al. (1981), Mathews (1992), NK93, and Dumont et al. (2003),

and compared the results to our “exact”, numerically integrated, escape probabilities with a = 0
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FIG. 26 — Escape probability approximations used by Hollenbach & McKee (1979), Collin-Souffrin
et al. (1981), Mathews (1992), NK93, and Dumont et al. (2003), compared to the “exact” escape
probability calculated here (see text).

(Figure 1). The maximum error between these approximations and the exact escape probability

are as follows: 11.42% for Hollenbach & McKee (1979); 15.70% for Collin-Souffrin et al. (1981);

31.34% for Mathews (1992); and 37.22% for Dumont et al. (2003). The maximum error between

the approximation used by NK93 and the exact escape probability is 46.44%, although it is not

quite appropriate to make this comparison, as NK93 used the Sobolov optical depth in their calcu-

lations. The approximation of Hollenbach & McKee (1979) is superior to the others and provides

a satisfactory fit; we will use this approximation in what follows.

Using the Hollenbach & McKee (1979) approximation to the escape probability, a parameter

study was conducted to determine the effect of varying the value of a in the calculation of the Voigt

function. It was found that varying the value of a between 0.0 and 0.1 increased the escape

probability significantly for τ ≫ 1 (Figure 2), consistent with figures 4 and 5 of Hummer & Rybicki

(1982). It is not immediately clear how this will affect the overall cooling rate, but we anticipate
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FIG. 27 — Exact escape probability for three different values of a (the ratio of Lorentz to Doppler
width).

a small effect as the lines for which the escape probability is increased at higher a are optically

thick anyway, leading to lower cooling rates. We investigate this effect of the Voigt function on the

cooling rates in Section 3.

3.2. Escape Probabilities With Dust

Dust can also absorb photons, preventing their escape. Hence, the proper treatment of the

escape probability must account for the absorption by dust, where the optical depth to line photons

is now given by τd + τΦ(x), and the exact escape probability is

Pesc =
1

2

∫ ∞

−∞

Φ(x) E2(τd + τΦ(x)) dx. (4.15)

This equation reflects the fact that dust grains provide a continuum opacity that is always capable

of absorbing photons. We have used this equation to calculate the exact escape probabilities in the

presence of dust (Figure 28). Because it is computationally burdensome to calculate the escape

probability for all possible combinations of τ and τd, we seek an approximation such that the
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FIG. 28 — Approximations to the escape probability with the inclusion of dust (dashed lines),
compared to exact escape probabilities, including dust (solid lines). From left to right, the values
used for τd/τ0 are 30, 10, 3, 1, 0.3, 0.1, 0.03, and 0.
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TABLE 7

Maximum Error for Pesc, with the inclusion of dust.

τd/τ0 maximum error (%)

0.0 11.42
0.03 24.52
0.1 25.02
0.3 47.51
1.0 54.27
3.0 47.73
10.0 65.20a

30.0 128.04a

aMaximum error was
reached at high optical depth
where the escape probability
< 10−8.

escape probability is the product of two separate, independent functions of τ and τd. On physical

grounds, one expects this function to resemble Pesc(τ, τd) ≈ Pesc(τd = 0) × E2(τd). Clearly, this

is the appropriate expression when τd ≈ 0. It is also exact in the limit τ = 0. The deviation is

expected to be strongest when τ ≈ τd ≈ 1, but happily the deviation is not great. Applying the

slight modification,

P appr
esc (τ, τd) = Pesc(τd = 0) × E2(0.95τd), (4.16)

provides an excellent fit to the exact probability calculated using equation 4.15, as illustrated in

Figure 28, and tabulated in Table 1. It can be seen that the approximations including dust

fit very well in all regions except where τ ≈ 1 and τd ≈ 1, as expected. We can apply these escape

probabilities to the calculation of the cooling rate from water when dust is present.

3.3. Line Cooling

The cooling per line in the optically thin limit is given by

Λul

nH2O
= S(T ) · 8πkT

λ2

(

hc/λkT

ehc/λkT − 1

)

, (4.17)
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where S(T ) is the temperature-dependent line strength of the spectral line, and λ is the wavelength

at line center (see Appendix A). In our calculations, we assume that level populations obey a

Boltzmann distribution. This is justified if the number density of protoplanetary disks greatly

exceeds the critical density of each transition. As NK93 found no variations in level populations

when the density exceeded ≈ 1010 cm−3, we assume that all level populations have critical densities

below this value. Since we are motivated by chondrule formation, for which the gas densities exceed

≈ 1015 cm−3, the use of a Boltzmann distribution is justified. Unfortunately, for other problems

(e.g., molecular clouds), our approach is limited in applicability.

The cooling rate is reduced below its optically thin limit as the column densities are in-

creased, due to the inability of photons to escape the system. Specifically, the total cooling, LLTE,

is given by the total cooling per line, summed over all lines, including the escape probabilities:

LLTE =
∑

Λul Pesc(τul, τd). (4.18)

Based on the methods of Plume et al. (2004), the gas optical depth at line center, τ0, can be found

from the linestrength and column density of water

τ0 =
S(T ) NH2O

(∆v/c) ν
, (4.19)

(see Appendix A), where the Doppler linewidth is given by

∆v =

(

2kT

mH2O

)
1

2

, (4.20)

and is ≈ 1.36 km s−1 at T = 2000 K. In terms of the optical depth at line center, τul = τ0 ×
√

π.

The dust optical depth at a depth z into a semi-infinite volume is given by

τd = ρg z κ(λ), (4.21)

where κ(λ) is the opacity per gram of gas. Assuming a dust-to-gas ratio ρd/ρg = 5×10−3, a particle

radius as = 0.5 µm, and an absorptivity Qabs = 1 for λ < 2πas and Qabs = 2πas/λ for λ > 2πas,

we derive

κ = 30 min
[

1, (λ/3.1 µm)−1
]

cm2 g−1 (4.22)
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FIG. 29 — Cooling rates of NK93 compared to those of this study.

We have determined the Rosseland mean dust opacity to be κR = 28.76 cm2 g−1 at T = 2000 K.

Our estimates are similar to those derived by Henning & Stognienko (1996) using a particle size

distribution instead of our simplified monodispersion.

3.4. Cooling Rates

We first calculate the cooling rates in the absence of dust. Using many more transitions

(and improved escape probabilities) we find that, in the absence of dust, our cooling rates are

enhanced by about 30% over those calculated by NK93 (Figure 29). For the cooling without

dust, we found a slight difference (< 6%) in cooling rate between the cases where the escape

probabilities are calculated exactly, and when we use the approximation of Hollenbach & McKee

(1979). For consistency, we will quote cooling rates obtained using the Hollenbach & McKee (1979)

approximation. The cooling rate for the T = 2000 K case, in the absence of dust, is plotted as

the rightmost curve in Figure 30. Also plotted in Figure 30 are the cases where the dust-to-water

ratio is varied from 300 times to 1/300 times its canonical value. Here, the canonical case refers
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FIG. 30 — Exact cooling rates due to H2O for various dust-to-water ratios (solid lines), as a function
of water column density, and the cooling rates calculated using the approximation to the escape
probability (dashed lines) for T = 2000 K. The rightmost curve is the case with no dust; the red
curve is the canonical case (see text). The curves to the left of the canonical curve (from right to
left) show cooling rates for 3, 10, 30, 100, and 300 times the canonical dust-to-water ratio. The
curves to the right of the canonical curve (from left to right) are 1/3, 1/10, 1/30, 1/100, and 1/300
times the canonical dust-to-water ratio.

to a dust-to-gas mass ratio of 0.5%, yielding the opacity discussed above; the dust-to-water ratio

effectively measures only the dust opacity per gram of water vapor. The canonical amount of water

assumed here is a ratio H2O/H2 = 8 × 10−4. A higher dust-to-water ratio means dust grains are

more likely to absorb line photons, and the cooling rate due to line emission is reduced below the

optically thin limit at a smaller total column density of water. Surprisingly, even small amounts of

dust (300 times smaller than the canonical limit, or a dust-to-gas ratio of ∼ 0.001%) will prevent

the gas from cooling as freely as it would without dust at column densities NH2O > 1022 cm−2. The

maximum error in each case between the exact value of the cooling rate (using the escape probability

of equation 15) and that found using the approximation to the escape probability (equation 16)

is shown in Table 2 (for T = 2000 K). Figure 31 gives the same information for the case when
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TABLE 8

Maximum Discrepancy between “Exact” and Approximate Cooling Rates shown in
Figure 30, at T = 2000 K.

Dust-to-Water Ratioa maximum error (%)

0.0 5.54
1.0 14.01
3.0 13.29
10.0 12.24
30.0 11.04
100.0 9.26
300.0 7.45
1/3 14.77
1/10 15.64
1/30 15.39
1/100 17.93
1/300 18.40

aRelative to the canonical value.

T = 1500 K. The cooling rates (assuming a = 0, the pure Doppler broadening case) for T = 1250

K, 1500 K, 1750 K, 2000 K, and 2250 K, both in the absence of dust and with the canonical

abundance of dust, are tabulated in Tables 3-12.

Absorption of line photons by dust grains drastically affects the cooling of the gas. The

dust opacity is a strong function of wavelength, so we investigate the effects of assuming a constant

opacity. In the continuum opacity case it would be reasonable to assume the flux of photons

propagating through a gas is equivalent to the flux derived assuming the gas had a wavelength-

independent opacity equal to the Rosseland mean opacity. We therefore recalculated the cooling

rate when the dust opacity equaled the Rosseland mean opacity cited above, at all wavelengths.

For the canonical dust-to-water ratio, the results are plotted in Figure 32. The optical depth of

dust is given by

τd =
NH2O

nH2O/nH2

1.4mH2 κ. (4.23)

Using the Rosseland mean opacity and canonical water-to-gas ratios cited above, we would es-

timate τ ≈ 1 when NH2O ≈ 6 × 1018 cm−2. This is indeed the point where the cooling rate
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FIG. 31 — Same as Figure 30, but with T = 1500 K.

is significantly reduced due to absorption by dust grains. When the opacity is replaced by the

wavelength-dependent opacity κ(λ), however, the cooling is not effectively reduced until higher

column densities are reached. This signifies that most of the cooling is effected by emission of line

photons with wavelengths at which κ(λ) < κR, i.e., λ > 3 µm. Use of a wavelength-dependent opac-

ity in conjunction with a calculation of the cooling at each H2O wavelength is therefore necessary.

We use the wavelength-dependent opacity in all cases cited here.

Finally, we investigate the effect of the line broadening parameter a on the cooling rate.

Increasing a above the a = 0 pure Doppler broadening case has the effect of putting more emission

in the optically thin wings of the line profile. Effectively, this should act like a reduction of the

overall water column density. We have calculated the cooling rates assuming line profiles with

a = 0 and a = 0.1, in the cases where no dust is present, and when it is present at the canonical

value. These cooling rates are plotted in Figure 33. As expected, the cooling rate is slightly higher

when a = 0.1, because the column density of water is effectively reduced; however, the difference
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FIG. 32 — Cooling rates due to H2O using the Rosseland mean dust opacity at T = 2000 K (dashed
line) and using the wavelength-dependent dust opacity (solid line). Most line cooling takes place
at wavelengths longward of 3µm, where the dust is relatively optically thin. Use of a single dust
opacity at all wavelengths is not warranted.

is slight. In the case with no dust, the discrepancy between the a = 0 and a = 0.1 cases is < 11%

for a column density of water of NH2O < 1021 cm−2, increasing to ≈ 41% at a column density

of 1024 cm−2. In the case with dust, the discrepancy is < 13% at NH2O < 1019 cm−2. These

calculations are computationally much more burdensome than the a = 0 pure Doppler broadening

case, because of the need to calculate the Voigt function. Fortunately, it is seen that their effects

on the cooling rates of gas are minimal, < 10% in the regime where cooling is significant, for a up

to 0.1. As a is typically ≪ 1 (Mihalas 1978; Bowers & Deeming 1984), we will assume a = 0 in the

cases that follow.



92

TABLE 9

Cooling Rates Without the Inclusion of Dust, a = 0.0, T = 1250 K

NH2O LLTEexact
LLTEapprox

% error

1013 1.547 x 10−12 1.548 x 10−12 0.03
1014 1.543 x 10−12 1.546 x 10−12 0.16
1015 1.517 x 10−12 1.526 x 10−12 0.61
1016 1.405 x 10−12 1.425 x 10−12 1.44
1017 1.128 x 10−12 1.160 x 10−12 2.82
1018 6.259 x 10−13 6.415 x 10−13 2.95
1019 2.227 x 10−13 2.293 x 10−13 2.96
1020 6.611 x 10−14 6.816 x 10−14 3.10
1021 1.615 x 10−14 1.668 x 10−14 3.33
1022 3.318 x 10−14 3.437 x 10−14 3.58
1023 5.750 x 10−16 5.978 x 10−16 3.95
1024 8.587 x 10−17 8.959 x 10−17 4.34

TABLE 10

Cooling Rates With the Canonical Dust-to-water Ratio (see text), a = 0.0,
T = 1250 K

NH2O LLTEexact
LLTEapprox

% error

1013 1.547 x 10−12 1.548 x 10−12 0.03
1014 1.543 x 10−12 1.546 x 10−12 0.16
1015 1.516 x 10−12 1.525 x 10−12 0.59
1016 1.397 x 10−12 1.415 x 10−12 1.26
1017 1.083 x 10−12 1.097 x 10−12 1.62
1018 4.686 x 10−13 4.439 x 10−13 5.27
1019 3.204 x 10−14 2.765 x 10−14 13.71
1020 1.459 x 10−17 1.226 x 10−17 15.98
1021 1.101 x 10−28 2.148 x 10−28 95.04
1022 0.00 0.00 0.00
1023 0.00 0.00 0.00
1024 0.00 0.00 0.00
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TABLE 11

Cooling Rates Without the Inclusion of Dust, a = 0.0, T = 1500 K

NH2O LLTEexact
LLTEapprox

% error

1013 2.704 x 10−12 2.705 x 10−12 0.02
1014 2.700 x 10−12 2.704 x 10−12 0.12
1015 2.667 x 10−12 2.679 x 10−12 0.47
1016 2.519 x 10−12 2.548 x 10−12 1.15
1017 2.127 x 10−12 2.179 x 10−12 2.47
1018 1.347 x 10−12 1.383 x 10−12 2.81
1019 5.597 x 10−13 5.755 x 10−13 2.84
1020 1.850 x 10−13 1.905 x 10−13 3.00
1021 4.992 x 10−14 5.153 x 10−14 3.26
1022 1.094 x 10−14 1.132 x 10−14 3.45
1023 1.917 x 10−15 1.991 x 10−15 3.86
1024 2.715 x 10−16 2.837 x 10−16 4.48

TABLE 12

Cooling Rates With the Canonical Dust-to-water Ratio (see text), a = 0.0,
T = 1500 K

NH2O LLTEexact
LLTEapprox

% error

1013 2.704 x 10−12 2.705 x 10−12 0.02
1014 2.699 x 10−12 2.702 x 10−12 0.12
1015 2.664 x 10−12 2.677 x 10−12 0.46
1016 2.502 x 10−12 2.527 x 10−12 1.01
1017 2.031 x 10−12 2.055 x 10−12 1.36
1018 9.849 x 10−13 9.430 x 10−13 4.26
1019 7.223 x 10−13 6.338 x 10−13 12.26
1020 3.081 x 10−17 2.612 x 10−17 15.23
1021 2.210 x 10−28 4.353 x 10−28 97.01
1022 0.00 0.00 0.00
1023 0.00 0.00 0.00
1024 0.00 0.00 0.00
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TABLE 13

Cooling Rates Without the Inclusion of Dust, a = 0.0, T = 1750 K

NH2O LLTEexact
LLTEapprox

% error

1013 4.219 x 10−12 4.220 x 10−12 0.01
1014 4.214 x 10−12 4.217 x 10−12 0.08
1015 4.177 x 10−12 4.193 x 10−12 0.37
1016 4.002 x 10−12 4.040 x 10−12 0.94
1017 3.501 x 10−12 3.575 x 10−12 2.11
1018 2.446 x 10−12 2.511 x 10−12 2.68
1019 1.158 x 10−12 1.189 x 10−12 2.74
1020 4.219 x 10−13 4.343 x 10−13 2.93
1021 1.240 x 10−13 1.279 x 10−13 3.15
1022 2.863 x 10−14 2.958 x 10−14 3.35
1023 4.913 x 10−15 5.101 x 10−15 3.83
1024 6.215 x 10−16 1.156 x 10−16 5.75

TABLE 14

Cooling Rates for the Canonical Dust-to-water Ratio (see text), a = 0.0,
T = 1750 K

NH2O LLTEexact
LLTEapprox

% error

1013 4.219 x 10−12 4.220 x 10−12 0.01
1014 4.213 x 10−12 4.217 x 10−12 0.08
1015 4.173 x 10−12 4.188 x 10−12 0.35
1016 3.973 x 10−12 4.006 x 10−12 0.82
1017 3.329 x 10−12 3.365 x 10−12 1.15
1018 1.754 x 10−12 1.696 x 10−12 3.27
1019 1.383 x 10−12 1.233 x 10−12 10.84
1020 5.735 x 10−17 4.899 x 10−17 14.57
1021 3.973 x 10−28 7.831 x 10−28 97.13
1022 0.00 0.00 0.00
1023 0.00 0.00 0.00
1024 0.00 0.00 0.00
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TABLE 15

Cooling Rates Without the Inclusion of Dust, a = 0.0, T = 2000 K

NH2O LLTEexact
LLTEapprox

% error

1013 6.083 x 10−12 6.084 x 10−12 0.01
1014 6.078 x 10−12 6.082 x 10−12 0.02
1015 6.040 x 10−12 6.057 x 10−12 0.28
1016 5.847 x 10−12 5.893 x 10−12 0.78
1017 5.250 x 10−12 5.344 x 10−12 1.79
1018 3.943 x 10−12 4.045 x 10−12 2.58
1019 2.084 x 10−12 2.139 x 10−12 2.68
1020 8.297 x 10−13 8.536 x 10−13 2.89
1021 2.617 x 10−13 2.698 x 10−13 3.12
1022 6.260 x 10−14 6.464 x 10−14 3.26
1023 1.013 x 10−14 1.724 x 10−14 3.83
1024 1.060 x 10−14 1.118 x 10−14 5.54

TABLE 16

Cooling Rates for the Canonical Dust-to-water Ratio (see text), a = 0.0,
T = 2000 K

NH2O LLTEexact
LLTEapprox

% error

1013 6.083 x 10−12 6.084 x 10−12 0.01
1014 6.077 x 10−12 6.081 x 10−12 0.06
1015 6.034 x 10−12 6.051 x 10−12 0.28
1016 5.803 x 10−12 5.842 x 10−12 0.69
1017 4.977 x 10−12 5.025 x 10−12 0.98
1018 2.783 x 10−12 2.716 x 10−12 2.39
1019 2.351 x 10−12 2.129 x 10−12 9.45
1020 9.721 x 10−17 8.359 x 10−17 14.01
1021 6.497 x 10−28 1.283 x 10−27 97.59
1022 0.00 0.00 0.00
1023 0.00 0.00 0.00
1024 0.00 0.00 0.00
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TABLE 17

Cooling Rates Without the Inclusion of Dust, a = 0.0, T = 2250 K

NH2O LLTEexact
LLTEapprox

% error

1013 8.284 x 10−12 8.285 x 10−12 0.01
1014 8.279 x 10−12 8.283 x 10−12 0.04
1015 8.241 x 10−12 8.260 x 10−12 0.22
1016 8.040 x 10−12 8.092 x 10−12 0.65
1017 7.364 x 10−12 7.476 x 10−12 1.52
1018 5.835 x 10−12 5.979 x 10−12 2.47
1019 3.383 x 10−12 3.471 x 10−12 2.63
1020 1.457 x 10−12 1.499 x 10−12 2.85
1021 4.870 x 10−13 5.022 x 10−13 3.11
1022 1.185 x 10−13 1.222 x 10−13 3.20
1023 1.726 x 10−14 1.793 x 10−14 3.87
1024 1.440 x 10−15 1.543 x 10−15 7.14

TABLE 18

Cooling Rates for the Canonical Dust-to-water Ratio (see text), a = 0.0,
T = 2250 K

NH2O LLTEexact
LLTEapprox

% error

1013 8.284 x 10−12 8.285 x 10−12 0.01
1014 8.279 x 10−12 8.281 x 10−12 0.04
1015 8.233 x 10−12 8.250 x 10−12 0.22
1016 7.976 x 10−12 8.022 x 10−12 0.58
1017 6.963 x 10−12 7.023 x 10−12 0.86
1018 4.065 x 10−12 3.998 x 10−12 1.64
1019 3.658 x 10−12 3.361 x 10−12 8.11
1020 1.532 x 10−16 1.324 x 10−16 13.56
1021 9.895 x 10−28 1.954 x 10−27 97.46
1022 0.00 0.00 0.00
1023 0.00 0.00 0.00
1024 0.00 0.00 0.00
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FIG. 33 — Cooling rates with a broadened line profile corresponding to a = 0.1 (solid curves),
compared to those calculated assuming pure Doppler broadening a = 0 (dashed curves), both in
the absence of dust (top curves) and with a canonical dust-to-water ratio (bottom curves).

4. Cooling During Chondrule-forming Shocks

Line cooling is effective at cooling gas, provided the line photons are not reabsorbed by H2O

molecules or dust grains before they can escape to the cool, pre-shock region. In a nebular shock,

it is assured that sufficiently far from the shock front, no line photons can escape and the gas and

dust will become thermally coupled and cool slowly, if at all. What is not clear is the degree to

which line cooling is significant in the region immediately past the shock. Does line cooling lead to

a significant drop in temperature (> 102 K) before dust grains begin to reabsorb line photons? Are

the cooling rates of chondrules dominated by line cooling and therefore high (∼ 104 K hr−1) at the

temperatures at which chondrules crystallize, as found by INSN, or can line cooling be neglected, as

DC02 and CH02 assume? To answer these questions we have constructed a toy model to assess the

maximum possible importance of line cooling and to determine whether more detailed calculations
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of chondrule formation in nebular shocks need to include line cooling.

Our toy model builds on the calculation presented in Section 1. We find it convenient to

convert a time derivative ∂/∂t to a spatial derivative Vg∂/∂z, and then convert the spatial variable

z (distance past the shock front) into a column density of water past the shock front (assuming the

water density remains constant). Then the cooling with column density of water is given by

∂T

∂NH20

= −
(

1

ρgVg

)

(mH

k

)

LLTE (NH2O) . (4.24)

The cooling rate is a function of the dust-to-water ratio (via LLTE), as well as the water column

density. Given a dust-to-water ratio, this equation can then be integrated to find T as a function of

NH2O. Note that we have not accounted for the fact that the line broadening should decrease as the

temperature drops, making it slightly harder for the gas to cool; our simplified analysis therefore

overestimates the cooling somewhat.

We plot the results of this integration in Figure 34 for both the dust-free case and the

case where the dust is one-tenth that of the canonical value (in order to show the effect of even a

small amount of dust). For ease of comparison to chondrules, we have also assumed the canonical

water-to-gas ratio (and other canonical values) to convert NH2O to a time. Specifically, we assumed

a pre-shock density of ρg = 10−9 g cm−3, a shock velocity of Vs = 7 km s−1, assumed the density

increased and the velocity decreased by a factor of (γ + 1)/(γ − 1) = 6 past the shock front, and

used our canonical water-to-gas ratio of nH2O/nH2 = 8 × 10−4. These parameters are consistent

with our assumption of an initial post-shock temperature of 2200 K (DC02; CH02). In the absence

of dust, the gas would cool below 1400 K in roughly 300 seconds, leading to a cooling rate of

> 1 × 104 K hr−1. This cooling is attributable solely to effective cooling by water; by comparison

to NK93 we infer these are mostly vibrational photons. As chondrules and gas are expected to

be thermally well coupled more than 100 seconds past the shock front (DC02; CH02), this can

be interpreted as a likely cooling rate of chondrules as well. The cooling rate begins to taper off

as large column densities are reached, but not until times > 105 s, by which time the gas and
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FIG. 34 — Gas temperature as a function of time, both with and without the inclusion of dust
grains that can absorb line photons (see text for details).

chondrules have traveled roughly 1010 cm past the shock front, equivalent to a column density of

water > 1022 cm−2.

Including the absorption of line photons by dust grains completely changes the thermal

history of the gas and chondrules. Using an opacity of dust ∼ 30 cm2 g−1 (at short wavelengths)

and a post-shock gas density of 6×10−9 g cm−3, the optical depth of dust exceeds unity after only 55

km past the shock front, which is reached after traveling only 48 seconds. During this first minute

or so past the shock front, the line photons emitted by H2O molecules escape freely and effectively

cool the gas; but after the first minute or so, they are absorbed by dust grains instead. Instead

of H2O line photons freely escaping to the shock front and cooling the gas and dust system, the

photons are reabsorbed “on-the-spot” and do not cool the gas. This effect of the reduced cooling

rate is clearly seen in Figure 34 beyond about 102 seconds. The trapping of line photons by dust

grains becomes so effective that no further cooling by line emission is possible after a few minutes.
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TABLE 19

Cooling Rates for Various Dust-to-gas and Water-to-gas Ratios

dust/gasa water/gasb T at 104 s (K) Cooling Rate c

0.0 0.1 1275 2.7 × 102

0.0 1.0 1000 3.2 × 103

0.0 10.0 875 3.7 × 104

0.1 0.1 2000 N/A
0.1 1.0 1650 d

0.1 10.0 1225 2.3 × 104

1.0 0.1 2175 N/A
1.0 1.0 2000 N/A
1.0 10.0 1600 e

10.0 0.1 2200 N/A
10.0 1.0 2175 N/A
10.0 10.0 2000 N/A

atimes the canonical dust/gas mass ratio 5 × 10−3

btimes the canonical water/gas ratio nH2O/nH2 = 8 ×
10−4

cthe average cooling rate between 1800 and 1400 K, in
Khr−1

d490Khr−1 between 1800 and 1650 K; never cooled be-
low 1650 K

e5000Khr−1 between 1800 and 1600 K; never cooled be-
low 1600 K

Ignoring the effects of cooling other than line photons, the temperature would stabilize at about

1600 K. For this particular choice of parameters, chondrules would not cool at rates ∼ 104 K hr−1

through their crystallization temperatures (1400 - 1800 K) as in INSN and Miura & Nakamoto

(2006); in fact, they wouldn’t cool at all under the assumptions of our toy model.

We have investigated the effect of varying the dust-to-gas and water-to-gas ratios on the

cooling rates of chondrules. Their behaviors are similar to those depicted in Figure 34. In Table 4

we report only the average cooling rates of chondrules over their crystallization temperature range

(i.e., from 1800 K to 1400 K). The gas density and shock velocity are not varied. The results of

this parameter study show that even a small amount of dust very effectively shuts down the line

cooling due to H2O .
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5. Estimated Effects of Line Cooling

We have built upon the line cooling work of NK93, by using a much-expanded database of

spectral lines, improved escape probabilities, and the inclusion of dust grains. We have found that

although the cooling rate due to H2O line cooling is a complicated combination of gas and dust

opacity, the cooling rate can be well approximated by LLTE(τ, τd) ≈ LLTE(τd = 0) × E2(0.95 τd).

This allows us to investigate the maximum cooling effect H2O line cooling will have in chondrule-

forming nebular shocks.

Because vibrational line photons from H2O so effectively cool the gas, the high oxygen

fugacities and H2O densities inferred for the chondrule-forming environment (Fedkin & Grossman

2007) would seem incompatible with cooling rates < 100 K/hr, but we find that dust significantly

reduces the photon escape probabilities and the cooling rates. Dust grains absorb the line photons

that would escape and cool the gas. Without dust, H2O line cooling reduces the temperature of

the gas to 1400-1800 K in ≤ 0.1 hr and cooling continues at this rate (>104 K/hr). With dust,

however, the grains absorb line photons and inhibit cooling, leading to a cessation of cooling after

∼ 0.1 hr (∼ 8 minutes). Line cooling is a very effective and important cooling agent in the first

few minutes and must be included in any comprehensive shock model. After the first few minutes,

however, the thermally well-coupled gas and chondrules cool together at a slow rate (only as fast

as they travel ∼ 1 optical depth through the dust), as in DC02 and CH02. INSN failed to note

this effect; although they treat the gas and dust as well coupled (Tgas = Tdust), their system was

effectively optically thin to line emission, allowing all line photons to escape the region and cool

the gas.

As we are interested at this time only in the maximum cooling effects of line photons

(the “worst-case scenario”), our calculations of cooling rates made no assumptions about radiative

transfer; the chondrule temperatures followed the gas temperature. Thermal histories of chondrules

including radiative transfer, line cooling, and other relevant effects will be reported later in this
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work. Since we have assumed that line photons either escape completely or are absorbed imme-

diately, the true situation will clearly be bracketed between the two extremes shown in Figure 34.

In these calculations, we have assumed that the dust is thermodynamically coupled to the gas.

All temperatures (gas, dust, and chondrules), in actuality, will be determined by dust/chondrule

opacity and radiative transfer. DC02 showed that the cooling rates of chondrules (without the

inclusion of line cooling) were given by the formula that appears above as Equation 1. In the case

considered in Figure 34, the chondrule concentration may be considered to be low (C ≪ 1), and

the dust opacity is characterized by δ = 0.1 × 28.76/1.14 = 2.5. This yields a total cooling rate

of gas and dust through the crystallization range of about 125 K hr−1 after line cooling shuts off.

Higher chondrule concentrations (C > 102) appear to have been typical during chondrule forma-

tion (Cuzzi & Alexander 2006; Alexander et al. 2008). These would increase the cooling rate to

several ×102 K hr−1. Line cooling is significant during the first few minutes past the shock, and

more detailed calculations will be necessary to constrain the initial drop in temperature from the

peak to below the liquidus. However, our results have shown that dust effectively shuts down line

cooling within minutes and it then takes hours for chondrules to crystallize in a shock, consistent

with DC02 and CH02.

As mentioned previously, we did not calculate line cooling due to CO, as it is a factor of ∼

20 less effective than H2O. CO also cools by emitting line photons, but dust will absorb these line

photons as readily as those emitted by H2O. Figure 34 shows a drop in temperature of ∼ 600 K. If

CO were included, the temperature would probably drop an extra 5% (∼ 630 K), which is within

the uncertainties of the H2O abundances we have assumed.

This study has shown that the gas and chondrules will cool much too rapidly to match the

experimental constraints on chondrule cooling rates if dust is not present. The question of the dust

abundance and its opacity therefore becomes paramount. But, significantly, we have found that

enhancing only the amount of H2O causes higher cooling rates, whereas enhancing the amount

of H2O and dust together does not. What affects the cooling rate the most, therefore, is not
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the amount of water, but the dust-to-water ratio. Potential complications, though, include the

possibility that dust will evaporate immediately upon passage of the shock, and the possibility that

dust vapor may recondense in the post-shock region (e.g., Scott & Krot 2005).

In a related vein, we note an application of this work only tangentially related to chondrule

formation. Ciesla et al. (2003) suggested that phyllosilicates found in the fine-grained accretionary

rims of chondrules in CM meteorites may have resulted from rapid gas-phase reactions of water

vapor with silicates. Previous studies indicated that phyllosilicate production would be kinetically

inhibited in the solar nebula (Prinn & Fegley 1987); however, Ciesla et al. (2003) showed that

nebular shocks could result in a local increase in the water vapor pressure, thereby increasing

the rate of phyllosilicate formation, as well as increasing the temperature at which phyllosilicates

become stable. Chondrule-forming shocks in icy regions of the solar nebula could therefore account

for both the formation of chondrules and their fine-grained phyllosilicate rims. A possible objection

to this hypothesis is that the high abundance of water vapor in the shocked region would cool the

gas too rapidly to allow the production of much phyllosilicates. As our work here shows, however,

rapid cooling by line photons will not be associated with shocked, water-rich nebula gas, as long

as the dust-to-water ratio is close to the canonical value for the solar nebula. An investigation of

this hypothesis is also planned for future work.



CHAPTER 5

INCLUSION OF LINE COOLING IN THE SHOCK CODE

Recall from Chapter 4 that molecular line cooling due to the presence of water is dependent,

in a nonlinear fashion, on the column depth of water, (i.e., the opacity of the gas), the opacity of

dust, and the gas temperature. Technically, each line should be treated separately. The calcula-

tion of the amount of emission and absorption of line cooling in each zone of our computational

boundary, employing the complete methods of Morris et al. (2009), would result in many months

of computational time for each run of the code. Therefore it was highly desirable to simplify

the way in which line cooling was incorporated into the shock code. In particular, we wished

to eliminate any wavelength-dependence. To that end, we searched for an approximation to the

exact, wavelength-integrated cooling rates given in Morris et al. (2009) (see Figures 30 and 31)

that provided a single, line-integrated cooling rate, dependent only on the column depth of water,

temperature, and opacity. We found that for all temperatures, in all cases of interest (low dust

opacity), the following approximation provides an excellent fit to the cooling rates (Figure 35).

Λ(NH2O, Σeff) = Λ(NH2O, Σeff = 0) exp

[

− Σeff

1.2 x 10−4 g cm−2

]

(5.1)

where 1.2 x 10−4 g cm−2 is the column density of solids that gives τd = 1, assuming the opacity is

due to solids in the form of our assumed micron-sized dust. To include other solids, we define Σeff

as the effective column density of all solids, including micron-sized dust, chondrule precursors, and

chondrules. For our chondrule parameters,

Σeff = Σdust + Σch/const. (5.2)

Utilizing the complete methods of Morris et al. (2009), lookup tables of exact cooling rates

without dust, Λ(NH2O, Σd = 0), were generated for 48 column densities of H2O ranging between

1013 and 1025 cm−2, and temperatures of 250 - 4000 K (in increments of 250 K), for a total of 720

entries in the NH2O - T grid. A separate subroutine to the shock code was developed to calculate

the proper line cooling rate, including solids, using Equation 5.1, given the temperature, column

density of water, and the column density of solids. An initial test of the subroutine enabled an

examination of the broad results of line cooling. To simplify the test, we calculated the column
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FIG. 35 — Exact cooling rates due to H2O for various dust-to-water ratios (solid lines), as a function
of water column density, and our approximation to the exact, wavelength-integrated cooling rates
(dashed lines) for T = 2000 K. The rightmost curve is the case with no dust; the red curve is the
canonical case (see text). The curves to the left of the canonical curve (from right to left) show
cooling rates for 3, 10, 30, 100, and 300 times the canonical dust-to-water ratio. The curves to
the right of the canonical curve (from left to right) are 1/3, 1/10, 1/30, 1/100, and 1/300 times
the canonical dust-to-water ratio. Since dust is largely evaporated in the post-shock region, we are
only interested in the cases with low dust-to-water ratios.

densities of dust and H2O from each zone to the shock front, rather than zone to zone. Figures 36

and 37 show the results in the case considering gas opacity only and Figures 38 and 39 show the

results in the case including opacity due to solids.

At first glance, there seems to be very little difference between the case which includes

gas opacity only and the case which also includes opacity due to solids. However, a closer look

(Figure 40) reveals that the case including solids results in a minutely higher peak temperature

and slightly higher temperatures in the post-shock region.

This simplified test of our line cooling subroutine resulted in a dramatic increase in cooling

rates over our canonical case because we were only accounting for emission due to line cooling. We
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FIG. 36 — Same as Figure 19 (our canonical case neglecting line cooling), except we have included
an approximation of the line cooling, considering gas opacity only. In each zone, column densities
(both H2O and solids) are calculated from that zone to/from the shock front.

have yet to account for the amount of this emission from each zone that is absorbed in other zones.

It is important to remember at this time, that line photons emitted by H2O on one side of

the shock will not be absorbed by H2O molecules on the other side of the shock, as they appear

significantly Doppler-shifted; the difference in gas velocity is ∼ 5 km s−1, many times the thermal

speeds of < 1 km s−1. The calculation of the column density of water in each zone must take

this effect into account. In order to properly account for the zone-to-zone effects of line emission,

it was necessary to create yet another subroutine to determine the transfer of line radiation from

zone-to-zone (Figure 41). The first step in this process is to calculate the comoving column density
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FIG. 37 — Same as Figure 20 (our canonical case neglecting line cooling), except we have included
an approximation of the line cooling, considering gas opacity only. In each zone, column densities
(both H2O and solids) are calculated from that zone to/from the shock front.

of water and solids through which the radiation must pass. The column density from the edge of

the computational domain (x = xpre) to point xi is

NH2O(i) =
i
∑

j=2

[

n∗
H2O(j) + n∗

H2O(j − 1)

2

]

xj − xj−1, (5.3)

where n∗
H2O = nH2O, if i and j are on the same side of the shock, and n∗

H2O = 0, if they are not.

The column density of solids must include both fine-grained dust and chondrules/chondrule pre-

cursors. First, it is necessary to determine the mass density of both dust and chondrules/chondrule
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FIG. 38 — Same as Figure 36, except we have now considered opacity due to solids. Once again,
in each zone, column densities (both H2O and solids) are calculated from that zone to/from the
shock front.

precursors. The mass density of dust, assuming a solar dust-to-gas ratio, is given by

ρd = 5 x 10−3 ρgas. (5.4)

If the dust evaporates (Td exceeds Tevap), then ρd = 0.001 times the amount calculated by Eqn. 5.4.

The mass of chondrules/chondrule precursors is

mch =
4

3
πρpa

3
p. (5.5)
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FIG. 39 — Same as Figure 37, except we have now considered opacity due to solids. Once again,
in each zone, column densities (both H2O and solids) are calculated from that zone to/from the
shock front.

From (x = xpre) to (x = xi), the column density of dust is then

Σd =
i
∑

j=2

1

2
(ρd,j + ρd,j−1) xj − xj−1, (5.6)

and the column density of chondrules/chondrule precursors is

Σch =
i
∑

j=2

1

2
(nch,j + nch,j−1) mch xj − xj−1, (5.7)

giving the effective column density of solids as

Σeff = Σd + 8 x10−4 Σch. (5.8)
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Once the column density of water, temperature, and the column density of solids in each zone is

known, the amount of emission due to line cooling from that zone can be calculated using the line

cooling subroutine. Utilizing the new line radiation transfer subroutine, the amount of this emission

that is absorbed in other zones can then be determined. These two new subroutines to the shock

code account for the fact that in any one zone, you may have a net increase or a net decrease in

the amount of energy, due to line cooling. Using our approximation (Eqn. 5.1), the algorithm for

calculating the change in energy due to line emission from zone i into zone j 6= i, is as follows:

for all i, if j = 1, then

Ė =
1

2
nH2O

[

Λ(NH2Oi − NH2Oj+1
, Σeffi − Σeffj+1

, Ti)

−Λ(NH2Oi − NH2Oj , Σeffi
− Σeffj

, Ti)
]

dxi, (5.9)

if j = 2 to i − 1, then

Ė =
1

2
nH2O

[

Λ(NH2Oi − NH2Oj+1
, Σeffi − Σeffj+1

, Ti)

−Λ(NH2Oi − NH2Oj−1
, Σeffi − Σeffj−1

, Ti)
]

dxi, (5.10)

if i < n to i − 1, then

Ė =
1

2
nH2O

[

Λ(NH2Oj−1
− NH2Oi , Σeffj−1

− Σeffi , Ti)

−Λ(NH2Oj − NH2Oi , Σeffj − Σeffi , Ti)
]

dxi, (5.11)

if j = i + 1 to n − 1, then

Ė =
1

2
nH2O

[

Λ(NH2Oj−1
− NH2Oi , Σeffj−1

− Σeffi , Ti)

−Λ(NH2Oj+1
− NH2Oi , Σeffj+1

− Σeffi , Ti)
]

dxi, (5.12)

where

dxi =
x(i + 1) − x(i − 1)

2
. (5.13)
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if i = 1, then

dxi =
x(2) − x(1)

2
, (5.14)

and if i = n, then

dxi =
x(n) − x(n − 1)

2
. (5.15)

The net line cooling in any zone is then given by

ėi =
1

dxi

∑

j 6=i

(

Ėj→i − Ėi→j

)

. (5.16)

The algorithm accounts for backwarming; line emission radiation is emitted in both directions from

each zone, so that all zones will absorb line emission not only from succeeding zones, but also from

preceding zones, including those in the pre-shock region. This net energy due to line cooling serves

to cool or heat the gas in each zone, and must be accounted for as a part of the gas energy term

(Eqn. 2.32) within the Runge Kutta solver. Recall that the line cooling, Λ(NH2O, Σd, Ti) ∝ nH2O.

If, in any one zone, the column density of water, NH2O = 0, then the line emission from that zone,

Λ(NH2O, Σd, Ti) = 0. If the column density of dust, Σdust = 0, then the effective column density,

Σeff , will only include the column density due to chondrules/chondrule precursors, and the line

emission will be much greater than if dust were present. If the temperatures in any two zones are

the same, then the net emission and absorption of line emission between those zones will be zero.

Our updated shock code now includes all the improvements suggested in Desch et al. (2005).

Using the updated code, we were able to evaluate the effects of molecular line cooling.
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FIG. 40 — The figure on the top is the same as Figure 36 (c), where we have zoomed in on the area
within 105 km of the shock front. The figure on the bottom is the same as Figure 38 (c), where,
once again, we have zoomed in on the area within 105 km of the shock front.
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FIG. 41 — A cartoon of line emission from zone i into zone j.



CHAPTER 6

RESULTS INCLUDING LINE COOLING

Based on our toy model outlined in Chapter 4, we expected the inclusion of line cooling to

result in a noticeable increase in cooling rates over our canonical case neglecting line cooling, from

∼ 102 K hr−1 to ∼ 104 K hr−1. This is especially true when you consider that in our canonical case,

dust begins to evaporate in the pre-shock region, and is completely evaporated at the shock front.

The opacity of solids (chondrules and ultra-refractories) is a mere 0.03 cm2 g−1 in the post-shock

region, due to evaporation. This being the case, we would expect cooling rates of > 104 K hr−1,

not only immediately following the shock, but for as long as 105 seconds after the shock, similar

to the “without dust” case of Figure 34. However, our results show that this is not the case, as

shown in Figures 42 and 43, where we have included the effects of line cooling in our canonical

shock (Table 20, Case 9). These figures are indistinguishable from Figures 19 and 20, our canonical

case neglecting line cooling (Table 6, Case 6). Increasing the water abundance to 10 times the solar

value (Figures 44 and 45;(Table 20, Case 10)) only results in an increase in the cooling rates of

chondrules of ∼ 10 K through their crystallization temperatures. Clearly, something (other than

dust opacity) that we did not account for in our toy model, is serving to drastically reduce the

cooling rates due to line emission.

One physical effect not included in our original toy model is backwarming, or the radiation

emitted from the pre-shock region. Another effect is the dissociation and recombination of hydrogen,

as we were interested in isolating the effects of line cooling. Dissociation of hydrogen molecules

is responsible for the rapid cooling rates immediately following the shock in the results of DC02,

leading us to believe that inclusion of these effects would only serve to increase the cooling rates of

the gas. However, recombination of hydrogen atoms convert stored chemical energy to heat in the

gas, thereby slowing the cooling rates. It has become evident that dissociation and recombination

of hydrogen following the shock must be examined more closely.

The fraction of the gas that is atomic hydrogen at any time is given by

f =
nH

nH + 2nH2

(6.1)
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FIG. 42 — Case 9 (see Table 20). Same as Figure 19 (our canonical case neglecting line cooling),
except now we have included detailed treatment of H2O line cooling following the methods of Morris
et al. (2009).

where nHTOT
≡ nH + 2nH2

. The heating rate per recombination of hydrogen is

Γ ∼= df

dt
nHTOT

( ǫ

2

)

(6.2)

where ǫ = 4.48 eV. As f increases (hydrogen is dissociating), Γ decreases (the gas is cooling). This

heating due to recombination of hydrogen will result in a reduction in the cooling rate of the gas.

The new cooling rate is found using the definition of internal energy (including the chemical energy
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FIG. 43 — Case 9 (see Table 20). Same as Figure 20 (our canonical case neglecting line cooling),
except now we have included detailed treatment of H2O line cooling following the methods of Morris
et al. (2009).

of dissociation):

e =
5

2
nH2

kT +
3

2
nHkT +

3

2
nHekT +

ǫ

2
nH

= nH2
kT +

3

2
(nH2

+ nH + nHe) kT +
ǫ

2
nH

= nH2
kT +

3

2
P +

ǫ

2
nH

=
1 − f

2
nHTOT

kT +
3

2
P + f nHTOT

( ǫ

2

)

.
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FIG. 44 — Case 10 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except the water abundance has been increased by a factor of ten.

IF nH2
≡ nHTOT

= constant, nH = 0, and P is held constant

(

dT

dt

)

f=0

=
1

nH2
k

∂e

∂t
,

IF nHTOT
and P are held constant, but f is allowed to vary, then nH2

= (1 − f) nHTOT
/2, giving

(

∂e

∂t

)

=
nHTOT

k

2

[

(1 − f) +
( ǫ

k
− T

) dF

dT

]

dT

dt
,

(

∂T

∂t

)

f 6=0

=
2

nHTOT
k

[

(1 − f) +
( ǫ

k
− T

) df

dT

]−1 ∂e

∂t
,

and
(

∂T

∂t

)

f=0

=
2

nHTOT
k

∂e

∂t
,
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FIG. 45 — Case 10 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except the water abundance has been increased by a factor of ten.

giving the new cooling rate after reduction due to hydrogen recombination.

(

dT

dt

)

=

(

dT

dt

)

f=0

[

(1 − f) +
( ǫ

k
− T

) df

dT

]−1

(6.3)

Assuming chemical equilibrium (Rrec = Rdiss), we can use the dissociation and recombination rates

given in Appendix B to determine the fraction of the gas that is atomic at any given time. To do so,

it is necessary to balance the rates of dissociation and recombination, and solve the resulting cubic

equation. Once this was done, it was necessary to find a temperature-dependent approximation to

both the fraction, f , and its derivative with respect to temperature, df/dT , in order to incorporate

the effects of dissociation and recombination into our toy model, as the toy model does not track
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number densities of hydrogen. We are only concerned with the temperature range ∼ 1750 - 2200

K; in our canonical case, 2200 K is the post-shock gas temperature immediately following the spike

at the shock front, cooling to 1750 K and reaching chemical equilibrium in minutes. The fraction of

atomic hydrogen, f , its derivative, df/dT , and our approximations to both are shown in Figures 46

and 47. Figure 48 shows the dependence of the term

B ≡
[

(1 − f) +
( ǫ

k
− Tg

) df

dTg

]

(6.4)

on temperature, demonstrating the reduction in cooling rates. Figure 49 shows the gas temperature

as a function of time in our toy model, after the inclusion of backwarming and the effects of hydrogen

reactions. It is clearly evident that these two effects dramatically reduce the effect of line cooling,

by factors of ∼ 102. However, these results suggest that we should still see an increase in the cooling

rates of the gas (between 2200 K and 1750 K) when line cooling is included.
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FIG. 46 — In chemical equilibrium, the fraction of atomic hydrogen (solid line) and our approxi-
mation (10−36 T 10.492

g ; dashed line), assuming a post-shock density of 6 x 10−9 g cm−3.

Now we must examine the effects of the column density of water on the cooling rates.

According to the tables of Morris et al. (2009), the cooling rate due to H2O at NH2O = 1019 cm−2

(in the case with no dust) is 38 % of the cooling rate at NH2O = 1013 cm−2. This is the column

density of H2O reached only 100 s after the shock. This decreases the cooling rate from an initial

200 K hr−1 to 76 K hr−1 in those first 100 s. At NH2O = 1020 cm−2, the cooling rate is 16 % of the

original, and at NH2O = 1021 cm−2, it has decreased to .05 %. This results in a reduction of the

cooling rate to ∼ 30 K hr−1 after 1000 s, and it drops to ∼ 10 K hr−1 shortly thereafter. This

equates to a drop in temperature of only around 20 K in the first 1000 s.

At temperatures where the cooling is dominated by line cooling (as opposed to dissociation

of hydrogen molecules), we now expect to see, at most, a difference of 10 K hr−1 in the cooling rates

of the gas. Comparing the cooling rates of the gas after the inclusion of line cooling (Figure 51c)

to those without line cooling (Figure 50c), we see only a difference of ∼ 5 K hr−1, consistent with
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FIG. 47 — The temperature derivative of the fraction of atomic hydrogen (solid line) and our
approximation (9 x 10−7 Tg − 0.0015; dashed line).

our calculations. Even when the water abundance is increased by a factor of ten, the cooling rates

increase by only ∼ 30 K hr−1 (Figure 52c; the vertical line is a numerical artifact). (Figures 44

and 45 also show the case where the water abundance has been increased by a factor of ten over

the canonical case). The combination of the addition of energy due to recombination of hydrogen,

and reduced cooling rates due to higher column densities of H2O, have almost eliminated the effect

of line cooling on the gas.

We now ask ourselves: If line radiation barely affects the cooling rates of the gas, what

effect can it have on the cooling rates of the chondrules? To get an idea, we must examine to

what extent thermal exchange between the gas and chondrules affects the particle heating term

in the post shock region. Recall that the heating term for the chondrules is q + ǫ
(

Jr − σT 4
p/π

)

,

where q depends on the relative velocities of the gas and particles. Using this expression, we

can compare the contribution of the the terms that are dependent on the gas properties with the
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FIG. 48 — The reduction of cooling rates, B ≡ [(1 − f) + (ǫ/k − Tg) df/dTg], due to hydrogen
recombination.

term that depends only on the chondrule temperature. In doing so, we have found that by the

time chemical equilibrium is achieved and line cooling exceeds the cooling due to dissociation of

hydrogen, thermal exchange with the gas accounts for less than 10% of the particle heating term.

Therefore, line cooling due to H2O has a negligible effect on chondrule cooling rates.

We can also test the results summarized above by examining the case where we do not

allow hydrogen to dissociate or recombine. We predict that without hydrogen dissociation the gas

will not cool as rapidly immediately following the shock. Without the additional energy due to

recombination, line cooling will be much more effective; so effective, in fact, that even at the 10%

level, we should see some effect on the cooling rates of chondrules. In Figure 53c, we see that the

gas does indeed cool much more rapidly due to line cooling in the post-shock region, therefore the

gas does not heat as rapidly in the pre-shock region. Figure 54b shows that the chondrules would

reach a higher peak temperature if they did not evaporate, because of lack of initial cooling due

to hydrogen dissociation. Figure 54d shows that the initial cooling rates of chondrules (∼ 8000 K
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FIG. 49 — Gas temperature as a function of time in our toy model, after the inclusion of back-
warming and the effects of hydrogen dissociation and recombination.

hr−1) is drastically reduced from the case in which hydrogen dissociation occurs (> 5 x 104 K hr−1).

As predicted, we see higher cooling rates of chondrules through their crystallization temperatures

(Figure 54c).

1. Results of Parameter Study

As we now understand the effects of line cooling (or lack thereof), we wish to run the

updated shock code with various input parameters in order to constrain the conditions under

which chondrules form in solar nebula shocks. We have already examined the case where the water

abundance is increase by a factor of 10 over the canonical value (Table 20, Case 10), with respect

to the effect of line cooling; now let us look at the thermal histories of the chondrules. In this

case (increased water abundance; Table 20, Case 10), chondrule precursors completely melt upon

passage through the shock, but do not evaporate. Initial cooling rates are rapid (> 5 x 104 K hr−1),
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slowing to < 30 K hr−1 through the crystallization temperature range (Figures 44 and 45). These

cooling rates are consistent with experimental constraints. As expected, when the water abundance

is reduced to 1/10 the canonical value (Figures 55 and 56; Table 20, Case 11), we see no difference

in the results from the canonical case.

We next reduced the shock speed to 7 km s−1 (Table 20, Case 12). Very little “pre-heating”

of the upstream material occurs (Figure 57). Micron-sized dust begins to evaporate shortly before

reaching the shock front. The lower shock speed results in less drag heating of chondrules upon pas-

sage through the shock, in turn resulting in lower peak temperatures for the chondrules (Figure 58).

As in the case with no line cooling, only partial melting of chondrules occurs. Initial cooling rates

meet the constraints necessary for the retention of volatiles (a few times 104 K hr−1), and cooling

rates are, for the most part, within the range necessary to match experimental constraints through

the crystallization temperatures of chondrules.

We were unable to obtain results with a shock speed of 9 km s−1. We cannot explain why,

but with the addition of line cooling, the code became unstable at this shock speed. However, since

we have determined that line cooling will have very little effect, for sound physical reasons that

still apply, we can refer to our case at 9 km s−1, without line cooling (Figures 21 and 22; Table 6,

Case 7). We were able to obtain results (to within convergence of ∼ 1 %) for a shock speed of 10

km s−1 (Table 20, Case 14). These results are shown in Figures 59 and 60. The gas now reaches

a peak temperature of > 5400 K. Once again, akin to the 9 km s−1 case, the peak temperature of

chondrules artificially remains at 2000 K, and does not climb any higher, due to the evaporation

temperature of chondrules. At this shock speed (10 km s−1), chondrules evaporate from an initial

radius of 300 µm, to ∼ 146 µm by the end of the computational domain, losing 88 % of their mass.

We now investigate the effect of increasing/decreasing the gas density. Figures 61 and 62

show the results when the density is decreased by a factor of 10 (Table 20, Case 15). We see the

same results here as we did without line cooling. Chondrule precursors just barely begin to melt,

only reaching peak temperatures of ∼ 1500 K, and cooling rates are much too high to match the
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constraints on chondrule thermal histories.

Leaving all other parameters unchanged from the canonical case, we turn to investigate the

effect of increasing/decreasing the chondrule concentration, C. Figures 63 and 64 show the results

when the chondrule density is increased by a factor of 30 (Table 20, Case 16). As predicted by

DC02, higher chondrule concentrations lead to higher cooling rates. However, DC02 also predict

higher peak chondrule temperatures. Our results show that this is not the case. The lower shock

velocity in the post-shock region actually leads to slightly lower peak chondrule temperatures.

Regardless, the peak temperature reached by chondrules is still enough to completely melt the

chondrule precursors, without leading to evaporation. Although cooling rates are higher than in

the canonical case with a lower chondrule concentration, they still meet the constraints set by

furnace experiments; initial rapid cooling, with cooling through the crystallization temperature

range at rates < 1000 K hr−1.

You will note that in our discussion of the results after the inclusion of line cooling, we have

not yet addressed the constraints on the thermal histories of chondrules before they are melted

by the shock wave. So far, we have only discussed how our results compare to the constraints on

cooling rates of chondrules after they have melted. Recall that the presence of primary S limits

the duration of heating above ∼ 650 - 1200 K to several minutes (Hewins et al. 1996; Connolly

& Love 1998; Jones et al. 2000; Lauretta et al. 2001; Tachibana & Huss 2005. Additionally, the

lack of isotopic fractionation of alkalis limits the time spent at high temperature (1300 - 1600 K) to

minutes, or less, prior to melting (Tachibana et al. 2004; Tachibana & Huss 2005). In our canonical

case (Figure 20), chondrules spend almost eight hours at temperatures > 650 K before reaching

the shock wave and melting. Out of those eight hours, ∼ three and a half are spent between

1300 and 1600 K. Our canonical case clearly does not meet these constraints on the “pre-heating”

of chondrules. Because micron-sized dust evaporates well before the shock front, the precursor

radiation is able to penetrate further upstream and heat the gas and chondrule precursors much

sooner, therefore, they are heated for much longer timescales before melting. However, in the case
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TABLE 20

Results of Parameter Study, Including Line Cooling

Case No. C Vs ρg (g cm−3) H2O
a Tpeak (K) Cooling rate (K hr−1)b Cooling rate (K hr−1)c

9 10 8 10−9 1 2000 > 5 x 104 10-25
10 10 8 10−9 10 1900 > 5 x 104 3-30
11 10 8 10−9 0.1 2000 > 5 x 104 10-25
12 10 7 10−9 1 1720 > 2 x 104 15-45e

13 10 9 10−9 1 2000d 1100 8-20
14 10 10 10−9 1 2000d 1500 15-21
15 10 8 3 x 10−10 1 1500 > 7 x 104 7 x 104

16 30 8 10−9 1 1900 > 5 x 104 35-65
17 50 8 10−9 1 2000 > 104 22-90

aWater abundance with respect to our assumed water-to-gas ratio, 8 x 10−4.

bCooling rates at Tpeak

cCooling rates through 1400-1800 K, the crystallization temperature range of chondrules.

dArtificial peak temperature due to evaporation. See text for final radius of chondrules.

eCooling rates through 1400-1599 K; rates are ∼ 2 x 104 from 1600-1800 K.

where we have increased the chondrule concentration to C = 30 (Figures 63 and 64) (Table 20,

Case 16), the dust does not evaporate as quickly, and the chondrules only spend about two and

half hours at temperatures over 650 K, and only ∼ 40 minutes at temperatures between 1300

and 1600 K. We predict that at even higher chondrule concentrations, there will not be extended

heating of chondrules in the pre-shock region and the constraint on “pre-heating” of chondrules

will be met by the updated shock model, while still meeting the constraints on cooling rates after

melting. The justification for such higher chondrule concentrations will be addressed in the next

chapter. Table 20 shows the peak temperature reached by chondrules and the cooling rates through

their crystallization temperature range, resulting from our parameter study.
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FIG. 50 — Case 6 (see Table 6). Gas temperatures in our canonical shock (neglecting line cooling),
over the course of hours (a), and also fractions of a minute (b). The cooling rates of the gas as a
function of temperature, in the regime where the effects of line cooling become important (c), and
at higher temperatures (d), when the cooling rates are dominated by the dissociation of hydrogen
molecules.
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FIG. 51 — Case 9 (see Table 20). Same as Figure 50, except, in this case, the effects of line cooling
on the gas are included.
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FIG. 52 — Case 10 (see Table 20). Same as Figure 51, except, in this case, the water abundance
has been increased to 10 times the solar value.
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FIG. 53 — Same as Figure 42 (our canonical case including line cooling), except now we do not
allow hydrogen to dissociate or recombine.
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FIG. 54 — Same as Figure 43 (our canonical case including line cooling), except now we do not
allow hydrogen to dissociate or recombine.
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FIG. 55 — Case 11 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except now the water abundance has been reduced to 1/10 the solar value.



133

FIG. 56 — Case 11 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except now the water abundance has been reduced to 1/10 times the solar value.
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FIG. 57 — Case 12 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except the shock speed has been reduced to Vs = 7 km s−1.
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FIG. 58 — Case 12 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except the shock speed has been reduced to Vs = 7 km s−1.
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FIG. 59 — Case 14 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except the shock speed has been increased to Vs = 10 km s−1.
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FIG. 60 — Case 14 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except the shock speed has been increased to Vs = 10 km s−1.
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FIG. 61 — Case 15 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except the pre-shock gas density has been reduced to ρ1 = 3 x 10−10 g cm−3.
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FIG. 62 — Case 15 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except the pre-shock gas density has been reduced to ρ1 = 3 x 10−10 g cm−3.
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FIG. 63 — Case 16 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except the chondrule concentration has been increased to C = 30.
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FIG. 64 — Case 16 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except the chondrule concentration has been increased to C = 30.
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FIG. 65 — Case 16 (see Table 20). Same as Figure 42 (our canonical case including line cooling),
except the chondrule concentration has been increased to C = 50.
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FIG. 66 — Case 16 (see Table 20). Same as Figure 43 (our canonical case including line cooling),
except the chondrule concentration has been increased to C = 50.



CHAPTER 7

SUMMARY, CONCLUSION, AND DISCUSSION

1. Formation of Chondrules

Chondrules are some of the oldest materials in our Solar System, forming within a few million

years after its birth. Analyses of chondrules have yielded constraints on their thermal histories, and

as such, chondrules can provide crucial information about the conditions in the early solar nebula.

As reviewed in Chapter 1, the complementarity of chondrules and the matrix in which they

are embedded is considered an additional constraint. Although the composition of chondrules and

the fine-grained matrix of the chondrites differ from chondrite to chondrite, the bulk composition

of the meteorites is approximately solar (Wood 1985; Huss 1988; Palme et al. 1993; Klerner &

Palme 2000; Hezel & Palme 2007). This complementarity of chondrules and matrix suggests that

chondrules were combined with dust local to the region of their formation, prior to incorporation

into the chondrite parent bodies.

The thermal histories of chondrules are remarkably well constrained. The presence of pri-

mary sulfur suggests that chondrule precursors started at temperatures < 650 K (Rubin et al.

1999; Krot et al. 2009). The lack of isotopic fractionation of S suggests that they were subse-

quently heated to the liquidus temperature within less than 10 minutes (Tachibana & Huss 2005).

They were then heated to a few hundred K above their liquidus temperature (∼ 1800 K), in order

to retain just a few nucleation sites (Hewins et al. 2005). The chondrules then cooled to below the

liquidus within minutes, at rates > 104 K hr−1. Such high cooling rates are necessary for the reten-

tion of Na (Yu & Hewins 1998). While still partially molten, the cooling rates dropped suddenly

for most chondrules, cooling at rates 10 − 1000 K hr−1 (Hewins et al. 2005; Miyamoto et al. 2009)

through their crystallization temperatures. In order to stabilize the melt against evaporation that

was too rapid, the melting of chondrules took place in the presence of moderately high pressure

gas. The total pressures during chondrule melting probably exceeded 10−3 atm (Miura et al. 2002).

The sizes of the regions in which chondrules formed have been estimated by noting the lack

of isotopic fractionation of K, Fe, Mg and Si. The chondrule melts must have been in equilibrium
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with their own vapor for these gases to avoid fractionation. This requires a large region (≫ 103 km

in size) so that the vapor does not diffuse away (Cuzzi & Alexander 2006). At the same time, the

density of chondrules must have been 1 − 10 m−3 (Cuzzi & Alexander 2006), a number consistent

with the frequency of compound chondrules, chondrules that collided and stuck while partially

molten (Gooding & Keil 1981).

Finally, the mechanism that melted chondrules must have acted multiple times in the same

vicinity, because some chondrules contain relicts of previous generations of chondrules (Jones et

al. 2000). Additionally, the variations in Al-Mg and Pb-Pb systematics in chondrules suggest the

chondrule formation mechanism spanned several Myr (Wadhwa & Russell 2000; Wadhwa et al.

2007; Hutcheon et al. 2009).

Identifying the mechanism that melted chondrules is key to probing the conditions and

processes at play in the solar nebula. Any model of chondrule formation must be tested against the

experimental and theoretical constraints. Few models have been developed to the point where they

can make such detailed predictions and fewer still have passed them. To date, the shock model of

chondrule formation is the most successful.

2. Formation of Chondrules in Solar Nebula Shocks

The nebula shock model, first proposed by Wood (1963), was successively developed by

Hood & Horanyi (1991, 1993), Connolly & Love (1998), Iida et al. (2001), DC02, Ciesla & Hood

(2002; hereafter CH02), and Miura & Nakamoto (2006). DC02 was the first shock model to include

a proper treatment of radiative transfer and a dust opacity that was distinct from chondrules, im-

portant effects. Additionally DC02 included the effects of hydrogen dissociation and recombination.

The treatment by CH02 was very similar, although it did not include dust (or hydrogen dissociation

and recombination effects). CH02 independently reached many of the same conclusions as DC02,

such as predicting chondrule cooling rates ∼ 10 − 100 K hr−1. Neither of these models included

line cooling, the cooling of the gas due to emission of infrared radiation by water molecules. Line
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cooling was included in the model of INSN, but only in the optically thin limit. In addition, they

did not include dust. INSN found typical cooling rates ∼ 104 K hr−1. If INSN were correct, it would

mean that the cooling rates of chondrules in solar nebula shocks are incompatible with experimental

constraints. The review by Desch et al. (2005) identified proper treatment of line cooling as the

major impediment to progress in shock models. In addition, Desch et al. (2005) pointed out the

that proper treatment of the opacity of solids and the correct determination of the input radiation

field were needed to overcome major shortcomings in existing shock models. A true test of the

nebula shock model must include these physical effects.

In this study, we have addressed all of the problems with previous shock models that were

identified in the review of Desch et al. (2005). We have determined the proper treatment for the

input radiation field (Chapter 2, §4). We have calculated the necessary boundary conditions in the

1-D approximation, and found that they are not appropriate for use under the conditions believed

to exist in the solar nebula. Yet we have found that because of the radiative diffusion timescale

over the scale of our computational domain, it is justifiable to set the post-shock temperature equal

to the ambient, pre-shock temperature. We have developed an accurate approximation to the

wavelength-dependent opacity of solids (Chapter 2, §5), and implemented this approximation in

our updated shock code. Additionally, we have utilized a temperature-dependent evaporation rate

to properly account for the evaporation of micron-sized dust (Chapter 2, §6). Most important, we

have determined the amount of molecular line emission from H2O (Chapter 4), and have included

a detailed treatment of its effects in our updated shock model (Chapter 5).

After the correction of the boundary condition for input radiation and the inclusion of

realistic dust opacities and evaporation, we found that slightly higher shock speeds than those of

DC02 (8 km s−1 instead of 7 km s−1) were necessary to completely melt chondrules. Our results

show that the evaporation of dust occurs not only at the shock front, but in the pre-shock region

as well. Naively, based on simple, incomplete, toy models, we believed that the inclusion of line

cooling would result in a major increase in the cooling rates following the shock (from 10 - 102
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K hr−1 to > 104 K hr−1), because of the the low opacity resulting from the evaporation of dust.

Surprisingly, our results have shown that molecular line cooling has very little effect on the gas,

and almost no effect on the thermal histories of chondrules. Although, line cooling should be

extremely effective immediately following the passage of the shock (due to the high temperature of

the gas and low column densities of H2O), this is the region where the gas is already cooling very

rapidly due to dissociation of hydrogen. Shortly thereafter, energy is added to the gas through

recombinations of hydrogen, moderating the cooling due to line emission. In effect, the presence of

hydrogen buffers the gas against line cooling. [NB: Buffering by hydrogen was originally considered

by Scott et al. (1996) as a mechanism limiting chondrule peak temperatures]. By the time hydrogen

recombinations are no longer of importance to the energetics, high column densities have reduced

the line cooling rates dramatically (see Morris et al. 2009). Because of the low rate of thermal

exchange between the gas and chondrules, this means that molecular line cooling has basically no

effect on the cooling rates of chondrules.

The results from our updated shock model presented in this study meet almost all the

observational constraints on chondrule formation as outlined in Tables 1 and 2. It is plausible

that shocks due to gravitational instabilities or X-ray flares occurred multiple times in the solar

nebula, as localized events. Chondrules melted by shocks would retain evidence of the magnetic

field of their environment as they cooled through their Curie temperatures. Compression of the

post-shock gas creates a high-pressure environment for chondrule formation. Shocks efficiently

melt the solids in their path, leading to high abundances of chondrules. Once cooled, chondrules

would mix with nearby local dust, prior to the incorporation into parent bodies. With respect to

the thermal histories of chondrules, our results show that chondrules reach peak temperatures ∼

2000 K, experience initial rapid cooling (several x 104 K hr−1), and cool through their crystallization

temperature ranges (∼ 1400 - 1800 K) at rates of 10 - 1000 K hr−1, consistent with experimental

constraints. The results in our canonical case, with a chondrule concentration of C = 10, do

not meet the constraint on the pre-shock heating time of chondrules necessary for the retention
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of volatiles and prevention of the fractionation of sulfur. However, our results with C = 30 and

C = 50 (Figures 65 and 66) (Table 20, Case 17) show that with higher chondrule concentrations,

the duration of pre-shock heating is reduced; with C = 100 the nebula shock model will more than

likely meet this observational constraint.

3. Chondrule Concentrations

Compound chondrules are believed to form when newly melted chondrules stick together

while still partially molten. Based on the frequency of compound chondrules (∼ 5%), chondrule

densities have been estimated at ∼ 1-10 m−3 (Gooding & Keil 1981; Ciesla et al. 2004a). Chon-

drule densities of ∼ 10 m−3 over regions of ∼ 103 km are needed in order to prevent the isotopic

fractionation of volatiles during melting (Cuzzi & Alexander 2006). For chondrules of radii 300µm,

at a chondrules-to-gas mass ratio of 5 x 10−3 (the solar dust-to-gas ratio), a density of only ∼

0.2 m−3 is achieved in the post-shock region in our model. Therefore, it appears that chondrules

probably formed in clumps, where the density of chondrules was orders of magnitude above the

solar dust-to-gas ratio. It has been suggested that chondrules could be concentrated into clumps

by turbulence, resulting in chondrule concentrations as high as C = 104, with the most likely value

C ∼ 102 (Cuzzi et al. 1993; Cuzzi et al. 2001; Hogan & Cuzzi 2001; Cuzzi et al. 2008). Alexander

et al. (2008) have argued for even higher chondrule concentrations (C ∼ 105), based on the discov-

ery of primary Na in olivine phenocrysts in chondrules. Maintaining a high partial pressure of Na

vapor in the gas, as the chondrules cooled, is the only way to stabilize the chondrule melt against

the loss of this volatile. Alexander et al. (2008) invoke high concentrations of chondrules to do

just that, even though they acknowledge that the chondrule densities necessary are unrealistically

high, based on our current understanding of the solar nebula. Regardless, clearly an increase in

the chondrule concentration used in our model, from C = 10− 30 to a higher value, is justified and

warranted.
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4. Weaknesses of the Model

We are imposing steady-state conditions in the frame of the shock, but we can’t impose

radiative equilibrium anywhere within the computational region because of the rapidity of the

changes in gas properties. This necessitates the use of a Λ-iteration approach in the calculation

of the radiation field, leading to very slow convergence (∼ 103 iterations), which is certainly not

ideal. A new approach is needed that includes time derivatives, probably requiring a radiative

hydrodynamics simulation. Additionally, (in part due to the use of a Λ-iteration approach) the

position of the dust evaporation front is numerically difficult to resolve. This is a well-known

problem (Chick & Cassen 1997), which in the case of chondrule formation in nebular shocks, affects

the pre-heating of chondrule precursors.

5. Future Work

In most models of chondrule formation, including the one presented in this thesis, the

assumption is made that chondrite parent bodies formed at 2-3 AU, the present location of the

asteroid belt. Our assumption that chondrules formed at 2-3 AU has influenced our choice of

ambient temperature, pre-shock densities, and shock speeds. However, chondritic parent bodies

that were incorporated into the terrestrial planets may have formed interior to the present-day

asteroid belt. We would like to expand our parameter space to include temperatures, pre-shock

gas densities, and shock speeds (consistent with gravitational instabilities or other models) that are

appropriate for locations interior to 2 AU. In doing so, we anticipate that our model can be better

utilized to predict the regions in the solar nebula where chondrule formation in nebular shocks is

possible.

We propose to investigate a different explanation for the high partial pressure of Na in

chondrule-forming regions. Desch (2009, personal communication) has suggested the following: We

envision a scenario as depicted in Figure 67, in which a shock overruns a clump of chondrules of
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limited spatial extent. Based on Cuzzi et al. (2008), we assume C ∼ 104 on scales ∼ 103 − 104 km,

and lower concentrations (C ∼ 10 − 100) on much larger scales, ∼ 104 − 105 km. According to the

calculations of DC02, the concentrations in the heart of the clump are sufficient (for a given shock

speed ≈ 7 − 8 km s−1) to completely evaporate all chondrules in the clump. Outside the heart

of the clump, chondrule concentrations are lower, and for the same shock speed, chondrules are

likely to melt normally without evaporating. After chondrules in each region are shocked, there

are several hours, during which the normally melted chondrules and the vapor within the clumps

can commingle. One possibility is that chondrule vapor can move outward. In the time it takes

chondrules to cool (a few hours), it is unlikely that diffusion can carry this vapor much farther than

a few km, but the elevated gas pressures (from chondrule vapor) could potentially drive an outward

expansion, carrying the vapor thousands of kilometers in a few hours. An alternative possibility

is that chondrules are focused into the clumps. In clumps like the one depicted in Figure 67,

chondrules are a significant fraction of the gas mass, increasing the overall density of material in

this region. The shock ends up propagating more slowly through the clump than the surrounding

gas, and the shock front is expected to assume the geometry depicted in Figure 67. The trajectories

of chondrules entering the shock are therefore refracted, and chondrules are focused into the clump,

after the clump has experienced its peak heating. Therefore, some fraction of chondrules should

experience otherwise normal thermal histories indicative of moderate chondrule concentrations, but

in the presence of very high pressures of chondrule vapor, that can only arise from regions of higher

chondrule concentration.

This scenario may resolve the quandary of Alexander et al. (2008). Because chondrules in

the clumps totally evaporate, the requisite Na vapor pressure can be met by evaporating a solids

density in the post-shock region of only 1 g m−3. This equates to about 0.1 g m−3 before the shock.

For 300µm-sized chondrules, this implies a chondrule density of ≈ 300 m−3 and C ∼ 104 in the

pre-shock gas. This is near the upper limit of chondrule concentrations thought attainable by

turbulent concentration, but still achievable, and is consistent with the scenario envisioned here.
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FIG. 67 — Possible solution to the dilemma posed by the discovery by Alexander et al. (2008) that
chondrule melts contained volatile Na. If a shock overtook a region of varying chondrule densities,
chondrules in the densest regions would be likely to fully evaporate, generating a cloud of Na vapor.
The shock front (red) is slowed as it passes through clumps, and bends. Chondrules not in the
densest parts of the clumps, as they are overrun by the shock, find their trajectories deflected
toward the clump (blue). Chondrules can start to melt normally but then find themselves in a
cloud of Na vapor characteristic of much denser regions, with Na partial pressures high enough to
stabilize the melt against Na loss. (Desch 2009, personal communication).

A more quantitative analysis to test this hypothesis requires a shock code that can handle motions

parallel to the shock front as well as radiative transfer in 2-D cylindrical geometry.

2-D radiative transfer must also be implemented in order to develop a quantitative model

for testing the idea that bow shocks driven by planetesimals on eccentric orbits are the mechanism

that melted chondrules. Current shock models assume planar shock fronts over large scales (> 105

km) and therefore invoke a 1-D approach. This is appropriate for shocks due to gravitational

instabilities, but not bow shocks, because bow shocks are only a few times the diameter of the

planetesimal in scale. No previous model of chondrule formation by bow shocks (Ciesla et al.
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2004b; Hood et al. 2009) has included the necessary 2-D radiative transfer. We propose to modify

Perseus, the existing 2-D hydrodynamics code developed by the Desch research group at Arizona

State University (Ouellette et al. 2007), to model chondrule formation in dense clumps and bow

shocks.

Our shock code can also be adapted to investigate the thermal processing of ices and icy

grains. This modified shock code might be combined with a protoplanetary disk code to produce

theoretical spectral to compare to observations of real disks. Recent observations of water emission

may be diagnostic of shocks (Carr & Najita 2007, Watson et al. 2007). If so, one of the major

objections to the shock model for chondrule formation, that there is no observational evidence for

shocks, would be rendered moot.
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The cooling per line is given by the expression

Λul

nH2O
=

nu

nH2O
Aul hνul, (A.1)

where (in LTE)

nu

nH2O
=

nl

nH2O

gu

gl
e−hν/kT , (A.2)

and the Einstein coefficient, Aul is given by

Aul =
2hν3

c2

Blugl

gu
. (A.3)

Substituting Eq. A.2 and Eq. A.3 into Eq. A.1 gives

Λul

nH2O
=

(

nl

nH2O
e−hν/kT

) (

2hν3

c2
Blu

)

hν

=
nl

nH2O

hν

4π
Blu

(

8πhν3

c2
e−hν/kT

)

=
nl

nH2O

hν

4π
Blu

(

1 − e−hν/kT
)

(

8πhν3

c2

e−hν/kT

1 − e−hν/kT

)

=
nl

nH2O

hνlu

4π
Blu

(

1 − e−hν/kT
)

(4πBν(T )) (A.4)

What we are given in the SCAN-H2O line list is linestrength. The 1.2 million lines of

spectral data included in the line list cover a range in wavelength from ∼ 6700 Å to 25 µm.

The data consist of the following: the wavenumber at line center, ν0, in cm−1, the temperature-

independent line strength, S0, in km/mol, and the excitation energy, Elow, in cm−1. From

the temperature-independent line strength, S0, given in the list, the temperature-dependent

linestrength, S(T ), is calculated as follows:
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S(T ) =
S0 exp

(

−Elow
hc
kT

) (

1 − exp
(

−ν0
hc
kT

))

Qvib(T )Qrot(T )
. (A.5)

The vibrational partition function, Qvib, is given for temperatures ranging from 200 K to

8000 K, in increments of 200 K, in the documentation for the SCAN-H2O line list. We have

interpolated values for Qvib using a quadratic spline. The rotational partition function, Qrot, is

calculated with a subroutine provided in the documentation for the SCAN-H2O line list. S(T ),

as shown by Eq. A.5, is in units of km/mol, and we wish to have S(T ) in cm2 · Hz, so we must

convert wavenumber to frequency which gives

S(T, ν) = 105 · S0
c

NA
, (A.6)

where NA is Avogadro’s number, and we have converted from km to cm. This results in a conversion

factor where

S(T, ν) = 4.98 x 10−9 S0 = S(T ). (A.7)

The left side of Eq. A.4 is just S(T ), as given by Eq. A.5, so in terms of linestrength

Λul

nH2O
= S(T )

(

8πhν3

c2

1

e−hν/kT − 1

)

= S(T )

(

8π
ν2

c2
kT

hν/kT

e−hν/kT − 1

)

= S(T )

(

8π

λ2
kT

hν/kT

ehν/kT − 1

)

. (A.8)
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According to Plume et al. (2004), the optical depth to line center is given by

τ0 = Nl
gu

gl

Aul√
π

λ3

8π

(

1 − e−hν/kT
)

∆v
, (A.9)

where ∆v = (2kT/m)1/2 and the Einstein coefficients, Aul and Blu are given as follows:

Aul =
2hν3

c2
Bul =

2hν3

c2

gl

gu
Blu, (A.10)

which gives the gas optical depth as

τ0 = Nl
1√
π

1

8π

c3

ν3

2hν3

c2

Blu

∆v

(

1 − e−hν/kT
)

. (A.11)

In local thermodynamic equilibrium (LTE),

Nl = NH2O
gl exp (−Elow/kT )

Qvib(T )Qrot(T )
, (A.12)

which gives

τ0 = NH2O
gl exp (−Elow/kT )

Qvib(T )Qrot(T )

1

4π

hc√
π

Blu

(

1 − e−hν/kT
)

∆v
. (A.13)

Integrating over all frequencies, and normalizing to ∆ν0 = ∆v/c ν0 gives the temperature-

dependent line strength

Sul = S(T ) =
nl

nH2O

hν

4π
Blu

(

1 − e−hν/kT
)

, (A.14)

where the units are cm2 Hz molecule−1, resulting in the gas optical depth to line center

τ0 = NH2O
Sul√

π (∆v/c) ν0

. (A.15)
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We want the frequency-integrated optical depth, however, which is given by

τ0 = NH2O
Sul

(∆v/c) ν0
. (A.16)



APPENDIX B

DISSOCIATION AND RECOMBINATION



166

The following is taken from DC02:

In the gas phase, H atoms can combine to form H2 molecules. Because H2 is a nonpolar

molecule, it cannot radiate away the excess chemical energy of formation by allowed transitions,

and H2 formation must proceed by three-body reactions, with either H atoms or H2 molecules as

the catalysts. Once formed, H2 molecules are dissociated by collisions with H atoms or other H2

molecules. The net rate at which H atoms recombine in the gas phase is (Cherchneff et al. 1992):

R = +n2
H (a1nH2

+ a2nH) − nH2
(a3nH2

+ a4nH) , (B.1)

a1 = 8.72 × 10−33

(

Tg

300 K

)−0.6

cm6 s−1, (B.2)

a2 = 1.83 × 10−31

(

Tg

300 K

)−1

cm6 s−1, (B.3)

a3 = 1.50 × 10−9 exp

(

−46350 K

Tg

)

cm3 s−1, (B.4)

a4 = 3.75 × 10−8

(

Tg

300 K

)−0.5

exp

(

−53280 K

Tg

)

cm3 s−1. (B.5)


