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ABSTRACT

Reionization is the phase transition of intergalactic atoms from being neutral to

becoming fully ionized. This process began∼ 400Myr after the Big Bang, when the first

stars and black holes began emitting ionizing radiation from stellar photospheres and

accretion disks. Reionization completed when all of the neutral matter between galaxies

became ionized ∼ 1Gyr after the Big Bang, and the Universe became transparent as

it is today.

Characteristics of the galaxies that drove reionization are mostly unknown. The

physical mechanisms that create ionizing radiation inside these galaxies, and the

paths for this light to escape are even more unclear. To date, only a small fraction of

the numerous searches for this escaping light have been able to detect a faint signal

from distant galaxies, and no consensus on how Reionization was completed has been

established.

In this dissertation, I discuss the evolution of the atomic matter between galaxies

from its initially ionized state, to its current re-ionized state, potential sources of

re-ionizing energy, and the theoretical and observational status of the characteristics of

these sources. I also present new constraints on what fraction of the ionizing radiation

escapes from galaxies using Hubble Space Telescope UV imaging, theoretical models

of the stellar and accretion disk radiation, and models of the absorption of ionizing

radiation by the intergalactic medium.
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Chapter 1

INTRODUCTION

1.1 The First Epoch of Ionization

The atomic matter of the Universe that comprises all galaxies, the stars and planets

within them, and all matter between galaxies was initially in an ionized, or plasma

state. This was a period that began in the first few seconds after the Big Bang, the

time when the first atomic nuclei in the Universe formed. This period is known as

Big Bang Nucleosynthesis (BBN), and marks the epoch when the Universe was filled

with an expanding field of leptons, photons, protons, and neutrons. The universe was

also hot and dense, and in thermal equilibrium at early time, which allowed for very

high collision rates between these particles.

Reactions from the weak-interactions of neutrons, protons, electrons, positrons,

electron neutrinos and anti-electron neutrinos evolved the ratio of neutrons to protons

(n/p) over a time-scale of ∼200 s, which freezes at n/p∼ 1/6 (Mukhanov 2004). As

the Universe expands and cools, neutrons become free to decay into protons, electrons,

and an anti-electron neutrino, lowering n/p∼ 1/7. At this point, nuclear reactions

mark the beginning of BBN, and the protons and neutrons rapidly combine to form

deuteron, triton, helion, and α-particles. The first deuteron particles form only when

the Universe cools to a temperature below their binding energy of ∼ 2.2MeV, otherwise

all particles are destroyed by photo-dissociation of the intense energy field of photons

pervading the Universe. A much smaller amount of 7Li, 7Be, and 6Li nuclei are

produced within a time-span of ∼1000 s, bringing BBN to a close.
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The relative abundances of nuclei to hydrogen set by BBN are ∼ 0.245 for alpha-

particles, ∼ 10−5 for both deuteron and helion, ∼ 10−10 for 7Li and 7Be nuclei, and

trace amounts of triton and 6Li. The temperature of the Universe after BBN is such

that these particles exist in a plasma state with surrounding leptons, and pervading

photons are thermalizing the plasma through collisions with these particles. The

entirety of the plasma throughout the Universe is expanding and cooling, while early

over-density fluctuation in the energy density of the Universe collapse from gravity.

The collapse is followed by subsequent expansion again from internal pressure of the

plasma over-densities, and these density fluctuations oscillate in this state until the

end of this era at ∼ 380,000 yr after the Big Bang.

1.2 Recombination and the Cosmic Dark Ages

Once the Universe expanded and cooled to a temperature below the ionization

energy of hydrogen (i.e., kBT < 13.6 eV), free electrons and protons combined to form

neutral hydrogen atoms (Peebles 1968; Zel’dovich, Kurt, and Syunyaev 1969). Neutral

helium was able to form earlier on when the Universe was hotter, due to helium’s

higher ionization energy of 54.4 eV. Electrons fall into lower energy atomic orbitals

successively, emitting UV photons equal to the energy gap between these orbitals in

the process. The Universe was still very opaque to the unbounded electrons that have

yet to combine with free protons and atomic nuclei, and pervading photons continue

to scatter continuously off of these electrons until the average temperature of the

Universe fell to T ∼ 3000K. This phase transition of the matter in the Universe from

ionized to neutral is known as the Recombination Era.

Once photons were no longer trapped by free-electrons, they became free to radiate

2



out into the Universe. These photons are observable today as the Cosmic Microwave

Background (CMB), and are a relic of the light produced by the thermalization of

energy from the Big Bang. The CMB began initially as optical red light following

a blackbody spectrum, and was redshifted by the expanding universe by a factor of

z∼ 1089 (e.g., Bennett et al. 2003) into the microwave region as observed today. Here,

the redshift parameter z is defined as

z =
λobs − λemit

λemit

(1.1)

where λemit is the wavelength of the light at the time of emission, and λobs is the

wavelength of the light at the time of observation. A vast amount of information is

imprinted on the spectrum and spatial anisotropies of the CMB, including the optical

depth to the free-electrons, both before recombination and during the reionization of

the Universe. Reionization introduces secondary anisotropies on the polarization map

of the CMB, and is discussed more in §1.4.

The Universe at this point is in a state characterized by permeating hot, neutral,

gaseous atoms, and remains mostly neutral for ∼ 1Gyr. This gas cools as the Universe

continues its expansion from T ∼ 3000K to ∼ 60K. The era when the Universe is filled

with this cold, neutral gas is known as the Cosmic Dark Ages (Miralda-Escudé 2003).

Relict CMB photons, redshifted to the infrared, are free to propagate unimpeded

for long distances during this period, with no new light emitting sources producing

photons. Neutral hydrogen atoms occasionally decay into a lower energy state through

a spin-flip transition of its electron, releasing a photon with wavelength λ' 21 cm

(Shapiro et al. 2006).

Since the Universe was expanding, not all electrons were able to combine with

nuclei in time, and the recombination era grew less efficient at neutralizing atoms.

This left a small amount of ions and free-electrons in the pervading medium. Simple
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molecules were able to form through radiative, chemical processes in the cold, neutral

matter. These reactions also cause the emission of photons in the infrared to radio,

and some optical red light can even be present (Shchekinov and Entel 1984; Loeb and

Barkana 2001; Mizusawa, Omukai, and Nishi 2005; Coppola et al. 2012). The most

important molecule to form is molecular hydrogen, H2, since the gravitational collapse

of giant clouds of H2 led to the birth of the first stars in the Universe. The Cosmic

Dark Ages were brought to a close when these first massive structures formed, emitting

optical and UV light into the Universe once again for the first time in ∼ 1Gyr.

1.3 Hierarchical Structure Formation and the First Sources of Light

Density fluctuations in the cold, neutral gas formed early on, when the Universe was

in its oscillating plasma state before recombination. When the universe expanded and

cooled enough, these fluctuations in density were frozen in place, and the oscillations

from thermal expansion and gravitational collapse ceased. The size of these fluctuations

are observed in the CMB map (e.g., Planck Collaboration 2018), and are on scales of

galaxy clusters. Dark matter halos, as observed surrounding nearly all galaxies via

gravitational effects on stellar structures, become important early on in the formation

of galactic-sized structures. Numerical simulations show that the scale distribution of

dark matter halos increase in frequency for smaller structures (e.g., Diemand, Moore,

and Stadel 2005), and small halos eventually merge hierarchically to form larger

structures. The gas in the universe does not initially trace the dark matter, though

eventually falls into the potential well of these halos.

Internal gas pressure, as well as residual velocities from the recombination era

initially supports the gas from collapse (Barkana and Loeb 2001; Tseliakhovich,
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Barkana, and Hirata 2011). Simulations show that these effects limit the first structures

of gas embedded in dark matter halos to be on the order of & 105−6 M�. As the gas

accretes onto these halos, it becomes heated by adiabatic compression and shocks up to

the temperature of thermal and kinetic equilibrium. Here, the cold, denser cores in the

halos, and outer layers accelerate and fall onto the outer layers of the cores, creating

a shock through the collision at the interface of these layers (Vázquez-Semadeni

et al. 2006). The shock increases the temperature at the shock front, which expands

from internal pressure then cools isobarically (Shapiro and Kang 1987; Clarke and

Bromm 2003). Once the shock forms, turbulence and thermal instabilities cause the

matter to quickly fragment into smaller clumps (Padoan et al. 2001; Vázquez-Semadeni

et al. 2006, e.g.,). These clumps fragment into masses at least as large as the local

Jeans mass (Jeans 1902) of the region, with some turbulence transferred into the

formed clump itself (e.g., McKee and Ostriker 2007; Hennebelle and Falgarone 2012).

The main factors that define the masses and sizes of these clumps are the collapse

from self-gravity and internal support opposing collapse from internal pressure from

heat, turbulence, and magnetic fields (e.g., Basu et al. 2009; Chen and Ostriker 2014).

These magnetic fields typically form from either residual ions left from over from

recombination, or from collisionally ionization from shocks (e.g., Glover et al. 2014).

In the presence of low magnetic field strengths, or no fields, filamentary structures are

seen to form from fragmentation of collapsed sheets of gas (e.g., Carroll-Nellenback,

Frank, and Heitsch 2014), whereas the presence of magnetic fields shows a more

spherical morphology (e.g., Banerjee et al. 2009; Gómez and Vázquez-Semadeni 2014).

As the atomic gas cools and collapses, a gradual phase transition occurs, and the

gas becomes molecular (Heitsch and Hartmann 2008; Heiner, Vázquez-Semadeni,

and Ballesteros-Paredes 2015). The subsequent cooling of these clouds via molecular
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ro-vibrational decay collapses these clouds further, producing molecular clouds with

typical mass on the order of ∼ 106 M� (Couchman and Rees 1986; Tegmark et al. 1997;

Johnson and Bromm 2006). These structures are seen in the knots of filaments in

the large-scale structure of the Universe (Yoshida, Hosokawa, and Omukai 2012),

otherwise known as the Cosmic Web (Bond, Kofman, and Pogosyan 1996). These

knots are the nurseries of the first protogalaxies in the Universe.

The gas in protogalaxies undergoes further cooling via H2 radiative emission, and

the internal thermal pressure decreases, allowing for gas to flow towards the center

and compress the core. The cooling also decreases the local Jeans mass, allowing more

fragmentation of smaller clumps (e.g., Bromm, Coppi, and Larson 2002). These smaller

clumps then begin to collapse more rapidly, once they exceed the local Jeans mass

of ∼ 103 M� (Abel, Bryan, and Norman 2002). Eventually, H2 cooling mechanisms

(e.g., Omukai and Nishi 1998; Ripamonti and Abel 2004) become ineffective, and the

collapse of the molecular cloud can heat its core adiabatically through collisions of

molecules to a point of dissociation of the H2 molecule. These temperatures restrict

further collapse, leading to a dense core of mass ∼ 0.01M� with size ∼ 0.1AU (Yoshida

2008).

These cores are surrounded by large envelopes of dense gas, which eventually

collapse onto it. Through the accretion onto this core, the first star in the Universe

is born (Abel, Bryan, and Norman 2002; Bromm, Coppi, and Larson 2002). Binary

stellar systems also arise in this same scenario (Turk, Abel, and O’Shea 2009), though

more fragmentation is believed to not occur in current models. The masses of these

first stars can grow to masses typically between 20–500M� (O’Shea and Norman

2007), and as the first stars begin to contract further onto their main sequence, the

bright ultraviolet (UV) emitted by stars limits their size by ionizing the surrounding
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medium, preventing further collapse (McKee and Tan 2008; Hosokawa et al. 2011).

This gives the first stars, otherwise known as Population III stars, a typical mass of

∼ 20M�.

Population III stars in the mass range of 130.M. 250M� are known to end their

lives via pair-instability supernovae (SNe; Fraley 1968), which leads to the complete

destruction of the star, leaving no remnant behind. Stars with mass 15.M. 45M�

die via core-collapse SNe (Zhang, Woosley, and Heger 2008) and 45.M. 100 and

M& 260M� can collapse directly into black holes (BHs; Whalen and Fryer 2012).

Some models also propose that the collapse of primordial gas can directly form BHs

as well (e.g., Haehnelt and Rees 1993). These early black holes can accrete gas from

their surrounding medium, and the accreting material will be heated from frictional

collisions in the disk. The accreting disk begins shining light in the optical–X-ray

spectrum from blackbody radiation of the disk itself, and from Compton up-scattering

of lower-energy photons from high-energy electrons on the corona of the disk (e.g.,

Kuhlen and Madau 2005; Tanaka, Perna, and Haiman 2012). Both of these sources of

light are predicted to emit abundant amounts of ionizing photons, which will contribute

to next phase transition of the atomic matter of the Universe, the reionization back

into plasma.

1.4 The Reionization of the Intergalactic Medium

At the end of the cosmic dark ages, radiation emitted by the first luminous

objects in the universe began to reionize the matter between galaxies, known as the

intergalactic medium (IGM). Observations of the CMB constrain the median time of the

beginning of this era to ' 200–500Myr after the Big Bang (Hinshaw et al. 2013; Planck
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Collaboration 2018). These constraints are obtained by determining the scattering

optical depth of CMB photons by free electrons in the Universe. These scattering

events linearly polarize CMB photons on spatially large scales (Rees 1968), which

can be observed in all-sky polarization maps of the CMB (e.g., Planck Collaboration

2016) and can be used to determine the redshift when free electrons pervaded the

IGM, which was in the range z simeq 10–20.

The far-ultraviolet (FUV) and X-ray ionizing radiation emitted by the first massive

stars in the first star-forming galaxies (SFGs), or accretion disks around supermassive

black holes in early Active Galactic Nuclei (AGN), are the main candidates to have

initiated the epoch of cosmic reionization (e.g., P. Madau et al. 2004). Of particular

interest is the UV ionizing continuum produced by these sources with wavelength

λ≤ 912Å, also known as Lyman Continuum (LyC). This radiation has the energy

required to free a bound electron in a hydrogen atom, equal to 13.6 eV. Photons with

wavelengths shorter that 912Å (known as the Lyman limit) impart additional energy

onto electron’s kinetic energy. Hydrogen is highly opaque to neutral hydrogen, with a

photoionization cross section described by

σH(λ) ' σH,0

(
λ

912Å

)3

(1.2)

where σH,0 =6.3× 10−18 cm2 and λ≤ 912Å (Paresce, McKee, and Bowyer 1980). In

contrast, galactic dust is much less opaque, though with a non-negligible cross section

σdust' 1–5× 10−22 cm2 (Gnedin, Kravtsov, and Chen 2008). Helium requires photons

with wavelength λ< 505Å to remove only one of its electron, and approximately one

H2 molecule exists for every ∼ 106 neutral hydrogen atom (Vonlanthen et al. 2009).

Thus, hydrogen has little competition with other absorbers of the LyC radiation field,

and LyC is readily absorbed by neutral hydrogen gas.

Additional sources of LyC radiation and high energy, ionizing particles within
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galaxies may have contributed to the reionization of the IGM as well. These sources

include early high mass X-ray binaries (Mirabel et al. 2011; Bluem et al. 2019), galactic

outflows/inflows and jets from AGN (e.g., Reynolds, Heinz, and Begelman 2002;

Roychowdhury et al. 2004; Wilcots, Hess, and Grcevich 2008) and SNe superwinds

(e.g., Strickland and Stevens 2000; Strickland and Heckman 2009; Bravo-Guerrero

and Stevens 2017), shock-heating via accretion onto dark matter halos (Sternberg,

McKee, and Wolfire 2002; Putman, Peek, and Joung 2012), massive pre-galactic

Pop III stars (Kulkarni et al. 2014), X-rays produced by SNe (Oh 1999; McQuinn

2012), and young globular clusters (Ricotti 2002). This LyC radiation would have

formed bubbles of ionized hydrogen around these UV bright galaxies, which then

expanded and merged until the IGM became completely ionized (e.g., Gnedin 2000;

Miralda-Escudé, Haehnelt, and Rees 2000; Loeb and Barkana 2001; Fan et al. 2002).

Observations of AGN spectra constrain the end of this phase transition of the

neutral IGM to ∼ 1Gyr after the Big Bang (z' 6; Mesinger and Haiman 2004; Fan,

Carilli, and Keating 2006; Fan et al. 2006; Schroeder, Mesinger, and Haiman 2012;

McGreer, Mesinger, and D’Odorico 2014; Becker et al. 2015). The signature of the

completion of reionization in these spectra is known as the Gunn-Peterson effect (Gunn

and Peterson 1965), which indicates the presence of neutral hydrogen absorption along

the line-of-sight of the observation. Here, the UV emission from AGN at λ< 1216Å

can bring a neutral hydrogen atom from it’s ground state to it’s first excited state,

where the electron in the atom is promoted to it’s second atomic orbit. This transition

requires a photon of wavelength λ=1216Å, also known as Lyman-α. As the AGN

light with wavelength λemit< 1216Å is redshifted from the expansion of the universe,

it becomes absorbable by neutral hydrogen through the Lyman-α transition at varying

distances from the AGN. This effect is known as the Lyman-alpha forest (Lynds 1971),
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where intervening neutral hydrogen clumps at various distances absorb Lyman-α

photons at their respective redshift. A trough in the AGN spectra appears when the

IGM is still mostly neutral, and can be used to observationally constrain the redshift

when reionization was completed. Observations of Lyman-alpha emitting galaxies

also show (volume averaged) neutral fractions in excess of >0.3 at z∼7 (e.g., Dijkstra,

Mesinger, and Wyithe 2011; Jensen et al. 2012; Mesinger et al. 2014; Choudhury

et al. 2015).

The main sources of reionization are still somewhat unclear, though current

observational constraints on which sources may have ionized the IGM in the local and

distant Universe are ongoing. These observation will be discussed in the next section,

and the work presented here will also put constraints on the importance of stellar and

AGN sources of ionizing radiation.
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Chapter 2

OBSERVATIONAL CONSTRAINTS ON THE SOURCES OF REIONIZATION

2.1 Introduction

The most likely sources of ionizing photons responsible for the reionization of

IGM are believed to be massive stars in early galaxies and super-massive black holes

(SMBH) in the centers of those galaxies. Actively accreting SMBHs, or AGN, convert a

portion of their gravitational potential energy into thermal energy of the accreting disk

of infalling matter, which causes the accretion disk to emit black-body radiation that

peaks in the UV (Shields 1978; Malkan and Sargent 1982). The interaction between

this radiation and the matter of the accretion disk, the dust torus surrounding the

SMBH, the gas and dust clouds surrounding the AGN, and viewing angle determine

the observed spectrum.

Several physical mechanisms are understood to create the various features observed

in AGN spectra (Koratkar and Blaes 1999). The non-ionizing and ionizing UV is

thought to be created primarily by thermal emission from the accretion disk, although

observations of AGN spectra exhibit a more complex, double power-law continuum

with a break near λrest∼ 1000Å (Zheng et al. 1997; Telfer et al. 2002; Scott et al. 2004;

Shull, Stevans, and Danforth 2012; Lusso et al. 2015). This feature is believed to be

the low energy wing of Comptonized photons produced by cooling electrons in the

warm, optically thick, magnetized plasma of accretion disk coronae. The physical

origin of this warm, optically thick component is not well determined (Walton et

al. 2013; Różańska et al. 2015; P. O. Petrucci et al. 2018), though it is proposed to be
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Figure 1. Comparison of SEDs for AGN and OB Giant Stars

The stacked spectra of 182 Quasi-Stellar Object (QSOs) at z > 0.3 (〈z〉=1.42)
observed with the Hubble Space Telescope (HST Telfer et al. 2002) in purple, along
with the OB Supergiant model of Smith, Norris, and Crowther (2002) with
Teff =2.5×104 K and Z =0.05Z� in blue. The Lyman-limit, where the hydrogen
ionization spectrum begins, is indicated by a vertical dashed black line. The
hydrogen-ionizing regions of these spectra are shaded by their respective colors. Both
curves are normalized by the integral of their 1400<λrest< 1600Åflux. The
production of ionizing radiation integrated from 300≤λrest≤ 912Åfrom AGN is seen
to surpass OB giant stars on this relative scale by a factor of ' 100 times.

responsible for the observed soft X-ray excess seen in some AGN spectra (Kaufman,

Blaes, and Hirose 2017; P. O. Petrucci et al. 2018).

Ionizing photons from stars are produced by their photospheres, and massive O

and B type stars are likely the most important contributors to the stellar ionizing

radiation emitted by galaxies (Barkana and Loeb 2001; Stark 2016). A comparison of

the UV spectra of AGN and O/B Giant stars can be seen in Fig. 1. Because O and B

type stars typically form from multiple open star clusters known as OB associations,
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in galactic nuclei, and/or starburst regions, the surrounding gas is transformed into

giant H 2 regions several pc in diameter (e.g., Tremblin et al. 2014). The stellar LyC

flux that exceeds the recombination rate of hydrogen can escape into the IGM as

long as it is not absorbed by intervening H 1 gas in the interstellar medium (ISM) or

circum-galactic medium.

Determining which of these two sources of LyC plays the dominant role in the

ionizing the IGM during the epoch of reionization is one of the main focuses of research

in this area. A key quantity that can help address this questions is determining the

efficiency of galaxies to emit their produced LyC into the IGM, otherwise known as

the LyC escape fraction. Determining this value for a large number of galaxies can

give clues to which source is statistically the most effective ionizer.

2.2 The Lyman Continuum Escape Fraction

Because neutral hydrogen and dust are opaque to FUV radiation, LyC photons

can only escape from galaxies in regions where the surrounding neutral hydrogen

column density, NH, and dust extinction are low. The fraction of ionizing radiation

produced by stars and AGN that escapes into the IGM is known as the LyC escape

fraction (fesc). Here, fesc is simply the ratio of the intrinsically produced LyC flux to

the LyC flux that makes it out of the galaxy before encountering the IGM, or

fesc =
Fν,obs(λrest≤912Å)

Fν,int(λemit≤912Å)
(2.1)

where Fν,obs(λrest≤912Å) is the observed flux density of LyC emitted by the galaxy,

corrected for redshifting to the rest-frame emission of the galaxy, and Fν,int(λemit ≤

912Å) is the flux density of LyC produced inside of the galaxy by stars, accretion

disks around BHs, or other exotic mechanisms (see §1.4 for examples).
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In order for a fraction of the produced LyC photons to escape into the IGM, the

interstellar medium (ISM) in the galaxy and its surrounding circumgalactic medium

must be cleared. This can be accomplished by supernova winds (Fujita et al. 2003),

which can also suppress the formation of low mass stars and increase the formation of

LyC producing high mass stars, and can be further enhanced by AGN outflows (Silk

and Norman 2009). High star-formation rates can also increase the porosity of the ISM

(Clarke and Oey 2002). The semi-analytical models of Dove, Shull, and Ferrara 2000

showed that LyC emitted by OB associations can become trapped in super-bubbles

until they expand outside of the disk. Once the surrounding medium is either cleared

or fully ionized, it becomes transparent to LyC radiation, which can then escape

through these regions of the galaxy, or be Thomson scattered by free electrons and/or

dust. The escaping LyC can then be observed along some lines-of-sight, which can be

distributed randomly in a galaxy, and is in some cases offset from the galactic center

(e.g., I. Iwata et al. 2009; Vanzella, Giavalisco, et al. 2010; Vanzella et al. 2012).

The escape fraction, fesc, as defined above is also sometimes referred to as the

absolute Lyman continuum escape fractions (f abs
esc ). This distinction specifies that this

escape fraction value is not relative to any other quantity, but incorporates only the

LyC flux of the galaxy itself. In contrast, the relative LyC escape fraction is defined

as ratio of the escaping LyC to the observed LyC, relative to the escaping non-ionizing

UV-continuum (UVC; ∼1400Å.λrest . 1800Å), or

fesc,rel =
(f1500/f LyC)int

(f1500/f LyC)obs

eτIGM(z) (2.2)

where f1500 is the rest-frame 1500Å flux, f LyC is the LyC flux, and τIGM(z) is the

optical depth of the IGM at redshift z (Steidel, Pettini, and Adelberger 2001; Inoue

et al. 2005; Siana et al. 2007; Siana et al. 2010). This parameter is related to fesc by

fesc = fesc,rel10−0.4A1500 , where A1500 is the galactic extinction at 1500Å in magnitude
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units. Literature sources do not consistently reference only one escape fraction or

provide both quantities, though one can be converted to the other, as long as the

source provides the amount of dust extinction in the visual or V –band (AV ) in units of

magnitudes and the wavelength-dependent dust-attenuation curve of the galaxy. The

f abs
esc is useful for understanding the amount of intrinsically produced LyC that escapes

the galaxy, and f rel
esc can be used to convert to f abs

esc using fiducial values of the ratio of

the intrinsic 1500Å and LyC flux without the need of modeling the intrinsic spectral

energy distribution (SED) of the galaxy (e.g., Siana et al. 2007; Siana et al. 2010).

2.3 Review of Searches for Escaping LyC in the Literature

The literature often states that stellar LyC escaping from high-redshift, star-

forming, possibly low-mass galaxies are likely the dominant sources of LyC that

reionized the IGM at z. 6–7 (e.g., Bouwens et al. 2012; Wise et al. 2014; B. E.

Robertson et al. 2015; Duncan and Conselice 2015), and require fesc∼10–20% to

complete this phase transition (e.g., Steven L. Finkelstein et al. 2012; B. E. Robertson

et al. 2015; Bouwens et al. 2016). An AGN can produce more LyC than a SFG,

though they are not believed to be the dominant sources of LyC since much more

rare than galaxies at these redshifts (Willott et al. 2010; Glikman et al. 2011; Masters

et al. 2012). This conclusion is drawn from the decline in and their space density

and luminosity function at z& 2 (e.g., Silverman et al. 2008; Ebrero et al. 2009; Aird

et al. 2015; Kulkarni, Worseck, and Hennawi 2019). Therefore, SFGs are regarded as

the most likely candidates that started the reionization of the IGM at z& 6.

Since the opaque IGM at z& 6 prevents a direct study of LyC emission from

SFGs at this epoch, we must study lower redshift analogs in order to understand
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the sources of reionization of the IGM. Observations of the local Universe reveal

that H 2 regions in nearby galaxies release 40–75% of the LyC photons produced

by massive stars into the IGM (Ferguson et al. 1996; Leitherer et al. 1996; Oey and

Kennicutt 1997; Zurita et al. 2002). In the local group, Bland-Hawthorn and Maloney

(1999) and Putman et al. (2003) find LyC escape fractions of only 1–2%. Despite

many attempts, rest-frame FUV observations of higher redshift star-forming galaxies

(SFGs) at 0.5. z. 3 have so far not yielded significant detections of escaping LyC

flux (e.g., Ferguson 2001; Giallongo et al. 2002; Fernández-Soto, Lanzetta, and Chen

2003; Malkan, Webb, and Konopacky 2003; Inoue et al. 2005; Siana et al. 2007; Siana

et al. 2010; Cowie, Barger, and Trouille 2009; Bridge et al. 2010; Grazian et al. 2016;

Rutkowski et al. 2016; Sandberg et al. 2015; Guaita et al. 2016; Japelj et al. 2017).

Ground-based spectra (Steidel, Pettini, and Adelberger 2001; Shapley et al. 2006;

Cooke et al. 2014; de Barros et al. 2016; Steidel et al. 2018) and optical narrow-band

and broadband imaging of SFGs at 3. z. 4 (I. Iwata et al. 2009; Vanzella, Giavalisco,

et al. 2010; Boutsia et al. 2011; Nestor et al. 2011; Vanzella et al. 2012; Nestor

et al. 2013; Mostardi et al. 2013; Grazian et al. 2017; Smith et al. 2018; Ikuru Iwata

et al. 2019) have revealed evidence for escaping LyC photons along several sight-lines,

with fesc' 1–40% despite higher IGM opacities at these higher redshifts (Haardt

and Madau 1996, 2012). Furthermore, Vanzella et al. (2012) estimate fesc for one

LBG (GDSJ033216.64−274253.3 at z=3.795) to be >25%, although ground-based

measurements of escaping LyC may be contaminated with non-ionizing flux from

blended lower redshift foreground interlopers due to the lower resolution of ground-

based seeing (Vanzella, Siana, et al. 2010; Nestor et al. 2013; Mostardi et al. 2015;

Siana et al. 2015).

The dearth of high fesc values for more massive SFGs found throughout the
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literature, as well as the decline in the AGN luminosity function at 3. z. 6, have

led to conclusions that low mass, star-forming dwarf galaxies may be more likely

candidates for the agents of reionization (Steven L. Finkelstein et al. 2012; Stark 2016;

Weisz and Boylan-Kolchin 2017). Simulations show that fesc should increase with

decreasing halo mass (Yajima, Choi, and Nagamine 2011; Kimm and Cen 2014; Wise

et al. 2014), and recent works have found that low-mass, low-metallicity, compact

star-forming galaxies with extreme [O 3] emission and [O 3]/[O 2] line ratios exhibit

detectable LyC emission at low-redshift (0≤ z. 1; Y. I. Izotov et al. 2016; Y I Izotov

et al. 2017; Y I Izotov et al. 2018) and at z' 3.1 (Fletcher et al. 2019). Observations of

some local starburst galaxies have shown significant, yet varying fesc values (Leitherer

et al. 1995; Hurwitz, Jelinsky, and Dixon 1997; Tumlinson et al. 1999; Deharveng

et al. 2001; Heckman et al. 2001; Borthakur et al. 2014; Y. I. Izotov et al. 2016),

although Hanish et al. (2010) find that local starburst galaxies do not exhibit higher

escape fractions compared to ordinary local SFGs.

Tanvir et al. (2018) constrain the average fesc of low-mass SFGs at 2<z <5 to

〈fesc〉< 1.5% using 138 gamma-ray burst afterglows, and present evidence that their

fesc does not change at z > 5. They first determine the neutral hydrogen column-

density (NH) of these galaxies and infer an fesc from their total sample and find no

evolution of NH with redshift. Typical GRB hosts show higher NH column densities at

z > 2, similar to those of damped Ly − α systems (Jakobsson et al. 2006). Two of the

GRBs in Tanvir et al. 2018 do show sufficiently low NH to allow more LyC radiation to

escape, suggesting that stellar feedback can clear the ISM to allow higher fesc in rarer

cases. The fesc is likely anisotropic in a galaxy (Wise and Cen 2009; Kim et al. 2013;

Paardekooper, Khochfar, and Dalla Vecchia 2015), therefore some lines-of-sight may

have much higher fesc near regions associated with SNe winds (Fujita et al. 2003;
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Trebitsch et al. 2017; Herenz et al. 2017). Spectroscopy of gamma-ray burst afterglows

from 2<z < 8 have also been used to constrain fesc to <6% at these redshifts (Chen,

Prochaska, and Gnedin 2007; Fynbo et al. 2009; Wyithe et al. 2010). Since GRB host

galaxies are often dwarfs with high specific star-formation rates (Svensson et al. 2010;

Hunt et al. 2014; McGuire et al. 2016), and the bulk of low-redshift dwarfs exhibit very

low fesc (e.g., at z' 0.5, fesc< 3%; Rutkowski et al. 2016), hypotheses that propose

dwarf galaxies to be the main reionizers at z > 6 may be in conflict with observation

and additional sources of ionizing flux would be needed.

Grazian et al. (2018) discuss how several well-studied, nearby dwarf galaxies with

measured fesc and f rel
esc values have been detected in X-rays, potentially indicating an

AGN component. Kaaret et al. (2017) detect point-source X-ray flux with Chandra

from the z=0.048 SFG Tololo 1247–232 (f rel
esc =21.6%, 1.5%±0.5, measured by Lei-

therer et al. 2016 and Puschnig et al. 2017, respectively), and shows variability on the

order of years, suggesting the presence of a low-luminosity AGN (LX' 1041 erg s−1).

Prestwich et al. 2015 detect a bright point-source (LX' 1041 erg s−1) within Haro

11 (f rel
esc∼ 3%; Leitet et al. 2011) with a very hard spectrum (X-ray photon index

Γ=1.2±0.2). Borthakur et al. (2014) find LyC flux emitted by a z=0.235 SFG

(J0921+4509, fesc' 20%), which has been detected in hard X-rays with XMM-Newton

(LX' 1042 erg s−1; Jia et al. 2011), suggesting a possible AGN component as well.

The process of combining images or spectra that observe the LyC from different

galaxies can increase the total signal-to-noise ratio (SNR) of those observations, a

process known as stacking. This can enhance the faint LyC signal that may be present

in the data by summing these signals together, and reduce systematic uncertainties in

the observation from detector noise and/or background shot-noise. Stacks of ground-

based spectra have shown that AGN produce more LyC than star-forming Lyman
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Break Galaxies (LBG; Vanden Berk et al. 2001; Shapley et al. 2003), though LBGs

selected via drop-out techniques may have fainter LyC emission due to their selection

criteria compared to other UV bright SFGs (Vanzella et al. 2015). Rest-frame UV

spectra of AGN taken with HST and the Far-Ultraviolet Spectroscopic Explorer

(FUSE ; Moos et al. 2000) have shown significant detections of escaping LyC flux at

0.5. z. 2.5 (e.g., Telfer et al. 2002; Scott et al. 2004; Shull, Stevans, and Danforth

2012; Lusso et al. 2015), but only upper limits of fesc . 1–2% from galaxies at the same

redshifts (e.g., Bridge et al. 2010; Siana et al. 2010; Sandberg et al. 2015; Rutkowski

et al. 2016).

More recent studies on the sources of reionization have emphasized the role of AGN

(Giallongo et al. 2015; Madau and Haardt 2015; Vikram Khaire et al. 2016; Mitra,

Choudhury, and Ferrara 2017). Their findings suggest that AGN display significant

emission of ionizing flux, and stellar sources within SFG alone may not emit LyC

at a sufficient rate required to complete reionization. If SNe winds in SFGs with

no AGN component could clear enough channels in the ISM to allow more LyC to

be emitted into the IGM, then SFGs should have higher fesc values than observed

throughout the literature. Although AGN are believed to not be the main sources

that reionized the IGM at z& 3, they are believed to be the only sources responsible

for He 2 reionization at z' 3 (Haardt and Madau 2012; Worseck et al. 2014).

The following chapters will present a statistical method for constraining fesc for

both SFG and AGN, which will allow for direct comparison of the contribution of

ionizing photons to reionization, assuming the galaxies in this study are representative

of galaxies that existed during the epoch of reionization.
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Chapter 3

DETERMINING THE ESCAPE FRACTION FROM FAINT LYC SOURCES

3.1 Image Stacking Methodology

Since LyC escape fractions have been measured to be very low, and the detected

LyC emission to be very faint or not detected at all at z. 3 (e.g., Steidel, Pettini, and

Adelberger 2001; Shapley et al. 2006; I. Iwata et al. 2009; Siana et al. 2010; Mostardi

et al. 2013), a technique of stacking the observed LyC emission in images or spectra

from multiple galaxies can be used to increase the total SNR and sensitivity to the

faint, potentially low surface-brightness LyC flux from individuals. Stacking LyC

emission from galaxies at similar redshifts can also be used to quantify the average

LyC emission from galaxies at their average redshift. This method also reduces small

scale residual systematic errors in the stacked LyC images or spectra left from bias,

dark current, sky-subtraction, flat-fielding, and/or any gradients from variations in

exposure time or photon noise between exposures. These noise sources can remain in

the background of image mosaics or extracted 1-dimensional spectra, as effects from

random systematics are averaged out in a stack.

Stacks of images, for example, are created by summing the weighted pixel values

of LyC image cutouts, excised from larger mosaic images. The weighted sum of each

pixel is then normalized by the sum of their weights, i.e.,

〈fj〉=
∑
i

Wi,jfi,j/
∑
i

Wi,j (3.1)

where fi,j represents the flux in counts per second measured in pixel j for sub-image i
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and Wi,j is the weight of pixel j for sub-image i. 〈fj〉 represents the weighted average

value in pixel j.

Mosaic images are typically comprised of multiple smaller images of overlapping

regions of sky, with typical exposure times of several minutes, and are often dithered

around a central pointing. A similar stacking method to the above equation is used

to create an image mosaic of a large region of sky, typically a degree or so in spatial

extent. The weight map of the image can be constructed from calibration frames and

known detector systematics, which quantify the inverse variance, or Wj = 1
σ2
j
of each

pixel j. The dispersion σj is described by

σj =

√
fj(Dj +Bj)/g + σ2

read

fj t
(3.2)

where f is the inverse of the flat field calibration image, which is used to normalize

the varying inter-pixel sensitivities of raw exposures, and D represents the counts per

pixel caused by thermal, or dark, current noise, which is typically very low for cooled

detectors (∼ 8 electrons/hr/pixel e.g., Dressel 2019). B is the counts from background

light. g represents the gain value of the detector used for converting electrons collected

in each pixel to digital values of an image, performed by the analog to digital converter

(ADC) during exposure readout. σread is the inherent read noise in the image created

by the ADC, which is characterized by a Gaussian distribution and is on the order of

∼ 1–5 electrons per digital unit, and t is the exposure time in seconds (the appendix

of Casertano et al. 2000 gives the full derivation and explanation of this formula with

regard to HST images in more detail).

Stacked weight maps for each LyC stack can be created by summing the inverse

of the pixel values of the corresponding region in the weight maps where the galaxy
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sub-images were extracted, then inverting the sum. This is expressed as

Wj =1/
∑
i

1

Wi,j

(3.3)

where Wj is the weight for pixel j in sub-image i. These weight maps give the relative

weight of each pixel in the LyC stacks, and are useful for quantifying uncertainties

when measuring the faint LyC signal in the observations.

3.2 Generating Flux Distributions of the LyC Photometry

Because the LyC flux escaping from galaxies in stacks of images or spectra is

typically very faint, popular methods of performing photometry, such as those employed

by the widely used program SExtractor (Bertin and Arnouts 1996), may not provide

accurate estimates of the mean flux and its associated uncertainties. Therefore, a more

statistical approach based on the systematic noise of the detector and local shot-noise

in the sub-images should be used for more sensitive and realistic estimates. These

uncertainties can be approximated by Gaussian Random Variables (GRV), which

numerically model a Gaussian distribution by generating pseudo-random numbers n

with mean µ and dispersion σ, defined by

p(n) =
1√

2πσ2
e−

(n−µ)2

2σ2 (3.4)

As mentioned in §3.1, the noise from a detector is largely Gaussian, since the largest
contributor is read noise. Although shot-noise is Poissonian in nature, the Central
Limit Theorem states that for a large number of events, i.e., counts in an image, a
Poisson distribution is well approximated by a Gaussian. Such a method as outlined
below can be used to generate distributions of LyC flux in a stack, based on these
systematics.

The generation of the stacked flux distribution begins with creating a flux datacube

for each galaxy based on the LyC subimage excised from a mosaic image and its
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Figure 2. Flux Datacube Diagram Used for Photometry

A 3-dimensional graphical representation of the photometric method used to estimate
the flux inside a measurement aperture of a stacked image. The x and y-axes
correspond to an image-slice from the datacube, and the z-axis corresponds to a
possible range of values in the pixels of a 2-dimensional slice. The various values
along the z-axis can be positive or negative and have values with frequency
corresponding to a Gaussian probability distribution. These z-axis ranges account for
variance in the pixel values corresponding to detector noise and local shot noise in the
subimage. The average value along the z-axis corresponds to the actual subimage
excised from the mosaic image. These datacubes can then be stacked as described in
§3.1, and photometry can be analyzed within a central aperture for each slice in the
stacked datacube to produce the flux distribution of the stack.

corresponding weight map. Two dimensions of the datacube correspond to the pixel

values in the LyC subimage, and the third dimension was based on the dispersion of

the sky-background in the LyC subimage and the pixel’s RMS value, calculated from

the weight image. Thus, the voxels along each slice in the datacube had a mean value

equal to the original pixel value of the LyC subimage and a variance equal to the sum

of the total sky variance in the LyC subimage and the inverse of the corresponding

pixel value in the weight map; i.e., the flux value of the voxel at coordinate x, y, z in

the data cube is generated by

fx,y,z =fx,y+σz+RMSz (3.5)

where fx,y is the pixel value of the LyC subimage at location x, y in the pixel grid, σz is

23



the randomly selected sky-background value from a GRV defined by N (0, σ2
sky), where

σsky is the sky-background dispersion, and RMSz is the randomly selected detector

noise value from the GRV N (0, σ2
RMS), where σRMS =

√
1

Wx,y
and Wx,y is the pixel

value in the weight map. This method is also known as a Gaussian additive noise

model, and a diagram of this procedure is shown in Fig. 2

Since the LyC flux in the stack is expected to be faint, matched aperture photometry

is the most advantageous method to use when measuring the flux in each slice of the

datacube. This method uses a detection image to determine where flux should be

measured in the corresponding measurement image. In this case, an image with much

higher signal can be used for detection, such as a stacked image of the same galaxies

at brighter wavelengths, and the measurement can be made in the same region in

the LyC stack, corresponding to the bright emission found in the detection image.

Here, SExtractor can be used for determining the measurement aperture and for

counting the flux inside this aperture.

To generate a representative distribution of the LyC flux, each 2-dimensional slice

in the datacube along the z-dimension can be iterated through, and the flux can

be measured within the detection image aperture. Any number of samples in the

distribution can be generated, though ∼ 104 possible flux values give accurate results

and are less computationally expensive. The mean of the flux distribution and the

16th and 84th percentile can therefore represent the estimated flux value in the stack

and its -1σ and +1σ uncertainty bounds, respectively. The ratio of the mean and the

uncertainty can be used to calculate the SNR. When dealing with low SNR, the 84th

percentile from the distribution can be used to place a 1σ upper limit to the LyC flux.
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3.3 The Stacked LyC Escape Fraction

Estimating the escape fraction of LyC photons from galaxies is non-trivial, as it

requires modeling of their apparent intrinsic LyC flux, F int
ν,LyC, and the wavelength-

dependent transmission of LyC photons through the IGM, T LyC
IGM(z, ν), for a galaxy

at redshift z. Quantitatively, the average observed LyC flux (F obs
ν,LyC) from a stack of

galaxies, measured by a photon counting device such as a CCD, is given by:

〈F obs
ν,LyC〉 =

Ngal∑
i=1

∫
WiT

LyC
obs (ν)TIGM(zi, ν)fesc,iF

int
ν,i (ν)dν

ν∫
T LyC

obs (ν)dν
ν

/ Ngal∑
i=1

Wi (3.6)

where Ngal denotes the number of galaxies in the stack, F int
ν,i denotes the intrinsic (i.e.

produced) stellar and/or AGN SED from galaxy ‘i’, fesc,i denotes the fraction of the

observed LyC flux that escaped from the galaxy into the IGM, TIGM(zi, ν) denotes

the wavelength-dependent IGM transmission curve for galaxy ’i’ at redshift z, Wi is

the weight applied to galaxy i during image stacking, and the T LyC
obs (ν) term denotes

the combined transmission of the throughput from the Optical Telescope Assembly

(OTA), the filter throughput, and the Quantum Efficiency (QE) of the detector used

for the LyC observation.

fesc is generally expected to vary between individual objects. However, since the

observed LyC emission from all galaxies is stacked to boost the SNR, we can simplify

the analysis by assuming a constant fesc value for all galaxies within a given redshift

bin. This sample-averaged escape fraction is therefore denoted by 〈fesc〉. We can then

take 〈fesc〉 outside of the sum in Eq 3.6, and write:

〈fesc〉 =
〈F obs

ν,LyC〉
Ngal∑
i=1

∫
WiT

LyC
obs (ν)TIGM(zi,ν)F int

ν,i (ν) dν
ν∫

T LyC
obs (ν) dν

ν

/
Ngal∑
i=1

Wi

, (3.7)
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which can also be expressed as:

〈fesc〉 =
〈F obs

ν,LyC〉
Ngal∑
i=1

WiF int
ν,LyC,i

/
Ngal∑
i=1

Wi

=
〈F obs

ν,LyC〉
〈F int

ν,LyC〉
. (3.8)

A more thorough analysis should also take into account that the impact of the

IGM varies substantially around this mean for individual objects and sight-lines (see,

e.g., Inoue and Iwata 2008; Nestor et al. 2011). F int
ν,i (ν) can be determined for each

galaxy from a minimized χ2 fit to observed multi-wavelength images or spectral data.

The most popular synthetic stellar population model SEDs come from Bruzual and

Charlot 2003 (BC03). These allow four degrees of freedom during the χ2 minimization,

i.e., the age of the stars, the stellar mass, the amount of dust extinction in the AV

in units of magnitudes, and the exponentially decreasing star-formation rate (SFR)

timescale (τ).

A variety of dust-attenuation curves should be explored when attempting to

ascertain the best-fit. Popular models include the Milky Way (Savage and Mathis

1979, MW), the Large Magellanic Cloud (Bless and Savage 1972, LMC), (Prevot

et al. 1984, SMC), the average dust-attenuation from SFGs (Calzetti et al. 2000),

or the average dust-law of Kriek and Conroy (2013). For comparison, the ratio of

the extinction at 1500Å to the V -band extinction is A1500/AV =2.55, 2.66, 4.37, 2.79,

and 2.91, for the MW, LMC, SMC, Calzetti et al. 2000, and Kriek and Conroy 2013

extinction curves, respectively.

It is advantageous to fit multi-wavelength photometry to a grid of SEDs using

a wide range of each parameter, in order to obtain a best-fitting SED that is more

representative of the true SED. Thus, the best fit SEDs corresponds to the observed Fν

of the galaxy with dust-attenuation applied to the intrinsic SED, thereby determining

the best fit AV value. A standard initial mass function (IMF), such as the Salpeter
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(1955) IMF, can be adopted, and a variety of stellar metallicities, e.g., solar (Z=0.02),

subsolar (Z=0.004, 0.008), and supersolar (Z=0.05), should be explored.

Occasionally, a galaxy will be harboring an AGN, made most apparent from broad

emission lines seen in its UV–optical spectrum (Osmer and Hewett 1991), luminosity

and spectral shape in X-rays (Mushotzky, Done, and Pounds 1993), and/or from its

radio luminosity (Willott et al. 2002). In this case, an SED with two components

should be fit, i.e. one with a stellar and AGN component. AGN SEDs are very

complex, and therefore simplified models are available (e.g., Done et al. 2012; Kubota

and Done 2018). A typical approach to fitting the SED of a galaxy with an AGN can

also incorporate AGN spectral templates, e.g., fiducial Seyfert galaxy spectra, Type-1

and Type-2 AGN spectra, spectra of broad absorption lines quasars, and obscuring

dust tori applied to those templates (Silva, Maiolino, and Granato 2004; Polletta

et al. 2007).

In order to determine the fraction of escaping LyC fesc, which compares the

apparent flux of LyC photons produced by stars in the galaxy to the observed LyC

emission (i.e., F obs
ν,LyC/F

int
ν,LyC), the effects from dust must be removed from the SED

to obtain its intrinsic LyC flux, F int
ν,LyC,i(ν). Since the SED fit to photometry will

include attenuation by dust, the intrinsic stellar population photospheric flux can be

uncovered by inverting the reddening effect by dust using the AV value of the best-fit

SED. Thus, the escape fraction quantifies the amount of LyC that is not absorbed by

dust, the multiphase ISM, or other sources of LyC absorption in the galaxy.

The sample average escape fraction of LyC flux relative to the non-ionizing UVC

flux (Fν,UVC), denoted as f rel
esc, is defined the as:

〈f rel
esc〉=

Ngal∑
i=1

WiF
int
ν,UVC,i

/
F int
ν,LyC,i

F obs
ν,UVC,i

/
F obs
ν,LyC,i

/ Ngal∑
i=1

Wi'
〈F obs

ν,LyC〉
〈F obs

ν,UVC〉

Ngal∑
i=1

WiF
int
ν,UVC,i

F int
ν,LyC,i

/ Ngal∑
i=1

Wi (3.9)
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Using Eq. 3.8, we can further simplify this expression as:

〈f rel
esc〉'〈fesc〉

Ngal∑
i=1

WiF
int
ν,UVC,i

/
Ngal∑
i=1

Wi

Ngal∑
i=1

WiF obs
ν,UVC,i

/
Ngal∑
i=1

Wi

= 〈fesc〉
〈F int

ν,UVC

F obs
ν,UVC

〉
, (3.10)

where F obs
ν,UVC,i is the observed UVC flux from galaxy ’i’ as measured in the ACS/WFC

UVC filters and:

F int
ν,UVC,i =

∫
TUVC

obs (ν)F int
ν,i (ν)dν

ν∫
TUVC

obs (ν)dν
ν

(3.11)

for UVC observations with a total system throughput of TUVC
obs (ν). Thus, the

relative and absolute escape fractions differ by a factor of
〈
F int
ν,UVC
F obs
ν,UVC

〉
= 〈fUVC

esc 〉−1 for the

total sample, which deviates from unity depending on the AV and χ2 values of the

SED fits. The escape fraction of non-ionizing UVC photons, fUVC
esc,i , is related to the

observed reddening in galaxy ’i’ as fUVC
esc = 10−0.4AUVC. Note that this term can be

omitted from Eq. 3.9 when using the intrinsic (unreddened) model SEDs instead of

the observed ones. The ratio of intrinsic fluxes of the LyC and UVC emission from all

galaxies can be determined by:

〈FUVC

FLyC

〉
int

=

Ngal∑
i=1

F int
ν,UVC,i

Ngal∑
i=1

F int
ν,LyC,i

(3.12)

without applying the TIGM(zi, ν) term to F int
ν,LyC,i. The observed LyC and UVC flux

ratios can be obtained by performing photometry on stacked images of the LyC and

UVC emission as described in §3.2. Typical ratios of the intrinsic UVC flux to the

intrinsic stellar LyC flux of galaxies increases by a factor ∼ 3 (e.g., Siana et al. 2010).
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Figure 3. Example Models used for Calculating the Intrinsic LyC flux

An example stacked BC03 SED at 〈z〉=2.72 fit from the sample of galaxies without
AGN in §5.3 is shown in pink, along with the WFC3/UVIS F275W filter transmission
curve in violet, shifted to the rest-frame wavelength of the SED where LyC at
z=2.72 can be observed. The average and median IGM transmission curves at
z=2.72 from Inoue et al. (2014) are shown as blue dotted and dashed curves,
respectively. The inner 68% of 104 sight-lines are shown as a shaded light-blue region,
displaying the variation of transmission curves through the IGM of randomly selected
sight-lines. The inner product of these curves will result in the probability
distribution of the intrinsic LyC of the galaxies fit to the SED shown.

3.4 Estimating the LyC Escape Fraction: Monte Carlo Analysis

Since we cannot measure the amount of intrinsic LyC radiation produced by stars

and AGN within galaxies directly, we must use the best available synthetic stellar

population SED, dust attenuation, AGN SED, and IGM absorption models to estimate

the fraction of LyC that escapes from galaxies at high redshift in a statistical way.

An example of the models needed to estimate the average intrinsic LyC of galaxies is

shown in Fig. 3. The galaxies to be used for estimating fesc at some average redshift
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must have correctly determined redshifts, so that the LyC escape fraction does not

include any spurious, non-ionizing flux in its estimation. This also simplifies SED

fitting, since the wavelengths of the SEDs used during fitting can all be redshifted to

the known redshift of the galaxy.
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Figure 4. Filter-weighted Probability Curves of Transmission of LyC Through the
IGM

The filter-weighted IGM transmission values vs. the relative probability of
encountering the transmission values. The IGM transmission curves from Inoue
et al. (2014) for 104 lines of sight at z=2.36, 2.72, and 3.58 were weighted by the
wavelength-dependent transmission of the WFC3/UVIS F225W, F275W, and F336W
filter curves and are shown in violet, blue and green, respectively. The redshifts used
in these curves corresponds to the average redshifts of the sample from §5.3. The
highest redshift transmission curve shows the highest probability of no transmission
of LyC through the IGM. The lowest redshift curve shows that transmission through
the IGM with little to no attenuation is more likely than at higher redshift, and the
minimum transmission value is higher than at high redshift. The transmission of LyC
through the IGM at higher redshift will become even less likely, until no LyC is
expected to be observed at z∼ 6.
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The SED must also be attenuated by the absorption of UV photons from hydrogen

through the IGM to model the intrinsic LyC emission for calculation of fesc. Several

models simulate this absorption of UV light propagating through the IGM at various

redshifts (e.g., Madau 1995; Meiksin 2006; Tepper-Garcıa and Fritze 2008). In the

work presented here, we use the models of Inoue et al. (2014) which simulates the

transmission through the IGM of UV-light with wavelength 600Å<λrest< 1300Å.

This model allows for the selection of wavelength dependent transmission through the

IGM for a variety of sight-lines, and at various redshifts. The transmission through

these sight-line will depend on the distribution of intervening absorption clouds out

to the distance of the galaxy, and the wavelengths of light shorter than Lyman-α

will be prone to absorption after being redshifted. The probability distributions of

the filter-weighted transmission values at redshifts z=2.36, 2.72, and 3.58 are shown

in Fig. 4. The Inoue et al. (2014) model uses observed distribution statistics of the

Lyman-α forest, Lyman-limit systems (LLSs), and damped Lyman-alpha absorbers

(DLAs). LLSs and DLAs are both concentration of intervening hydrogen gas (with

smaller amounts of other elements, e.g., Levshakov, S. A. et al. 2002), but LLSs show

spectral breaks in the spectra of distant quasar corresponding to the Lyman-limit

(λrest< 912Å) at the redshift of the LLS (e.g., Prochaska 1999), and DLAs show an

absorption line in quasar spectra corresponding to Lyman-α absorption at the redshift

of the DLA (e.g., Rao and Turnshek 2000). DLAs are also ∼ 103 times denser than

LLSs (Péroux et al. 2003).

The distribution of these intergalactic absorbers allows for fesc to be computed

in a MC fashion. In this methodology, random sight-lines corresponding to unique

transmission curves (based on unique numbers of intervening absorption clouds) are

chosen, and the fesc is computed using Eq. 3.7. Uncertainties in the estimate of the
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SED fits, i.e. the χ2 value, should also be incorporated into the estimation of fesc

when calculating the intrinsic LyC flux. This is akin refitting the SEDs via statistical

subsampling (Politis, Romano, and Wolf 1999) within the observed continuum errors.

The model LyC flux distribution is the observed continuum data points the SEDs

were fit to within their error bars, and refitting the SED by least squares, i.e.,

F ′ν(ν) = αFν(ν), with α = Fr
ν ·Fm

ν /||Fm
ν ||2 (3.13)

and where Fr
ν,i and Fm

ν,i are the randomized observed flux measurements and continuum

band model fluxes, respectively. This error estimate is equivalent to applying a

convolution to the intrinsic SED LyC flux with a Gaussian kernel with dispersion

equal to the quadratic sum of the variances of the photometry used to fit the SED.

The main uncertainty in the SED fitting is not the χ2 values of fitted data, but

the uncertainty in the applied internal extinction values AV to each SED, which is

unknown, though can be estimated using a method of MC fitting SEDs with a range

of AV values.

Since the IGM transmission through various sight-lines is highly non-linear and

cannot be approximated by a Gaussian distribution, the standard deviation from the

mean of the the distribution may not be the best estimator of the uncertainty range

of fesc. For a Gaussian distribution, values between one standard deviation on either

side of the mean correspond to ∼ 68.27% of the area under the curve. Thus, a better

estimation of the uncertainty range of fesc will correspond to ∼ 68% of the data in the

distribution at equal probability about the mode.

The extent of the uncertainties in the AV correction go back to the original

formulation of the attenuation curves. For example, Calzetti et al. (2000) empirically

derived the dust attenuation curves of nearby starburst galaxies and found a total to

selective extinction value of RV =4.05±0.8. SEDs fit to multi-wavelength photometry
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are reddened with various dust screen AV values by F obs
ν (λ)=F int

ν (λ)10−0.4Aλ , where:

Aλ = k(λ)AV /RV . The attenuation for wavelengths shorter than 630Å and longer

than 2200Å can be extrapolated from the interpolated slope of the endpoints of

the attenuation curves, since this data is not used for any analyses. The applied

reddening does not include the uncertainty in the RV value. Estimating the reddening

error in the flux of our sample galaxies would require a more extensive SED fitting

analysis, which takes into account the equally probable AV values that fall within the

measurement errors of the observed continuum data points.

Uncertainties in the stacked fesc values will be dominated by the variation of the

IGM transmission of LyC at the various redshifts and sight-lines, and the dispersion

of the LyC flux if this has a low SNR. Thus, incorporating a full dust correction error

will only increase the uncertainty in fesc, which may not be an accurate source of

uncertainty due to the many unknowns involving dust correction.

In the next chapter, the methodology outlined above will be applied to a sample

of galaxies located in the first HST UV mosaic images constructed for extragalactic

study. These mosaics are ideal for studying ionizing sources and their fesc, and may be

the best UV mosaics that exist today for studying faint LyC emission from galaxies.

The findings presented in the next section were published in Smith et al. (2018).
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Chapter 4

THE LYC ESCAPE FRACTION FROM GALAXIES AND AGN IN THE EARLY

RELEASE SCIENCE FIELD

4.1 Introduction

The Early Release Science (ERS) field is a region of sky centered on the right

ascension (R.A.) 53.1◦ and declination (Dec.) -27.7◦, and has an area of ∼ 58 arcmin2.

This field was imaged with the Hubble Space Telescope (HST ) using its, at the time,

newly install Wide Field Camera 3 image detectors, the UV/visible (UVIS) and

infrared (IR) channels (Windhorst et al. 2011). These cameras replaced the Wide

Field Planetary Camera 2 detector in May 2009 during Shuttle Servicing Mission SM4.

The UVIS channel has a native pixel resolution of ∼ 0.′′039/pixel and the IR channel

has a native resolution of ∼ 0.′′13/pixel. The ERS UVIS and IR imaging program

was conducted to provide a small, but representative sampling of the capabilities of

WFC3 to examine the formation and evolution of galaxies in the epoch of z∼ 1–3

while galaxy assembly was at it’s peak (Madau and Dickinson 2014).

The ERS UV data was taken in September 2009, less than four months after SM4

installed WFC3 onto HST. This an important feature of this data, since cameras

exposed to the constant bombardment of high-energy particles in space degrade with

time. One of the most severely affected properties during this degradation of the

camera is the charge transfer efficiency (CTE). The CTE of a camera describes how

efficiently electrons (e−) are shifted between pixels during readout. A standard readout

of an exposure occurs serially along the rows of the 2-dimensional grid of pixels. A
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Figure 5. Color image of the Early Release Science Field
A color composite of HST images taken by the WFC3 and ACS cameras in the Early
Release Science Field. 10 mosaic images, corresponding to different wavelength
passband filters were used in its creation. The WFC3/IR F125W+F160W is
represented by red, ACS/WFC F606W+F775W+F850LP+WFC3/IR F098M is
green, and ACS/WFC F435W+WFC3/UVIS F225W+F275W+F336W is blue.
These 10 bands, represented in this color image are all used extensively throughout
the work presented here.

Credit: R. Windhorst, S. Cohen, M. Mechtley, and M. Rutkowski (Arizona State University, Tempe),
R. O’Connell (University of Virginia), P. McCarthy (Carnegie Observatories), N. Hathi (University
of California, Riverside), H. Yan (Ohio State University), and R. Ryan and A. Koekemoer (STScI)

single row gets shifted down row by row to a final row of unexposed pixels called the

serial register. Each pixel in the serial register is then readout one by one and the

electrons are counted by the ADC. A typical CTE of a well functioning camera is

∼99.99%.

High energy cosmic ray collisions with the detector, and encounters with relativistic

protons and electrons during HST ’s frequent passages through the South Atlantic

Anomaly damage the silicon of the CCD, and can cause areas where electrons become

trapped in the detector’s crystal lattice during readout. The WFC3/UVIS detectors

suffer from a CTE loss of ∼0.1 mag per year. After several years in orbit, faint objects
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(.300 e−) can lose up to 50% of their flux during readout (Noeske et al. 2012; Bourque

and Kozhurina-Platais 2013).

CTE degradation can also cause charge trails to be visible in the images, caused

by the delayed release of trapped electrons embedded in the pixels during readout.

Partial recovery and correction of CTE trails in post-processing of the images is only

possible for brighter sources (Anderson and Bedin 2010; Massey et al. 2014). Flux

from very faint objects cannot be corrected in this manner, as their low electron counts

are lost in the background noise of the detector.

Because the WFC3 UV data were taken less than four months after Shuttle

Servicing Mission SM4 that installed WFC3 onto HST, the WFC3/UVIS ERS data

does not suffer from significant CTE losses or artifacts. The pristine ERS images are

therefore an excellent dataset for searching for the faint signals of LyC emitted by

high redshift galaxies. The ERS data is described in more detail in the next section,

and the sample of galaxies within the ERS images, their properties, and their fesc

values are presented in subsequent sections.

4.2 Data Description

The ERS field was observed by HST using its WFC3/UVIS channel in the F225W,

F275W, and F336W filters. These filter curves are shown in Fig. 6, along with example

stacked spectra of typically observed galaxy types, i.e., quasars, Lyman-break galaxies

(LBGs), Lyman-α emitting galaxies, and Lyman-α absorbing galaxies. This figure

demonstrates how the filters used during observation of the ERS field can capture the

LyC with negligible amounts of non-ionizing light entering the filter from galaxies at
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Figure 6. WFC3/UVIS LyC Filters and Example Galaxy and AGN Spectra

[a] Example composite rest-frame FUV spectra of QSOs at 〈z〉∼ 1.3 observed with
the Sloan Digital Sky Survey (SDSS) (Vanden Berk et al. 2001 [blue]) and of LBGs at
z' 2–4 (Bielby et al. 2013 [green and orange]; Shapley et al. 2003 [red ]). The
WFC3/UVIS F225W, F275W, and F336W filter transmission curves are ideally
positioned to capture LyC at z≥ 2.26, z≥ 2.47, and z≥ 3.08, respectively. The
combined SEDs of SDSS QSOs suggest a strong LyC signal, whereas the SEDs of
LBGs suggest fainter LyC flux. [b] Total system throughput curves (observed
wavelengths) of the same WFC3/UVIS and ACS/WFC filters (Dressel et al. 2015;
Avila et al. 2015) are shown on a logarithmic scale to emphasize their out of band
transmission (“red-leak”). These WFC3 UVIS filters were designed to simultaneously
maximize throughput and minimize such red-leaks. In Appendix B.1.1 the percentage
of non-ionizing UVC flux with λ> 912Å leaking in the filter is assessed. The
ACS/WFC F606W filter capturing the UVC of these spectra is shown for reference.

redshifts z≥ 2.26. The ERS UV data reaches a ∼2 orbit depth (mAB< 26.4 at 5σ for

F275W).

Complementary optical HST data using the Advanced Camera for Surveys Wide

Field Camera (ACS/WFC) was taken in July 2002-May 2003 as part of the Great

Observatories Origins Deep Survey (GOODS; Dickinson, Giavalisco, and GOODS

Team 2003). The corresponding rest-frame non-ionizing UVC imaging of galaxies

in the ERS field were taken with ACS/WFC in the F606W, F606W, and F775W,

respectively. These filters sample rest-frame λeff∼1400-1800Å for each of corresponding
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WFC3/UVIS filter. We also utilized photometry from WFC3/IR F098M, F125W,

and F160W imaging in the ERS field (Windhorst et al. 2011) and WFC3/IR F105W,

F125W, and F160W from the Cosmic Assembly Near-infrared Deep Extragalactic

Legacy Survey (CANDELS Grogin et al. 2011; A. M. Koekemoer et al. 2011), as well

as photometric catalogs in GOODS-South (Guo et al. 2013) for object selection and

SED fitting.

Table 1 summarizes the data in the ERS and GOODS South fields available for

studying LyC emission, and the redshift range over which each of these filters can

sample LyC emission with negligible contamination from non-ionizing flux. Each lower

redshift bound was carefully chosen such that no light with λ> 912Å is sampled below

the filter’s red edge (defined at 0.5% of the filter’s peak transmission, as tabulated in

Dressel et al. (2015) and references therein). The upper redshift bound of each bin

in Table 1 occurs at the redshift where the next redder filter can trace LyC emission

more sensitively. Fig. 6 suggests that the observed escaping LyC emission strongly

declines towards shorter wavelengths. For this reason, the broadband filters use are

most sensitive to LyC emission at the low redshift end of each of the three redshift

ranges of Table 1.

4.2.1 Image Calibration, Drizzling and Astrometric Accuracy

The HST cameras are well known to undersample the resolution of the 2.4meter

diameter mirror. HST has a diffraction limit of ∼ 0.′′03 in the UV and the UVIS CDD

detectors have resolutions of ∼ 0.′′04/pixel. A sufficient sampling rate, also known as

the Nyquist sampling rate, requires that at least two pixels contain one resolution

element, i.e., at least two pixels should have the same resolution as the mirror’s
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diffraction limit. Sampling the resolution of HST ’s optics below its diffraction limit

can lead to aliasing, and smaller features HST can resolve are lost by the detector.

Fortunately, the Drizzle algorithm (Williams et al. 1996; Fruchter and Hook 2002),

adopted as the primary image processing tool for HST, can reconstruct the information

lost to undersampling.

The algorithm essentially maps subsampled images onto further subsampled output

pixels, e.g., native 0.′′04 WFC3/UVIS pixels onto output a 0.′′03/pixel grid, taking

into account shifts and rotations of the telescope pointing between exposures and

distortions in the image created by the optics of HST. The native pixels are first

shrunk down to “drops”, and are rained down, or drizzled onto the output pixel grid.

The electron counts in the native pixels are then averaged over the output pixels.

When native pixels overlap with multiple output pixels, their counts are added into

the output pixel proportionately by the physical area of the overlapping size. Because

of this proportionate weighting of the native pixels, Drizzle can reconstruct images

while preserving the flux measured in individual exposures. The distortions caused by

the optics can generally be corrected by applying a geometric transformation on the

raw images, which warps the shape of the image so that the distortions are removed.

The geometrically corrected images can be used as inputs in the drizzle algorithm to

produce the final mosaic, which combines and calibrates all raw input images.

The point spread function (PSF) of a telescope defines the shape of a point-like

source of light, such as a distant star, on an image. A single, perfect mirror has a

PSF described by an Airy disk, which is the 2-dimensional Fourier transform of a

circular aperture, e.g., a mirror or lens. Because telescopes involve intricate optical

setups to correct for various distortion effects of mirrors, such as field curvature or

spherical aberration (Redding et al. 1995), the PSF deviates from the ideal Airy disk.
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Thus, only simulations using ray-tracing through the optical setup or measurements

on the images themselves can describe the true PSF of the optical telescope array

(OTA). The smearing out of information caused by the subsampling of a native pixel

can be partially recovered by the Drizzle algorithm if the input images are dithered

by amounts smaller than a pixel. Here, dithering describes the change in location of

the pointing direction by HST. Sub-pixel dithering can allow the camera to sample

the PSF at several points in its spatial profile, which can later be reconstructed onto

a finer grid by Drizzle.

Figure 7. Astrometric Offsets of Improved ERS Mosaics

Residual astrometric errors in the improved WFC3/UVIS ERS mosaics in F225W
[left ], F275W [middle], and F336W [right ], respectively, as measured relative to the
ACS/WFC F435W ERS mosaic. The new WFC3/UVIS geometric distortion
corrections provided a significantly improved registration of all 8 WFC3/UVIS tiles
to the ACS/WFC F435W mosaics compared to the 2009 ERS mosaics of Windhorst
et al. (2011). The measured residual systematic offsets are 〈∆X〉. 0.′′0022 and
〈∆Y 〉. 0.′′0172 compared to ACS (indicated by the dashed lines), and random
deviations less than 0.′′054 in X and 0.′′073 in Y.

The ERS UV image mosaics were constructed using the Astrodrizzle program, a

Drizzle program that applies a number of calibration and mosaicing steps into one

process. These steps include, e.g., improved geometric and astrometric calibration of
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the raw images (Fruchter and et al. 2010). These improvements are in essence, better

algorithmic treatment of the geometric and astrometric distortion using higher-order

polynomial coefficients (Shupe et al. 2005). The ERS mosaics used here were drizzled

to a plate scale of 0.′′03/pixel.

The initial astrometric calibration of the WFC3/UVIS ERS mosaics, described

in Windhorst et al. (2011), left systematic offsets between individual WFC3 CCDs

of up to ∼ 5 drizzled pixels (∼ 0.′′5) compared to the GOODS v2.01 F435W mosaics,

especially at the edges of each UVIS mosaic tile (see Appendix A of Windhorst

et al. 2011). These offsets occurred in part due to the way the ERS UVIS exposures

were taken, but were primarily due to the rather uncertain geometric instrument

distortion correction (IDC) tables available at the time (Kozhurina-Platais et al. 2009).

The lack of UV bright astrometric reference sources in the shallow (∼ 900–1400 s)

individual exposures further prevented accurate registration and drizzling of the

F225W, F275W, and F336W images. This issue was resolved with the improved IDC

tables of Kozhurina-Platais et al. (2013) and Kozhurina-Platais (2014). Using these

new IDC tables, we re-drizzled the UVIS ERS images into mosaics at a plate scale of

0.′′03 pix−1.

Fig. 7 shows the residual astrometric errors of the new ERS mosaics (which we

refer to as ERS “v2.0”) for the F225W, F275W, and F336W filters, measured relative

to the ACS/WFC F435W mosaics. Residual systematic offsets from the ACS/WFC

F435W GOODS v2.0 mosaics for the 8 WFC3/UVIS ERS tiles are now measured to be

〈∆X〉. 0.′′0022 (0.024 pix) and 〈∆Y 〉. 0.′′0172 (0.19 pix), with 1σ random deviations

less than 0.′′054 (0.60 pix) in X and 0.′′073 (0.81 pix) in Y. Any remaining systematic

astrometric offsets are at the sub-pixel level, and are sufficiently small that they

1http://archive.stsci.edu/pub/hlsp/goods/v2/h_goods_v2.0_rdm.html
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no longer affect our SB sensitivity to LyC flux, nor do they add contamination

from neighboring sources that can potentially blend in with the LyC signal due to

astrometric uncertainties.

The photometric and astrometric calibration and drizzling of the publicly available

ACS/WFC mosaics used alongside the UV data in the LyC analyses presented here

are described in Giavalisco et al. (2004). These mosaics were also constructed using

the Drizzle algorithm, with optimized input parameters for the ACS/WFC detector.

This optical ACS/WFC data was taken in July 2002-May 2003 as part of GOODS

(Dickinson, Giavalisco, and GOODS Team 2003). We also utilized photometry from

WFC3/IR F098M, F125W, and F160W imaging in the ERS field (Windhorst et

al. 2011) and CANDELS WFC3/IR F105W, F125W, and F160W (Grogin et al. 2011;

A. M. Koekemoer et al. 2011) photometric catalogs in GOODS-South (Guo et al. 2013)

for object selection and SED fitting, which is described in §5.3.

Table 1. Summary of HST WFC3/UVIS Images and Image Stacks in the ERS Field

Filter λ / ∆λa zLyC
b Obs.Date texp

c PSFd SB(obs)e

F225W 2359 / 467 2.26–2.47 2009 Sep 7–11 5,688 0.′′087 29.80
F275W 2704 / 398 2.47–3.08 2009 Sep 7–11 5,688 0.′′087 29.82
F336W 3355 / 511 3.08–4.35 2009 Sep 7–12 2,778 0.′′088 29.76

aCentral wavelength / bandwidth of filter in Å; bRedshift range over which rest-frame
LyC emission can in principle be sampled. The high end of each bin occurs at the
redshift where the next redder filter can better sample LyC emission at the same or
higher redshift.; cAverage integration time of the mosaics in seconds; d Typical stellar
PSF FWHM.; e Measured 1σ surface brightness sensitivity limit of our mosaics for a
source of uniform SB in a 2.′′00 diameter aperture in AB mag arcsec−2 (see Windhorst
et al. 2011 and Table 1)

.
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4.2.2 WFC3/UVIS Residual Sky-Background

Figure 8. UV Sky-background Levels in the ERS Field

Residual sky-background levels in the drizzled WFC3/UVIS ERS mosaics in the
F225W [left ], F275W [middle], and F336W [right ] filters, determined as described in
§4.2.2. The best fit to the 2009 ERS mosaics of Windhorst et al. (2011) (“v0.7”) is
shown in black, while the improved mosaics discussed here (“v2.0”) are shown in red.
Dashed lines show Gaussian fits to the two histograms. Each panel lists the best fit
residual sky-background level (in counts/sec), equivalent to 30.29, 29.99, and 28.15
mag arcsec−2, respectively, and the uncertainties thereon across the entire WFC3 ERS
mosaic.

The original WFC3/UVIS thermal vacuum flats created while WFC3 was still

on Earth left residual gradients and patterns in the sky-background when used for

processes raw exposures. These deviations from the mean sky-background were at the

5–10% level (Sabbi 2009). For the reprocessing of the ERS data, we use the flat-fields

from Mack, Sabbi, and Dahlen (2013), which include on-orbit “delta-flat” corrections

to the ground-based thermal vacuum flat-fields, significantly reducing the large scale

flat-field patterns seen in earlier ERS mosaics.

Windhorst et al. (2011) measured zodiacal sky-background surface-brightness

(SB) levels in the ERS of 25.46, 25.64, and 24.82 mag arcsec−2 in the WFC3/UVIS

F225W, F275W, and F336W mosaics respectively. When drizzling the data, this sky-

background is subtracted (e.g., Anton M. Koekemoer et al. 2013). For the 5688, 5688,

and 2788 s effective exposure times in these filters, this corresponds to a subtraction of
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∼ 2.43×10−4, 2.24×10−4, and 7.82×10−4 e−/0.′′03 pixel, respectively. To determine the

best fit residual sky background level across the WFC3/UVIS ERS mosaics, we use the

Freedman-Diaconis rule (Freedman and Diaconis 1981), who define the sampled bin

width for optimal histogram fitting as 2×IQR×N−1/3, where IQR is the inner quartile

range of the pixel distribution (i.e., the range within 75% and 25%, or ± 1.349σ/2 for

a Gaussian distribution), and N is the total number of pixels used in the image to

construct that histogram. We fit the logarithm of the sky pixel histogram between

−3σ and +1σ to a Gaussian function by least squares to obtain the peak value of the

fitted functions.

Fig. 8 shows the sky pixel histograms and best fit residual sky-background levels in

the WFC3/UVIS F225W, F275W, and F336W ERS mosaics of Windhorst et al. (2011)

in black, while the red curves and measurements indicate the best fit to the data

in the improved mosaics used here. The slight narrowing of the negative tail of the

Gaussian noise distributions in the new mosaics reflects the better flat-fielding. Our

best fit residual sky background values and their uncertainties are (2.62±0.09)×10−5,

(3.71±0.10)×10−5, and (31.94±0.18)×10−5 counts/s in the F225W, F275W, and

F336W filters, respectively. These levels correspond to residual sky SB levels of 30.29,

29.99, and 28.15 mag arcsec−2 left in the UVIS images after drizzling, which subtracted

the sky-background in individual exposures to first order. Compared to the observed

ERS sky-backgrounds measured in Windhorst et al. (2011), these residual sky SB

level values are 4.84, 4.35, and 3.33mag fainter than the UV sky (1.2%, 1.8%, 4.7%

of the UV sky), respectively. These residual sky-background levels can be accurately

determined locally and subsequently subtracted, which we employed in our subimage

stacking technique to further increase our sensitivity to extended, low SB LyC signal.
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4.3 Sample Selection Criteria and Characteristics

4.3.1 Spectroscopic Sample Selection

In order to obtain accurate estimates of LyC escape fractions as low as fesc.1.0%,

we must require the low-redshift interloper fraction to be very small. Thus, any

potentially contaminating, low redshift, interloping galaxies that might create a false-

positive LyC signal must be identified and removed from our sample. We therefore

required each galaxy we included in our analysis to have a highly reliable spectroscopic

redshift.

Several wide field ground-based spectroscopic surveys have been performed in the

GOODS fields, including the ERS region, at low and high redshift with the Very

Large Telescope (VLT) (e.g., S. Cristiani et al. 2000; Le Fèvre et al. 2004; Szokoly

et al. 2004; Wolf et al. 2004; Vanzella et al. 2008; Popesso et al. 2009; Wuyts et al. 2009;

Balestra et al. 2010; Silverman et al. 2010; Fiore et al. 2011; Kurk et al. 2012; Le

Fèvre et al. 2015; Tasca et al. 2017) as well as HST (Momcheva et al. 2016). We

retrieved the reduced 1-dimensional FITS spectral data from the ESO archives2 along

with their corresponding 3D-HST grism spectra3 for galaxies at z≥ 2.26 in order to

verify the designated redshifts of these galaxies. We plotted each spectrum at both

the original spectral resolution and smoothed with a σ=3Å Gaussian convolution

kernel to reduce the noise in the spectrum for inspection. Typical spectral emission or

absorption features for SFGs and AGN were indicated, and portions of the spectra

2http://archive.eso.org/, http://www.eso.org/sci/activities/garching/projects/goods/
MasterSpectroscopy.html, and http://cesam.lam.fr/vuds/DR1/

3http://3dhst.research.yale.edu/Home.html
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around these features were magnified for closer examination. An example classification

diagram of all available ground-based and HST grism spectra and imaging used for

sample selection is shown in Fig. 9.

The emission or absorption features we focused on include the Lyman Break at

912Å, Ly − α 1216Å, Si 2 1260Å, O 1 1304Å, C 2 1335Å, Si 4 1398Å, C 4 1549Å, and

C 3] 1909Å, and when present, C 2] 2326Å, Fe 2 2344Å, and sometimes N 5 1240Å,

Fe 2 2600Å, Mg 2 2798Å, O 2 3727Å, [Ne 3] 3869Å, He 2 4686Å, H 0β 4861Å, and

[O 3] 4959+5007Å. In addition, we included high contrast cutout images of the galaxies

in the filter sampling the rest-frame LyC emission, and all available longer wavelength

filters for inspection and removal of contaminating objects.

We recruited 5 experts in spectroscopy to help us visually inspected all spectra and

we unanimously selected the highest quality spectra available from the spectroscopic

surveys and compose our spectroscopic sample of galaxies and AGN. We found that

including objects with spectra that had less reliable redshifts improved our SNR, but

likely added contaminating flux rather than true escaping LyC flux. Hence, we only

included galaxies with the highest quality spectra that coincided with their predicted

emission/absorption lines exactly.

Note that 12 of the 46 objects in our spectroscopic sample are galaxies hosting a

weak AGN, as evidenced by the (broad) emission lines in their spectra, for example

Ly−α, N 5, Si 4, C 4, He 2, C 3], and Mg 2. We also cross-correlated the positions of

our galaxy sample with Chandra 4 Ms and Very Large Array 1.4 GHz source catalogs

to identify possible obscured/type II AGN using their radio/X-ray luminosities and

photon indices (e.g., Xue et al. 2011; Fiore et al. 2012; Miller et al. 2013; Rangel

et al. 2013; Xue et al. 2016). We identified five of the 12 galaxies hosting AGN

from their X-ray emission. For our LyC analyses in the ERS field, we study the
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subsamples of 34 galaxies without AGN signatures, and 12 galaxies with weak AGN,

both separately and combined. This allows us to make direct comparisons of these

two classes of ionizers, and how they may have contributed to reionizing the IGM at

z& 6, if our sample of galaxies are analogous to those that existed during the epoch

of reionization.

4.3.2 Completeness and Representativeness of the Spectroscopic Samples

Initially, our sample of galaxies was limited to those with known spectroscopic

redshifts. Our selection of galaxies with high quality spectra in GOODS-S, which

solely determined which objects were included in our analysis, reduced our sample

to galaxies that can be observed with ground-based spectroscopy at a high SNR.

This, of course, can bias our results and their subsequent interpretations, e.g., if fesc

is a strong function of luminosity (MAB), dust extinction (AV ), metallicity, and/or

age. We therefore must consider how representative the characteristics of our selected

galaxy samples are in order to understand differences in the results of our analyses of

the populations.

In Fig. 10 we plot the distribution of observed apparent magnitudes (mAB), and

the corresponding absolute magnitudes (MAB) of the rest-frame non-ionizing UVC

flux (λeff =1500±100Å) of our samples. We consider all galaxies (Fig. 10a), galaxies

hosting weak AGN (Fig. 10b), and galaxies without AGN (Fig. 10c). These values

were derived from the apparent flux of the galaxies at the same rest-frame wavelengths,

using their best fit SED models, so no k-corrections are necessary to directly compare

the MAB values of the galaxies at various redshifts.

If the spectroscopic samples were complete, their apparent magnitude distributions
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would resemble the galaxy count distributions of the full V and i-band mosaics

(Giavalisco et al. 2004; Windhorst et al. 2011) to a given AB magnitude limit,

since these filters sample the UVC emission indicated in Fig. 10, and because the

spectroscopic samples were r band or i band selected. Their MAB distribution would

also reflect the galaxy UV luminosity function slope at their effective MAB to the

effective completeness limits at these redshifts, which typically sample rest-frame

wavelengths λeff ' 1500 – 1700Å (e.g., Reddy and Steidel 2009; S. L. Finkelstein et

al. 2015).

It is clear from Fig. 10 that our spectroscopically selected samples are incomplete for

mAB & 24.0mag, both for galaxies with and without weak AGN. For mAB . 24.0mag,

the distributions are consistent with the expected slope of the galaxy counts from

Windhorst et al. (2011), so the selected samples may be representative for LyC studies,

but only for these brighter fluxes. We also note that our selection of galaxies with

high SNR spectra will have favored the broad emission lines of (weak) AGN, and

Lyman-α emission or strong absorption line galaxies, while LBGs and other galaxies

without prominent spectroscopic features are less likely to have yielded the highly

reliable redshifts required to be included in our highest fidelity sample, even for

mAB . 24.0mag.

The UVC luminosities of the galaxies in our sample span –22.2.MAB . –19.0mag,

with an average of MAB' –21.1+0.9
−0.5 mag (1σ), indicative of predominantly luminous

galaxies about as bright as M∗ at 2.5. z. 4 (e.g., Hathi et al. 2010), or of galaxies

hosting weak AGN. Since this is the only sample for which reliable redshifts currently

exist, this is strictly the only luminosity range over which the measurements and

analyses of any escaping LyC emission that follows will be valid. These galaxies may
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also be more luminous than galaxies that contributed to reionization at z>7 (e.g.,

Bouwens et al. 2012).

Our sample also does not fully sample the parameter space of the age, stellar mass,

star-formation rate (SFR), and AV values for galaxies at these redshifts, indicated

by their SED fits. These biases are also more prominent in the individual redshift

subsamples. Fig. 11 shows the distribution of these parameters for the spectroscopic

sample of galaxies without AGN. These galaxies more or less evenly sample the mass

and SFR distribution, which are are generally quite massive and indicative of active

star-formation, with masses ranging from ∼ 109.5–1010.9 (〈mass〉= 1010.2±0.3)M� and

SFRs from ∼ 100.8–103.1 (〈SFR〉=101.5±0.4)M�/yr, respectively. Their ages and AV

distributions range from ∼ 107.7–109.4 yr (〈tage〉' 108.2+0.9
−0.4 yr) and AV =0.0–0.8mag

(〈AV 〉med'0.3±0.3mag), respectively. We note that the variation in these parameters

from sample to sample is most likely due to the selection of the spectroscopic sample,

rather than any real correlation in redshift, as the higher redshift galaxies were

generally selected in the redder ACS filters.

The incomplete sampling of these various parameters should be taken into account

when interpreting the fesc values for these individual subsamples. In order to obtain

a more representative sample of galaxies in each redshift bin, we must include more

galaxies that sample the full range of these parameters at their respective redshifts,

with average parameters that reflect the true averages for all galaxies at these redshifts,

and probe fainter luminosities. This should be a focus of future deeper spectroscopic

surveys, either from the ground or with the James Webb Space Telescope (JWST ).
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4.4 Results

4.4.1 Sub-Image Stacking of LyC Signal

Since LyC escape fractions have been measured to be very low, and the detected

LyC emission is likely to be very faint or not detected at all, we applied our stacking

algorithm described in §3.1 to the observed LyC emission from our galaxy sample

to increase their total SNR and sensitivity to the faint, low SB LyC flux from the

individual galaxies.

For each galaxy, we extracted 151×151 pixel (4.′′53×4.′′53) subimages from the

WFC3/UVIS mosaics in the respective filter that samples the LyC emission of each

galaxy. The size of these cutouts provided sufficient sampling of the photon statistics

in the sub-images for fitting the pixel count-rate distribution, while minimizing the

potential area of neighboring sources of non-ionizing flux. Each sub-image was centered

on the R.A. and Dec. of the centroid of the individual galaxy indicated in the 3D-HST

photometric catalog (Skelton et al. 2014).

We then created SExtractor (Bertin and Arnouts 1996) segmentation maps

from χ2 images (Szalay, Connolly, and Szokoly 1999) generated from all available

HST data for each LyC sub-image in order to identify all neighboring objects detected

at a ≥ 1σ threshold above the local sky. These χ2 images are effectively composites

of multiband images where the pixel values correspond to probabilities of that pixel

being background, i.e., not statistically associated with a source of real flux from

an object. The combination of all available multiband into one image also has the

advantage of increasing the signal of faint sources of flux that would otherwise not be
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visible in any single image. Each pixel gi in the χ2 image corresponds to

gi =
fi − µi
σi

(4.1)

where fi is the original pixel value in the subimage, µi is the mean of the pixel values,

and σi is the standard deviation of the pixel values. This equates to converting a

subimage going into the χ2 image to a normalized Gaussian, i.e., a Gaussian with

µ=0 and σ=1. The χ2 image is constructed by summing these normalized subimages,

i.e. the probability distribution of the χ2 image x is described by

x =

Ngal∑
i=1

g2
i (4.2)

and the PDF of pixels y in the χ2 image is defined as

dP (y) =
x
N
2
−1e−

x
2

2
N
2 Γ(N

2
)
dx (4.3)

where Γ(N
2

) denotes the gamma function. Integrating the pixels of a χ2 image within

an aperture thus describes the probability of those pixels not being drawn from the

sky-background.

SExtractor has the capability of automatically detecting sources above the sky-

background and fitting isophotal apertures around those sources, then summing the

flux withing those apertures. We set the threshold of object detection in SExtractor

to 3σ, corresponding to the flux within the aperture having a 99.7% probability of not

belonging to sky. We used SExtractor to also produce segmentation maps of these

sources in the χ2 image, which were used for object identification, and subsequent

masking of sources in the subimage not associated with the galaxies in our sample.

We exclude all pixels of surrounding detections outside of a central circular

aperture with a 0.′′5 radius (r' 17 pix) found in the LyC segmentation maps. We
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preserve all flux from any objects inside this central aperture when we stack the

sub-images, while also excluding those detected on the border of the central aperture.

This masking was applied to ensure that all potential sources of non-ionizing flux

from lower redshift neighbors along the line-of-sight are removed before stacking.

On average, ∼3±2 objects were removed from each sub-image. We note that this

procedure would not be possible when stacking LyC emission of galaxies using ground-

based observations alone, as effects from seeing can blend neighboring non-ionizing

contaminants with the true LyC signal (e.g., Nestor et al. 2013; Siana et al. 2015;

Mostardi et al. 2015). Each individual masked sub-image was visually inspected to

verify that no surrounding objects indeed remained in the sub-images, including those

seen only at longer wavelengths in the 10 band ERS mosaics. Thus, it is possible that

the rigorous removal of surrounding flux can sometimes result in the removal of more

extended (i.e., at r≥ 0.′′5) LyC flux from the stacked images if this were detectable at

≥ 1σ above the local sky-background.

We also subtracted a constant from each of the sub-images before object removal

in order to bring the mode of the sky-background of the images as close to zero

as possible. We calculated the mode of the background level from the count-rate

histogram of the surrounding pixels outside the central circular aperture, binning

their values according to the Freedman-Diaconis rule (see §4.2.2). We then fit each

sky histogram to a Gaussian function by least squares, taking the mode of the fitted

Gaussian as the background constant. This local sky-background removal was applied

in order to sum the actual LyC flux above the background from each subimage, rather

than LyC+background, as variations in background levels between sub-images can

suppress the flux contribution from the faintest LyC emission in the stack. The

subtraction also removed any residual small scale gradients between the sub-images
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left from bias/sky-subtraction, flat-fielding, and/or exposure time/noise variations in

the mosaics.

We then stacked the processed sub-images of all the galaxies in each WFC3/UVIS

image with spectroscopic redshifts, where LyC can be observed in their respective

filter, using the average of the pixel count rates of the sub-images, weighted by their

corresponding AstroDrizzle weight maps. We did this using the methodology

described in §3.1. We created stacks for the total sample of galaxies and separate

stacks for the galaxy and AGN samples, since each sample likely produces the majority

of their LyC photons by different mechanisms, which must be taken into account when

determining fesc for these galaxies. We also created corresponding UVC stacks for each

LyC stack from subimages extracted from the ACS/WFC mosaics of the ERS/GOODS-

S fields that sample the UVC emission of our galaxies. For the redshift intervals that

sampled LyC emission in the F225W, F275W, and F336W, filters that sample the

UVC emission correspond to F606W, F606W, and F775W, respectively. This allows

us to perform matched aperture photometry on the LyC stacks, as described in §3.2.

The galaxies stacked in the WFC3/UVIS F225W filter contain co-added sub-images

frames of 19 galaxies over the redshift range 2.276≤ z≤ 2.450 (〈z〉=2.352), the F275W

stack contains 14 galaxies at 2.470≤ z≤ 3.076 (〈z〉=2.685), and the F336W stack

contains 13 co-added galaxies at 3.132≤ z≤ 4.149 (〈z〉=3.537). These stacks, as well

as the corresponding UVC stacks, are shown in Fig. 12. Stacks for the subsamples

of galaxies with weak AGN and galaxies without AGN are shown in Fig. 13 and 14,

with elliptical apertures indicating regions where photometry was performed.

The deepest galaxy counts in J and H-band of Windhorst et al. (2011) give us

an estimate the total number of contaminating objects that could be present in our

r'0.′′5 radius LyC apertures (Fig. 12–14). To the ERS limit of J , H.27.55–27.25 mag,
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respectively, there are .5.2×105 galaxies deg−2 (Windhorst et al. 2011), yielding a

.3% probability of finding one unrelated foreground object in, or overlapping with,

the LyC aperture. For our sample of 46 galaxies, this would amount to .2 interlopers.

Due to the possible interloper’s proximity to the LyC candidate, it is not always

possible to obtain reliable spectroscopic or photometric redshifts for these neighbors.

Nonetheless, in these few cases, light from the nearby neighbors was masked out

with SExtractor segmentation maps. This was then repeated for all other objects

in the 151×151 pixel image sections outside the central r'0.′′5 aperture, to exclude

contaminating objects in the photometry in the central aperture, and to assure that

accurate measurements of the surrounding sky could always be obtained.

4.4.2 Rest-frame Lyman Continuum Photometry

The results from our photometry measured in the apertures shown in Fig. 12–14

are summarized in Table 2. As outlined in §3.2, we perform all of our photometry on

the LyC stacks with SExtractor using detection images in dual-image mode. As our

reference images, we use the corresponding non-ionizing UVC stacks to measure any

possible escaping LyC flux detectable within the aperture of brighter UVC counterpart.

We used the individual weight maps and the sky-background variance for each

sub-image in a given stack to create 10,000 random variations of each pixel for each

stack based on the combinations of these uncertainties, in order to assess photometric

errors and upper limits as described in §3.2. An example flux distribution generated

using this methodology is shown in Fig. 15. We quote the mean and 1σ value of the

flux distributions in Table 2, or the 1σ value as the upper-limit for non-detections.
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Table 2. LyC Stack Photometry in ERS

Filter z-range 〈z〉 Nobj mLyC ABerrLyC SNRLyC AUVC mUVC SNRUVC
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

All Galaxies:
F225W 2.276–2.450 2.352 19 >28.26 . . . (1.00)† 1.034 24.41 426.7
F275W 2.470–3.076 2.685 14 28.11 0.45 2.41 0.681 24.76 323.8
F336W 3.132–4.149 3.537 13 >28.62 . . . (1.00)† 0.553 24.63 247.5
Galaxies without AGN:
F225W 2.276–2.449 2.350 17 >27.91 . . . (1.00)† 1.015 24.36 423.8
F275W 2.566–3.076 2.752 7 >28.12 . . . (1.00)† 0.932 24.46 268.3
F336W 3.132–4.149 3.603 10 >30.73 . . . (1.00)† 0.555 24.75 192.7
Galaxies with AGN:
F225W 2.298–2.450 2.374 2 >27.91 . . . (1.00)† 0.637 25.21 85.0
F275W 2.470–2.726 2.618 7 28.26 0.41 2.66 0.253 25.12 232.7
F336W 3.217–3.474 3.316 3 27.42 0.44 2.47 0.486 24.38 158.7

Table columns: (1): WFC3 filter used; (2): Redshift range of galaxies included in LyC/UVC
stacks; (3): Average redshift of stack; (4): Number of galaxies with high quality
spectroscopic redshifts used in the stacks; (5): Observed total AB magnitude of LyC
emission from stack (SExtractor MAG_AUTO aperture matched to UVC, indicated by the
blue ellipses in Figs. 12–14; (6): 1σ error of average LyC AB-mag (7): Measured SNR of the
LyC stack flux within matched UVC aperture († indicates a 1σ upper limit); (8): Area (in
arcsec2) of the UVC aperture; (9): Observed total AB magnitude of the UVC stack; (10):
Measured SNR of the UVC stack.

We convert the flux measured by SExtractor to AB magnitudes, using the infinite

aperture zeropoints listed on the STScI instrument websites4.

From these distributions, we measure an average LyC flux from galaxies and AGN

at mAB' 28.11mag, with a SNR value at ∼ 2.41 for the F275W stack. We measure

1σ upper bounds of mAB> 29.02 and 28.62mag for the F225W and F336W stacks,

respectively. For only the galaxies without AGN (Fig. 13), we place 1σ upper bounds

for the flux measured in the F225W, F275W and F336W stacks at mAB> 27.91, 28.12

and 30.73mag, respectively. The flux from galaxies with AGN was measured at

mAB' 28.26 and 27.42mag, with SNR∼ 2.66 and 2.47 for the F275W and F336W

4http://www.stsci.edu/hst/wfc3/phot_zp_lbn
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stacks, respectively, and we placed a 1σ upper bound to the F225W stack flux at

mAB> 27.91mag (see Table 2). Our photometry indicates that the AGN stacks are

brighter than galaxies without AGN and have higher SNR, despite having fewer

contributing sub-images in the stacks.

We note that, although some LyC flux might exist at the ∼1σ level outside the

measurement apertures, we do not incorporate this flux into our measurement, as this

would require us to increase our aperture size and add extra noise in the aperture,

which would increase the uncertainty of our measurements, as well as the interloper

contribution.

4.4.3 Composite stacks of LyC Emission from Galaxies at 2.3≤ z≤ 4.1

In order to determine at what SNR our observations can measure the LyC flux

from our total sample of galaxies that span the 2.3≤ z≤ 4.1 redshift range, and probe

the faintest LyC emission from our galaxies, we construct a stack of the observed LyC

flux in fν of all the galaxies in our sample as follows. We first extract the sub-images

from the F225W, F275W, and F336W and apply our sky-subtraction and neighbor

masking procedures, as outlined in §4.4.1. We then scale all sub-images in the stack

to a common zeropoint and stack the sub-images by a weighted average, as described

in §3.1. We created stacks for the full sample of all galaxies and separate stacks

for the galaxies with and without AGN, as shown in Fig. 16. We note that these

composite stacks represent the average observed LyC flux from our sample integrated

from z=2.3–4.1 through the various sight-lines, and so the flux in these stacks will be

dominated by the galaxies with the brightest apparent LyC flux.

Due to the very low sky-background in the F225W and F275W filters (Windhorst et
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al. 2011), the relative scaling of the count rates in the sub-images slightly amplified the

contribution of detector noise from these filters in the stack. However, since the F336W

filter is limited by photon noise from the much brighter zodiacal background at these

wavelengths, these composites therefore also have more significant sky-background.

We find that the stack of the total sample reaches a SNR of ∼2.3σ, while the LyC

stacks of galaxies with and without AGN achieve SNR ratios of 3.9σ and 0.7σ in their

UVC matched apertures, respectively. We also find that the average apparent AGN

LyC flux outshines that from galaxies without AGN by a factor of FAGN
ν /FGal

ν '7.7

(∆mAB'2.2mag).

Since these composite stacks were created solely for the purposes of visualization and

probing the SNR of the total observed LyC signal from our samples, we do not perform

any further analysis of the LyC flux measured in these stacks. Because the absorption

of ionizing photons by the IGM is non-linearly dependent on redshift, modeling of

the combined intrinsic LyC flux from galaxies spanning 2.3. z. 4.1 through various

sight-lines would become increasingly divergent, such that the resulting total fesc value

of these galaxies would be highly uncertain.

This exceedingly faint LyC emission emerging from the stack of the 12 galaxies

with AGN appears to have a flat spatial distribution that is not centrally concentrated.

This may allude to the manner in which LyC escapes from galaxies. In order to ionize

the IGM, LyC photons must escape through holes in the surrounding gaseous and/or

dusty material between stars, the central point source, and the line-of-sight IGM,

which can be distributed randomly within or around galaxies. With at most a few

clear sight-lines per galaxy, these stacked images suggest that some escape paths of

LyC may be on average somewhat offset from the galaxy center, i.e., escaping more

from the outskirts than the centers of these galaxies. Given the random orientation
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of galaxies in each stack, this would explain the faint, non-centrally concentrated,

and extended morphology of the detected LyC emission. This may indicate that LyC

photons produced by accretion disks in AGN escape from galaxies with weak AGN

via scattering. We discuss the radial profiles of galaxies further in §4.4.4.

In the adopted Planck Collaboration 2018 cosmology, the angular size scale de-

creases by ∼16% and the apparent fluxes dim by ∼75% from z' 2.3 to z' 4.1. We

deliberately did not scale any of the pixel values or resample the pixel scale to account

for these these changes during the stacking process over all redshifts, as we only

created these composite stacks to quantify the SNR of the average observed LyC

flux for our entire sample. Using a varying pixel scale for each galaxy would have

introduced correlated inter-pixel resampling noise, which would also decrease the sky

SB limits and the effect of averaging over residual subtle systematics. Stacking with

the same plate scale for all redshifts also preserves the observed photon statistics,

which are needed for accurate sky-subtraction. Hence, resampling all the images as a

function of redshift would reduce the SNR of the resulting stacked LyC signal. We

note that the physical scale of the galaxies that we stack changes by ±4% within each

redshift bin and by ±16% for the entire sample. This does not noticeably affect the

LyC and UVC light profiles in each of our three redshift bins, which are discussed in

§4.4.4, but does “blur” the light distribution seen in the composite stacks in Fig. 16 by

approximately these amounts in the radial direction from the center. Fig. 16 can thus

only be used to visualize the combined observed LyC signal over the entire redshift

range z'2.3–4.1, but cannot be used for further quantitative analysis.
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4.4.4 The Observed Radial Surface Brightness Profiles in UVC and LyC

The radial profiles of our LyC and UVC stacks from Fig. 14 for F275W and F336W

are shown in Fig. 17. We constructed all observed radial SB profiles by summing

successive annuli of 3 pixel radii beginning with the central pixel, where each pixel is

treated as a GRV with the mean set to the pixel value in the stack and variance set

to the sum of the variance from the square of the pixel value in the corresponding

weight map, and the variance from the sky-background. This allowed us to estimate

uncertainties on a per pixel basis for generating flux distributions of the sum of several

pixels. The averages and ±1σ errors or 1σ upper bounds to these distributions are

indicated as vertical bars and downwards triangles, respectively.

The stacked UVC profiles are shown as solid curves, and those for LyC are dashed.

The observed PSFs in the WFC3/UVIS F275W and ACS/WFC F606W mosaics

are indicated by dotted curves, normalized to the central surface brightness of the

corresponding LyC SB profile. The PSF in F336W is very similar to the F275W

PSF, so we do not plot it. These are available in Table 1 and Fig. 7b of Windhorst

et al. (2011). Note that these PSFs measured in the 0.′′03 mosaics are undersampled.

The 1σ SB sensitivity limit for the LyC profile in the F275W stack is indicated by

a horizontal dashed line at MAB' 30.5mag arcsec−2. These SB sensitivity limits are

consistent with the 1σ sky-subtraction errors discussed in §4.2.

Both UVC SB profiles are clearly extended with respect to their corresponding

filter PSFs, as expected for stacked galaxy radial light profiles at z' 3–6 (e.g., Hathi

et al. 2008). The much deeper HUDF UVC stacks of Hathi et al. (2008) suggested a

possible “break” (or slight change in slope) near r&0.′′3–0.′′4, from exponential in the

inner parts to a somewhat less steep profile in the outskirts. Our stacked UVC light
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profiles do not clearly show a change in slope at r& 0.′′3–0.′′4, since our (77–180 orbit)

UVC stacks are not nearly as deep as their ∼1680–4300 orbit stacks, and because of

our much more stringent method of masking neighbors.

Both LyC SB profiles are also clearly extended with respect to their observed PSFs,

and remain extended to r' 0.′′5, beyond which errors in the sky-subtraction start to

become substantial. The very faint, flat, non-centrally concentrated appearance of

the combined LyC signal makes the extraction of its SB profile uncertain at larger

radii. The relatively flat LyC SB profiles may indicate a more complicated LyC escape

scenario, in which the light distribution of the LyC flux of a stack of galaxies is largely

dependent on the porosity of the ISM in those galaxies, and/or the scattering processes

that the LyC photons undergo before escape. We find that the UVC SB profiles are

well fit to Sérsic profiles of index of n'2.4± 0.7, where a Sérsic intensity profile is

defined by

I(r) = Iee
−bn

[(
r
Re

1
n−1

)]
(4.4)

where Ie is the intensity at the effective radius (Re), which encloses half of the total

light from the profile, and bn' 2n – 1
3
determines the shape of the profile (Sérsic 1963).

The LyC SB profiles could not converge to a Sérsic fit but are better fit to straight

lines with slope ∼ 2.5 ± 0.6mag arcsec−2 per arcsec. The difference in linear slope

between UVC and LyC is ∼6mag arcsec−2 per arcsec with a SNR of ∼2.8, so the LyC

is therefore likely flatter. This may also be indicative of a decreasing LyC opacity

with radius, as the LyC and UVC escape morphology differs radially.

After integrating these SB profiles as elliptical frustums between each isophote, we

find reasonable agreement with our photometric analysis shown in Table 2, although

the flux represented by the radial SB profiles is consistently fainter by ∼0.3±0.2 mag.

This discrepancy is expected, given that our SB profiles do not extend out to the
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larger aperture sizes used in the photometry of the stacks, and therefore miss some

real LyC flux that might be present at larger radii and at very faint SB levels.

4.4.5 Modeling the UVC and LyC Radial Surface Brightness Profiles

For the highest SNR measurements in the LyC stacks (i.e., F275W and F336W),

the radial SB profile of escaping LyC flux appears to be flatter than the corresponding

non-ionizing UVC profile (the dashed and solid colored curves in Fig. 17, respectively).

A LyC SB profile that is measurably flatter than the corresponding UVC SB profile

could arise naturally in a porous ISM, in which the covering factor of neutral gas

decreases with increasing galacto-centric distance. To illustrate this quantitatively, we

consider the transfer of UVC and LyC photons through simplified models of galaxies

with a multiphase ISM.

To calculate this, we assumed that the UVC sources are spatially extended and

characterized by a volume emissivity εUVC(r). We assumed an exponential distribution

with galactic radius:

εUVC(r) = εUVC,0e
−r
r0 (4.5)

The normalization constant εUVC,0 and scale length of r0 are obtained by matching

the observed SB profiles in Fig. 17. We further assumed that LyC emission traces

the UVC emission. We attributed differences in observed SB profiles to the fact that

neutral clumps of gas are opaque to LyC radiation, but not to UVC.

We also assumed a spherical distribution of neutral gas clumps, which is described

completely by its covering factor,

fcov(r) ≡ nc(r)Ac(r) (4.6)
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Here, nc and Ac(r) denote the number of clumps and area of a clump at r, respectively.

The covering factor fcov then denotes the probability that a sight-line intersects a

clump per unit length. For example, for clumps of fixed size that are outflowing at an

assumed constant velocity v, we have a number density dependence as fcov∝nc ∝ r−2

(a more detailed description of this covering factor can be found in Dijkstra and

Kramer 2012).

The precise radial dependence of fcov is not known. However, when fcov decreases

with r we generally expect increased LyC escape fractions at larger galacto-centric

distances. We consider two parameter models for fcov = Ar−x, and fit for A and x.

Both A and v can also depend on radius. Hence, fcov generally is some unknown

power law of r (i.e., r−x), where x typically ranges between 0 and 3. This calculation

shows that when sight-lines with low impact parameter see the largest fcov, we see a

reduced fesc in these directions.

For the UVC and LyC SB models in Fig. 17, we generate the UVC surface

brightness as:

SBUVC(b) =

∫ ∞
−∞

ds εUVC(b, s). (4.7)

where b denotes the impact parameter, s denotes the line-of-sight coordinate, and

εUVC(b, s) denotes the emission rate of UVC photons per unit volume at (b, s). The

distance from the galaxy r is defined as r =
√
b2 + s2 (Note that 2rdr = 2sds and

ds = r
s
dr = r√

r2−b2dr, since r
2 = s2 + b2). We then obtain the LyC surface brightness

from:

SBLyC(b) =

∫ ∞
−∞

ds εUVC(b, s)
fLyC

fUVC
fesc(b, s). (4.8)

where fesc(b, s) denotes the fraction of LyC photons that can escape from (b, s), and

the factor fLyC
fUV C

simply rescales the flux at UVC frequencies to that at LyC.
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In our model of a clumpy ISM fc(r) denotes the number of self-shielding clumps

per unit length at r (see Dijkstra and Kramer 2012). We therefore find that fc(r)dr

denotes the number of self-shielding clumps along a differential length dr. We assume

that each clump is optically thick to ionizing photons. In this case, the escape fraction

from (b, s) is simply the probability of finding at least one clump on a sight-line to

(b, s), Pclump(b, s), which is given by:

Pclump(b, s) = 1− Pnoclump(b, s) = 1− exp[−Nclump(b, s)], (4.9)

where in the last step we assumed that the number of clumps along a given line-of-sight

follows a Poisson distribution with mean Nclump(b, s). This mean is given by:

Nclump(b, s) =

∫ s

−∞
ds′ fc(b, s

′). (4.10)

An interesting possibility is that the neutral gas clouds can theoretically scatter

LyC photons: LyC photons penetrate the neutral clumps over an average distance

that corresponds to τ '1. Direct recombination to the ground state produces LyC

photons that can escape from the neutral cloud, as the optical depth to the edge of

cloud is τ ' 1. This “scattering” (absorption and re-emission of LyC photons occurs

on the recombination time scale inside the cloud) of LyC photons could further flatten

the predicted surface brightness profile. The possible effects of LyC scattering can be

expanded to include scattering off free electrons and dust grains (which also differs

between LyC and UVC).

While the dot-dashed curve in Fig. 17 is only a single example (matching our F275W

LyC observations at 〈z〉' 2.62) of these model LyC SB profiles, model predictions

with similar parameter values fit the SB profiles in the other redshift bin. With these

models, we can integrate out to larger impact parameters and get a constraint on the

total escape fraction that accounts for the difference in SB profiles. This procedure
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gives a slightly larger value for fesc than those given in Table 3 (This is, of course,

almost identical to the constraints one would obtain simply by extrapolating the

surface brightness profiles to larger impact parameters, and integrating over them.)

4.4.6 The LyC Escape Fraction from Galaxies in the ERS Field

Table 3. LyC Escape Fraction Constraints from Galaxies Without AGN in the ERS
Sample

〈z〉 Nobj 〈fUVC/fLyC〉obs 〈fUVC/fLyC〉int 〈tage〉 AV med 〈TIGM〉 〈f abs
esc 〉

[yr] [mag] [%]
(1) (2) (3) (4) (5) (6) (7) (8)

Galaxies without AGN:
2.350 17 27+61

−5 20.2± 0.1 108.2+0.9
−0.3 0.40+0.20

−0.40 0.326+0.062
−0.085 22+44

−22

2.752 7 < 98.0 12.8± 0.1 107.9+0.6
−0.1 0.40+0.21

−0.02 0.218+0.102
−0.085 < 53

3.603 10 < 50.1 15.6± 0.2 108.5+0.6
−0.8 0.0+0.4

−0.0 0.066+0.045
−0.033 < 55

Table columns: (1): Average redshift of each stack; (2): Number of objects in each redshift
bin, as in Table 2; (3): Average observed flux ratio fν,UVC/fν,LyC and its ±1σ error range,
as measured from the LyC and UVC stacks in their respective apertures (see §4.4.2 and
Table 2); (4): Average intrinsic flux ratio fν,UVC/fν,LyC and its ±1σ error range, as derived
from the BC03 best fit SED models galaxies without AGN in each of our redshift bins (see
§3.3 and Eq. 3.12); (5): Average age of the stellar populations from the best fit BC03 models
and their ±1σ standard deviations in years; (6): Median dust extinction AV and its ±1σ
error range of the best fit BC03 SED model (the median AV is more representative, as the
distributions of each subsample is asymmetric; see §B.3.1); (7): Average filter-weighted IGM
transmission of all sight-lines and redshifts in the stacks and their ±1σ standard deviations,
calculated from the Inoue et al. (2014) models; (8) ML and ±1σ or upper limit values of the
Monte Carlo analysis of fabs

esc in percent, i.e., the escape fraction of LyC including effects
from all components of the ISM and reddening by dust as described in §3.3 (Eq. 3.8)

We applied the method outlined in §3.3–3.4 to infer our fesc values for the LyC

stacks described in §4.4.1. Using the models of Inoue et al. (2014), we apply the IGM

transmission to our model LyC flux by attenuating the SED with the wavelength

dependent IGM transmission coefficient curve at the redshift of the galaxy for 104
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simulated lines-of-sight. We then convolve the IGM attenuated model flux with the

model error that we calculated to obtain our final model LyC flux distribution (i.e.,

F int
ν,LyC,i). We then stacked all of the IGM attenuated model LyC fluxes distributions

of all the galaxies in their respective redshift bins to obtain our stacked model LyC

flux distribution as denoted in Eq. 3.7. The stacked model LyC flux distribution was

then used to calculate fesc as shown in Eq. 3.8.

Since we performed a non-correlated sum of the model LyC flux GRVs to estimate

this intrinsic stacked LyC flux, we run this fesc calculation for a total of 103 trials,

which we combined into one in order to generate a statistically significant sample

of possible fesc values. The PMF of the fesc distribution was then constructed by

optimally binning the simulated fesc samples according to the Freedman-Diaconis rule,

and normalizing by Nsamples to give their relative probabilities. The full fesc PMFs

are shown in Fig. 18 for galaxies without AGN. The statistics of the PMF, i.e., the

ML values, averages, and ±1σ error ranges were computed and are shown in Fig. 18

and Cols. (8) and (9) of Table 3.

These model LyC fluxes also represent the lines-of-sight where escaping LyC flux

was transmitted through the IGM before being absorbed by Lyman Limit Systems

and Damped Lyman-α systems within ∆z' 0.5. The opaque lines-of-sight, where the

IGM transmission peaks near T LyC
IGM ' 0.01, represent ∼30–40% of our potential model

LyC flux values. These lines-of-sight result in higher fesc, as the model LyC would

have been attenuated by more absorbers. However, ∼40–50% of our lines-of-sight have

average IGM transmission values T LyC
IGM & 0.4 (where the transmission distribution is

at a local minimum), and corresponds to the peak of the fesc PMFs, where the model

LyC flux encountered fewer absorbers. These lines-of-sight have a local maximum
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transmission near T LyC
IGM ' 0.7, and about ∼0.3% of these sight-lines can be as high as

T LyC
IGM ' 0.85.

4.4.7 Implications of the fesc MC Results

We list the results of our fesc MC simulations in Table 3. The average absolute

escape fraction, 〈f abs
esc 〉, from galaxies at various redshifts can be used to determine

what fraction of LyC produced by the stellar photospheres in those galaxies escapes,

i.e., is not absorbed by interstellar neutral H 1, dust, etc., at their average redshift.

However, variations in IGM transmission can cause these values to become highly

uncertain when stacking LyC emission from galaxies over too broad of a redshift range.

Thus, in order to ascertain any meaningful evolution in fesc, we must stack galaxies

at similar redshifts and compare their fesc values from sample to sample. Then, any

trends in the independent subsamples can be used to constrain correlations of fesc

with galaxy properties or evolution with redshift. Modeling these properties can also

be used to determine their impact on fesc, and to see if trends in these properties with

redshift can affect the apparent evolution of fesc with cosmic time.

The constraints we place on fesc are valid for the luminosity range

MUVC
AB '−21.1+0.9

−0.5 mag present in the sample which was selected to have reli-

able spectroscopic redshifts (see Fig. 10). The galaxies selected in our 〈z〉' 2.35 and

〈z〉' 2.75 stacks have, on average, younger stellar populations and more dust than

the 〈z〉' 3.60 stack. The fesc value for galaxies selected at 〈z〉' 3.60 are indicative of

somewhat older stellar populations (of ∼ 1 Gyr), but are not significantly affected by

the lower amount of dust observed in these galaxies. The 〈z〉' 2.35 and 〈z〉' 2.75

stacks sample galaxies that are undergoing a period of more active star-formation
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compared to the two higher redshift samples, which may have led to the accumulation

of more H 1 gas and dust in these galaxies, but also a brighter intrinsic LyC flux.

Thus, these f abs
esc values also imply that the ISM can absorb a larger fraction of LyC

flux from older stellar populations than from younger ones when comparing f abs
esc from

older and younger stellar populations.

Although young stellar populations can produce more intrinsic LyC than older

ones, which then has a higher probability of escaping the ISM, higher extinction from

dust in the UVC may correlate to a reduced efficiency of LyC escape. Although dust

is the dominant factor for attenuation for λ>912Å, ionizing radiation is more strongly

absorbed by neutral hydrogen due to the higher cross sectional area (Richings, Schaye,

and Oppenheimer 2014). LyC escape requires very low neutral Hydrogen column

densities (NH<1017). Since the amount of extinction from dust is strongly correlated

to the column density of Hydrogen (e.g., Bohlin, Savage, and Drake 1978; Fitzpatrick

1999; Rachford et al. 2002), higher extinction may then be indicative of low fesc. This

apparent correlation of high dust extinction and low fesc is consistent with the results

of several observational and analytical studies that investigate the impact of various

galactic parameters on fesc (e.g., John S. Mathis 1971; Leitherer et al. 1995; Inoue

2001; Bergvall et al. 2013).

4.5 Discussion of Results

4.5.1 Summary of Available Data on the LyC Escape Fraction vs. Redshift

The constraints we placed on fesc are valid for the luminosity range

MUVC
AB '−21.1+0.9

−0.5 mag present in the sample which was selected to have reli-
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able spectroscopic redshifts (see Fig. 10), with the two lowest redshift subsamples

being dominated by relatively younger stellar populations with active star-formation

and significant dust extinction, the 〈z〉=3.60 subsample comprises mostly lower

extinction galaxies with somewhat older stellar populations. For faint galaxies to

have finished reionization by z' 6–7, their fesc values need to be &10–20% (Ouchi

et al. 2009; Wilkins et al. 2011; Kuhlen and Faucher-Giguère 2012) beyond z' 6 and

their luminosities need to reach as faint as MUVC' –15 to –13mag (e.g., Brant E.

Robertson et al. 2013). Hence, if faint (dwarf) galaxies contributed significantly

to reionization at z. 6–7, one should consider how much their fesc fraction might

have increased both towards higher redshifts due to the expected lower metallicities

and lower dust extinction, and at fainter luminosities due to the larger impact that

SN driven outflows have on lower mass dwarf galaxies (e.g., Ricotti and Shull 2000;

Razoumov and Sommer–Larsen 2007; Wise and Cen 2009; Fernandez and Shull 2011).

Given that our spectroscopic selection samples luminous galaxies in all three redshift

bins, our LyC detections can only constrain the first possibility.

Fig. 19 shows the present ERS ML and 1σ upper bound fesc values generated from

the MC simulation listed in Table 3 for galaxies without AGN (purple filled circles

and triangles, respectively). We show the interquartile range of the 〈z〉=2.35 fesc data

to emphasize it’s highly asymmetric PMF, which has more data below the ML point.

We also plot similarly derived, fesc data available in published work summarized in

§2.3 as light blue points, with upper limits indicated as blue triangles. The light blue

fesc points indicate galaxies with restframe 1500Å luminosities close to those sampled

in Fig. 5a–5c (i.e., 〈MAB〉 '–21.1+0.9
−0.5 mag). The dependence of the fesc values of

galaxies on luminosity is not well determined, but no clear dependence on luminosity
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is obvious in Fig. 19. We will therefore discuss the redshift dependence of fesc here for

the luminosities sampled in Fig. 10.

We first converted the published f rel
esc values to fesc when necessary using the

quoted extinction values from the literature source. We note that these fesc values

were derived from different observational analyses, including both space and ground

based spectra and imaging, with different object selection, reduction techniques, error

assessment, and application of IGM attenuation models. We plot only the quoted fesc

values from the literature source most analogous to this study, i.e. those derived from

their full, stacked sample, with galaxies of similar luminosities to ours. Some of the

published errors may not account for the same uncertainties that we address in §3.4.

When necessary, we converted the quoted published uncertainties to 1σ error bars, so

they are comparable to our results in Table 3.

Although the fesc values plotted in Fig. 19 were derived with different methods, the

present ERS data appears to suggest a correlation of fesc with redshift. However, any

such relation may not be a simple power law in (1+z). Several authors (e.g., Inoue,

Iwata, and Deharveng 2006; Razoumov and Sommer–Larsen 2010; Finlator et al. 2012;

Kuhlen and Faucher-Giguère 2012; Becker and Bolton 2013; Dijkstra et al. 2014) have

suggested that redshift averaged fesc values for galaxies may increase significantly

with redshift, possibly as steeply as ∝(1+z)3 – (1+z)5. This only holds only for z. 7,

beyond which the implied escape fraction would approach 100% for the upper bound,

but decrease monotonically at higher redshift (e.g., Razoumov and Sommer–Larsen

2010). If the (1+z)κ exponent values were as steep as κ '2.0, this prediction would

provide fesc values at z& 6 in excess of ∼30%, as required for hydrogen reionization

to have completed by z∼ 6 (Brant E. Robertson et al. 2013). However, none of the
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simple (1+z)κ power laws for fesc seem to be consistent with the data points in Fig. 19

to within their stated 1σ errors.

4.5.2 A Redshift Dependence Faster than (1+z)κ?

Since the plotted 21 independent data points in Fig. 19 deviate from published

power laws, no single (1+z)κ curve seems to fit all the fesc data for galaxies without

AGN. We therefore suggest the possibility that a more sudden decrease of f abs
esc with

redshift may instead have to be considered. The combined data in Fig. 19 suggests,

however, that fesc may have declined by a factor of nearly ∼10 from &20% at z& 2

to ∼1% at z. 2. These low fesc values at z. 2 are predicted by some cosmological

radiative transfer models as well, which also require a “steep rise” in fesc at z& 2

for massive galaxies to reionize the Universe (e.g., V. Khaire et al. 2015), and have

also been suggested in studies of the Ly − α escape fraction over redshift (e.g., Blanc

et al. 2011).

Fig. 19 indicates that the sudden decrease in fesc may have occurred within

the epoch of z∼2, or within about ±1Gyr of the observed peak in the cosmic star-

formation history (SFH; Piero Madau et al. 1996; Faucher-Giguère et al. 2008; Cucciati

et al. 2012; Burgarella et al. 2013). This period may indicate the epoch where the

universe transitions from infall/merger driven star-forming galaxies at 2. z.6 to a

more passively evolving universe by giant galaxies at z. 1–2 (Driver et al. 1998). This

transition may have resulted in dust and gas rapidly accumulating in the disks and

central bulges of forming galaxies, with a SN rate that has progressively less impact

on clearing gas and dust from the galaxies that are steadily growing in mass with

cosmic time. It is possible that this process may have caused fesc to rapidly drop
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over a relatively narrow interval of cosmic time in luminous galaxies, as massive LyC

producing stars formed during the period of high SFR become either SNe II or AGB

stars, which then enrich the ISM with dust within ∼1Gyr (J. S. Mathis 1990; Bekki

2015). The infall of hydrogen in these galaxies could have then caused fesc to decrease

substantially (Rauch et al. 2011; van de Voort et al. 2012).

The subsequent increase of dust can then prevent the collapse of cold gas by

photoelectric heating from stars or AGN in the galaxy (Krumholz and Dekel 2012;

Forbes et al. 2016). This would then lead to a decrease in the galaxy’s SFR, as feedback

from heating inhibits the formation of new massive stars (e.g., Inoue 2001; Inoue,

Hirashita, and Kamaya 2001). The decline in SFR would also lead to a decreasing

SN rate (Botticella et al. 2012), further preventing the escape of LyC, as there would

have been fewer clear channels produced by SN for the LyC to escape. LyC produced

by AGN can be absorbed by gas and dust in the disk of the galaxy itself, depending

on viewing angle. When galaxies produce stronger AGN outflows, more of their LyC

radiation may escape approximately perpendicular to the galactic disk (e.g. Windhorst,

Keel, and Pascarelle 1998; Reunanen, Kotilainen, and Prieto 2003), which contributes

to maintaining the ionized state of the IGM, as AGN begin to dominate the ionizing

background at z. 3.

4.5.3 The Role of Galaxies with Weak AGN in Reionization

Fig 14 shows the stacked LyC and UVC images of the known galaxies with AGN

in our sample. The 〈z〉=2.374 stack only includes two AGN with a LyC flux of

mAB> 27.91 mag (UVC aperture). The 〈z〉' 2.61 and 3.32 samples contain 7 and 3

stacked AGN with measured LyC fluxes of mAB' 28.3 and 27.42 mag with SNR∼2.7
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and 2.5, respectively. These fluxes are typically more luminous in LyC and have higher

SNR than their non-AGN counterparts, despite having fewer stacked galaxies. This is

most likely due to LyC originating from the central accretion disk, made visible by

stronger AGN outflows when viewed under the right angle. AGN outflows can also

increase the porosity of the ISM in its host galaxy (e.g., Silk 2005), thereby increasing

fesc of the LyC produced by stars, which further contributes to the total measured

LyC flux from that galaxy.

The stacks in Fig 12 suggest some variety of LyC morphologies, though the UVC

images exhibit more compact light profiles compared to the non-AGN stacks in all

three cases (see the discussion in §4.4.5–4.4.4). The 〈z〉' 2.62 stack is the most

extended of the AGN both in LyC and UVC, which is most likely due to the increased

sensitivity to fainter flux at low redshift, with a central bright point source from

radiation escaping along the observed line-of-sight. The radial dependence of the

LyC SB profile for this stack may be due to the viewing angle of the AGN relative

to the direction of the escaping LyC radiation, or possibly due to the fact that the

LyC undergoes a more complex escape process, where photons can be reflected off of

relativistic electrons in the AGN corona and accretion disk, or by hot dust in the torus

via Thomson and/or inverse Compton scattering (e.g., Haardt and Maraschi 1993).

The 〈z〉' 3.32 AGN LyC stack appears to be more point-like, indicating that these

observed LyC photons may be escaping predominantly along the line-of-sight, which

is supported by the presence of broad emission lines in their spectra, although the

more extended LyC emission may not be visible due to the average SB of these AGN

at higher redshift being dimmed by an additional ∼61% from 〈z〉' 2.62 to 〈z〉' 3.32.

Fig. 10 shows that the average UVC luminosities of “Galaxies with weak AGN”

in our sample is about the same, or somewhat fainter than that of galaxies without
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AGN. Their average luminosity in Fig. 10 MAB' –20.4±0.9mag at z' 2.3–4.1 does

not indicate clearly QSO dominated luminosities or SEDs. Table 2 shows that the

LyC flux measured from the stacks of (weak) AGN at all redshifts is typically brighter

than galaxies without AGN. Thus, precise modeling of the intrinsic LyC emission must

include the contribution of flux emitted by, or reprocessed from, the AGN accretion

disk. The SED of the AGN accretion disk is more complicated than a simple blackbody

curve, as the SED must account for the broad and narrow emission line regions, as

well as energy lost to relativistic jets and photons scattered/absorbed by the corona

and central torus and non-AGN dust, which is also viewing angle dependent. We did

not fit both stellar+AGN SED models to the 4–6 band continuum data in this initial

study, and therefore we do not calculate escape fractions for these galaxies. From the

compact appearance in some of our stacked images — and from the fact that they are

on average brighter than galaxies without AGN — the LyC flux in galaxies with weak

AGN may be dominated by light originating from their accretion disks.

Further data and modeling is needed to better constrain f abs
esc (z) for both galaxies

and weak AGN to confirm these observed trends. The ERS LyC data for AGN may

be consistent with a more modest drop in f abs
esc (z) than for galaxies that may have

occurred close to the peak in the epoch of AGN activity around z' 2.5 (e.g., Fontanot

et al. 2007; Croom et al. 2009; Ikeda et al. 2011; Ikeda et al. 2012). Since AGN

activity can affect the SFRs, it is possible that when AGN outflows started to ramp up

after the peak in the cosmic star-formation history at z' 2 (Springel, Di Matteo, and

Hernquist 2005; Hopkins et al. 2006), their outflows cleared enough paths in the host

galaxy ISM to increase fesc of a possibly AGN induced top-heavy stellar population

IMF.

Because galaxies far outnumber AGN, and despite being fainter in LyC on average,
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their fesc values suggest that galaxies may have produced sufficient LyC radiation

to maintain reionization at z& 3, while AGN likely dominated in the production of

ionizing LyC flux at z. 2–3. Even though our spectroscopically selected sample of

galaxies outnumber the weak AGN by a factor of ∼3 (see col. 4 of Table 2), the

total ionizing flux from AGN is brighter than that from galaxies without AGN by

∼7.7×12/34∼2.7.

The ERS samples are still very small, and clearly need further confirmation through

much larger samples, both through additional deep UV/optical imaging of wider HST

fields and through spectroscopy on fields with high quality existing HST data. Further

theoretical work is needed to outline exactly how quickly fesc may have increased

towards higher redshifts and at fainter luminosities, as well as at lower metallicities

and lower extinction at higher redshifts, while producing enough escaping LyC photons

from faint galaxies to finish and maintain reionization at z. 6–7.

There is already a significant issue in accounting for reionization with the faint

galaxy population observed via cluster lensing at z' 9. At redshifts larger than 8,

the Hubble Frontier Fields reveal a strong drop in rest-frame UV luminosity density

(e.g., Ishigaki et al. 2015). Hence, it is also possible that one may need to consider an

additional source of reionizing photons beyond z' 6–7. This source might include

feedback on both the IGM ionization and clumpiness via hard ionizing photons from

high mass X-ray binaries (e.g., Mirabel et al. 2011). Other astrophysical sources such

as Population 3 stars or mini AGN seem strongly constrained via chemical evolution

(Kulkarni et al. 2014) and the X-ray background (Dijkstra, Haiman, and Loeb 2004),

though these observations may be limited by Malmquist bias. It is possible that fesc

may evolve with redshift and/or with galaxy properties as well (e.g., mass, AV , SFR,

and/or age).
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4.6 Conclusions

This chapter presented LyC emission that may be escaping from galaxies using

improved HST WFC3 of the ERS fields in three filters, where LyC may be observed

from galaxies at z' 2.3–4.1. The data used in our analysis was drizzled with the much

more accurate 2013 WFC3 geometric distortion correction tables, which resulted in

the correction of significant astrometric offsets that remained in earlier ERS UVIS

mosaics. The WFC3 ERS UV images were taken in 2009 September, when the CTE

was still at a level where faint flux could still be measured without significant losses.

We verified that any loss in CTE is not the primary limitation to our measurements

(see Appendix B.1).

We extracted sub-images centered on galaxies with high quality spectroscopically

measured redshifts from the ERS mosaics, and averaged the LyC flux of those galaxies.

We payed careful attention to the removal of potentially nearby contaminating objects

and low level variations in the UV sky-background during this stacking process. We

ensured that no significant amount of contaminating flux longwards of the Lyman-break

(λ> 912Å) was included in our stacks. The following are our main findings:

(1) Our measurements of the average LyC flux in the stacks for galaxies at z' 2.3–4.1

is summarized in Table 2. We find that the LyC flux of faint galaxies at 〈z〉' 2.35,

2.69, and 3.54 is generally constrained at the <1–3σ level, in typical image stacks of

13–19 objects in the WFC3/UVIS F225W, F275W, and F336W filters, respectively.

These upper limits corresponds to total LyC fluxes of mAB & 28.1–29.0 mag. The

LyC flux of weak AGN is detected to be brighter on average at z' 2.3–3.5, but over

∼2–10× fewer objects per stack.

(2) The combined LyC emission averaged over the three filters suggests an overall
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LyC flux distribution that is non-centrally concentrated, which may be explained by a

radial dependence in the ISM porosity and/or scattering of the LyC photons. We find

that the LyC flux from AGN is flatter than its UVC counterpart. This may suggest

a complex escape process that may be determined by the distribution and extent of

neutral (dusty) gas clouds within a porous multiphase ISM.

(3) From our best fit BC03 SED models fit to HST continuum observations longwards

of Ly − α, the observed LyC flux corresponds to an average absolute LyC escape

fraction constrained to fesc∼22+44
−27% at 〈z〉'2.4 and .55% at 〈z〉'2.8–3.6. While the

error bars on the implied fesc values in each of the three redshift bins remain large,

within the error bars, the data suggest an increasing trend of fesc with redshift at

z&2.

(4) The available published fesc data for galaxies may suggest a more sudden increase

in f abs
esc with redshift that occurred around z∼2. For galaxies, the steepest drop in fesc

occurs at z. 2, near the peak of the cosmic star-formation history within an interval

of ±1Gyr from this peak in cosmic time.

(5) If galaxies without AGN at z∼2–4 are analogous to those at z&6, the upper limits

to their fesc values suggest that they may have had a sufficient LyC escape fraction to

reionize the IGM by z& 6. The SEDs of galaxies with weak AGN is likely dominated

by stellar light in the non-ionizing continuum. Galaxies with weak AGN outshine

galaxies without AGN in our sample by a factor of ∼7.7, or mAB∼2.3mag. Hence,

while galaxies without AGN likely began and maintained cosmic reionization at z& 3,

galaxies with (weak) AGN likely dominated the contribution to the cosmic ionizing

background and maintain reionization at z.2–3, although the role of massive galaxies

without AGN may not have been negligible at z.2.

The transition from galaxy dominated reionization to weak AGN reionization
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appears to have occurred at z∼ 2–3, i.e., right around the peak in the cosmic SFR

( Piero Madau et al. 1996), which may indicate the epoch where the universe transitions

from infall/merger driven SFGs at 2. z. 6 to a more passively evolving universe by

giant galaxies at z. 1–2. This may result in gas and dust rapidly accumulating in the

disks and nuclei of forming galaxies, combined with a SN rate that has progressively

less impact on clearing gas/dust in galaxies that are steadily growing in mass with

cosmic time. The accumulating H 1 gas and decreasing SFR may have caused fesc to

rapidly drop over a relatively narrow interval of cosmic time (∼1Gyr), as the LyC flux

heats the dust and inhibits the formation of new massive stars. When AGN outflows

began to increase after the peak in the cosmic star-formation history at z∼2, their

outflows may have cleared enough paths in the ISM of host galaxies to enhance the

fraction of escaping LyC radiation produced by massive stars and from the accretion

disk, resulting in AGN beginning to dominate the ionizing background at z. 2.

(6) Further data on LyC fesc are essential for both galaxies and weak AGN to confirm

both their trends in f abs
esc (z). The ERS samples are still very small, and clearly need

further confirmation through much larger samples, both through deep imaging of wider

HST fields in the UV and through deeper spectroscopy on fields with high quality

existing HST data, e.g., with the JWST FGS/NIRISS grisms and with NIRSpec

(Gardner et al. 2006). Further theoretical work is needed to outline exactly how

quickly fesc may have increased towards higher redshifts and at fainter luminosities,

as well as at lower metallicities and lower dust extinction at higher redshifts, while

producing enough escaping LyC photons from faint galaxies to complete and maintain

reionization.

The following chapter presents a continuation of the work presented here, but with

an expanded sample of more than twice the galaxies. In this case, the sample was
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expanded after incorporating the recently acquired HST UV imaging in the GOODS

North and South fields.
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Figure 9. Example Spectral Classification Diagram used for Sample Selection

An example spectrum of a highly reliable redshift of an AGN, as determined by the
observed broad Ly − α and C 4 lines, X-ray luminosity, and X-ray photon index Γ.
The expected AGN emission lines are seen to coincide exactly where they are
expected at the indicated redshift of z=2.5859 in the ground-based blue and 3D-HST
grism spectra shown in the bottom-left panel. The red curve in the middle panel is
equal to the blue curve, but convolved with a 3Å Gaussian filter. Zoomed-in
segments of the spectrum around the most common emission/absorption lines are
shown along the middle column. All available HST images from WFC3/UVIS,
WFC/ACS, and WFC3/IR where the galaxy could be excised are shown in the right
two columns, with a χ2 image (Szalay, Connolly, and Szokoly 1999) composed of all
other HST images shown plotted on the bottom right. The HST filter that captures
LyC is indicated by a violet circle. The photometric redshift found by the 3D-HST
collaboration (Momcheva et al. 2016) is shown at the top right, which was not always
correct due to the unavailability of some HST UV-imaging at the time. The
position-based ID of the galaxy is shown above the ground-based spectrum, with the
“b”-suffix distinguishing it as the second available ground-based spectrum for this
galaxy. The source archive of the spectrum is indicated in the bottom-left of the
convolved spectrum panel. This particular galaxy is discussed more in detail in §5.4.
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[c] Galaxies with AGN

-22 -21 -20 -19
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Figure 10. Apparent and Absolute Magnitude Distributions of Galaxies and AGN in
the ERS Sample

[a] Absolute and apparent magnitude distributions at the rest-frame 1500±100Å of
the spectroscopic samples for all galaxies. [b] Same, for just the galaxies without
AGN activity. [c] Same, for galaxies with indications of AGN activity. These
magnitudes were derived from the observed SED fits (see §3.3), and therefore do not
require k-corrections. The blue dashed curve indicates the slope of the luminosity
function of 〈z〉=3.46 galaxies at MAB=–20.8, equal to 0.84 dex/mag.
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Figure 11. SED Parameter Distribution of Galaxies Without AGN in the ERS
Sample

Stacked BC03 SED fit parameter distributions of the spectroscopic samples for
galaxies without AGN. The purple, blue, and green bars represent the 〈z〉=2.35,
〈z〉=2.75, and 〈z〉=3.60 samples, respectively.
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Figure 12. Stacks of All Galaxies in the ERS Sample

Sub-image stacks for the three different redshift bins in our sample of all galaxies,
sampling LyC emission in: [a] F225W at 2.28≤ z≤ 2.45, [b] F275W at
2.47≤ z≤ 3.08, and [c] F336W at 3.13≤ z≤ 4.15; and corresponding UVC
(∼1400.λ0 . 1800Å) emission in: [d ] F606W, [e] F606W, and [f ] F775W. Note that
the objects contributing to panels [d ] and [e] differ, since they correspond to different
redshift bins. Blue ellipses indicate the SExtractor MAG_AUTO UVC detected
matched apertures, while green apertures are 2.′′0 diameter circles for comparison. All
sub-images are 151×151 pixels (4.′′53×4.′′53) in size.
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Figure 13. Stacks of Galaxies Without AGN in the ERS Sample

As Fig. 12 for galaxies without AGN (i.e., no obvious signs of nuclear activity from
their spectra or X-ray/radio luminosities/photon indices.
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Figure 14. Stacks of Galaxies With AGN in the ERS Sample

As Fig. 12 for only the galaxies hosting weak AGN.
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Figure 15. Example of Resulting Photometric Analysis Method

Example flux distribution for the F225W galaxies without AGN stack used for our
photometric analysis listed in Table 2. Each pixel in the stack was given a mean
based on the pixel value in the stacked F225W image, and a variance from the sum of
the sky-background variance and the square of the corresponding pixel value in the
stacked RMS map. The blue distribution was generated by summing the pixel flux
distributions inside the blue aperture from Fig. 13 for each realization of the stack, as
described in §3.2. The orange line is the Gaussian curve fit to the blue distribution.
The mean and +1σ values are shown as vertical dash-dot and dotted lines,
respectively. The green distribution is the modeled intrinsic flux using the stacked
best fit SED convolved with the IGM transmission models of Inoue et al. (2014) and
fitting error. The average value of the blue and green distributions is indicated as
avgobs and avgsed, respectively.
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Figure 16. Composite Stacks of All Galaxies in the ERS Sample

[Top Row ]: LyC stacks of all galaxies in our sample with high quality spectra and
reliable redshifts; [Middle Row ]: The same as the top row but convolved with a 1σ
Gaussian kernel. [Bottom Row ] The UVC counterparts of the top row; a, d, and g
[Left column of panels:] Composite stacks of all galaxies without AGN in our
spectroscopic sample observed in the F225W, F275W, and F336W filters; b, e, and h
[2nd column:] Composite stacks of all galaxies hosting (weak) AGN; c, f, and i [3rd
column:] Composite stacks of all 46 galaxies in our sample. These stacks represent
the average observed LyC Fν from all galaxies integrated from 2.3. z. 4.1, scaled to
a common zeropoint magnitude. The blue and green circles have radii 0.′′5 and 1.′′0,
respectively. The measured SNR of the combined LyC emission in these stacks is
∼2.3, 0.7, and 3.9σ for the stack of all galaxies, all galaxies without AGN, and all
galaxies with AGN, respectively. The AGN stacks exhibit both a centrally
concentrated and extended component in their flux distributions, from contributions
of a central AGN point source and perhaps also from scattered photons (Fig 13).
These images suggest that LyC escape paths may be slightly offset from a galaxy
center, including point source emission from the AGN. Given the random orientation
of galaxies in each stack, this would explain the faint, non-centrally concentrated, and
extended morphology of the detected LyC emission.
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Figure 17. Modeled and Observed LyC Radial Profiles of Galaxies with AGN in the
ERS Sample

Radial surface brightness profiles of the non-ionizing UVC signal (solid curves) and
the LyC signal (dashed curves) measured in the stacks (Fig. 14) for the galaxies with
AGN samples. The curves are color-coded according to their mean redshift (filter):
〈z〉=2.68 (F606W and F275W; blue) and 〈z〉=3.49 (F775W and F336W; green). The
observed PSF in F275W and F606W are indicated by dotted purple and pink curves,
which were normalized to the central SB of the corresponding LyC surface brightness
profiles. The horizontal black dashed line indicates the 1σ sensitivity limit for the
LyC profile in F275W. Both UVC surface brightness profiles are extended with
respect to the corresponding PSF curves. The observed LyC stack SB profiles are
also extended and flatter than the UVC profiles, which is also predicted from our
LyC scattering model (light blue dashed curve), where scattering of the escaping LyC
photons off electrons and/or dust with a porous ISM spreads the LyC emission
beyond the distribution of the stellar UVC light (light blue solid curve). The light
blue solid curve is scaled from light blue dashed curve by a single ratio of fUVC

f LyC
, which

may depend on radius. See §4.4.5 for further details of the model.
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Figure 18. Probability Mass Function of the LyC Escape Fraction from Galaxies
Without AGN in the ERS Sample

PMFs of fesc values from the MC simulations described in §3.3 plotted against their
relative probability. This analysis was performed 103 times using the measured and
modeled intrinsic stacked apparent LyC flux and their ±1σ ranges. We apply the
IGM attenuation models of Inoue et al. (2014) to our modeled LyC fluxes. These fesc

values were optimally binned according to the Freedman-Diaconis rule (see §4.4.6).
Downwards triangles and circles indicate the resulting ML and average fesc values in
each probability distribution function, respectively, while the left/right facing
triangles indicate the ±1σ range around the mode.
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Figure 19. The Evolution of the LyC Escape Fraction for Galaxies Without AGN in
the ERS Sample

The LyC escape fraction for various galaxy samples as a function of redshift. Plotted
is present ERS ML average fesc value with their ±1σ range and 1σ upper limits for
our galaxies without AGN sample (purple filled circled and triangles) taken from the
probability mass functions of Fig. 13, generated from our MC simulations described
in §3.3. The interquartile range of the 〈z〉=2.35 data is indicated by a box to
highlight the high asymmetry of it’s PMF. The blue points indicate available
published data as referenced in §2.3, some of which were converted from quoted f rel

esc

values using extinction values from the literature source (see §3.3, Eq. 3.10). All
vertical error bars are the ±1σ uncertainty on the fesc values. Some errors were
converted from the quoted 2–3σ uncertainties. Upper limits are shown as blue
downward triangles. Although the blue points represent galaxy samples with different
properties from our samples, and the quoted errors were derived from uncertainties
with different error assessment, the combined data suggests a correlation of fesc with
redshift, which may not be a simple power law in (1+z). This compiled dataset does
not rule out the possibility that massive galaxies may have had high enough LyC fesc

values to complete hydrogen reionization by z∼ 6, if galaxies at 2.z.4 and z&6
are analogous.
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Chapter 5

THE LYC ESCAPE FRACTION FROM GALAXIES AND AGN IN THE GOODS

NORTH AND SOUTH FIELDS

5.1 Introduction

The Great Observatories Origins Deep Survey (GOODS) is an observational

campaign that performed deep, multi-wavelength observations from multiple space

and ground-based telescopes to provide publicly available data to be used for exploring

a range of scientific topics that study the distant Universe. These Great Observatories

include HST in the UV, optical, and near-IR, Chandra and XMM-Newton in the

X-ray, Spitzer in the mid-IR, Herschel in the far-IR and submillimeter, the Very

Large Array (VLA) in the radio, and multi-band imaging and spectroscopy from the

ground-based Atacama Large Millimeter/submillimeter Array (ALMA), VLT, Keck,

Subaru, and Kitt Peak 4-meter telescope, and will undoubtedly be observed with the

upcoming JWST. The primary science goals of the GOODS program were to study

the mass assembly history of galaxies and the SEDs of galaxies from radio to X-rays

generated by stars and AGN over a wide range of redshifts. The GOODS data was

also used to study extragalactic background light in the multi-wavelength data the

program compiled (Dickinson, Giavalisco, and GOODS Team 2003).

The survey was performed in two regions of sky, one in each celestial hemisphere.

Data in the northern hemisphere was collected in the vicinity of the Hubble Deep

Field North (HDF-N) and the southern hemisphere data was collected in the Chandra
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Figure 20. Color image of the GOODS North Field

This color image of GOODS North is comprised of multiple HST images taken by the
WFC3/UVIS, ACS/WFC, and WFC3/IR cameras. The WFC3/UVIS F275W filter
corresponds to violet in the image, WFC3/UVIS F336W is blue, ACS/WFC
F435W+F606W data is represented by green, WFC3/IR F775W is yellow, ACS/WFC
F814W+F850LP+WFC3/IR F105W is orange, WFC3/IR F125W+F140W is red, and
WFC3/IR F160W is magenta. The 11 bands displayed in this color image are also used
extensively throughout the work presented in this chapter.

Credit: ESA/Hubble & NASA
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Figure 21. Color image of the GOODS South Field

This color image of GOODS South was constructed using the same filters and color scheme
as in Fig. 20

Credit: ESA/Hubble & NASA
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Deep Field South (CDF-S). GOODS-N is centered at R.A.' 189.2◦ and Dec.' 62.2◦

and GOODS-S is centered at R.A., Dec.' 53.1◦, 27.8◦, and each subtends an area

of ∼ 74 arcmin2 and 28 arcmin2 on the sky, respectively. The observations carried

out by the GOODS campaign provided the data for & 500 journal publications and

dissertations to date. The GOODS program has indeed achieved its goal of providing

one of the best legacy astronomical datasets for studying the distant Universe.

In this chapter, the recent HST WFC3/UVIS imaging of the GOODS North and

South field is used to study the LyC emission escaping from galaxies and AGN, which

extends the previous work presented in Chapter 4 and published in Smith et al. (2018).

The considerable investment in observational efforts focused on these fields provide a

substantial increase to the available data that can be used in this work, and greatly

exceeds that available in the ERS field. The next few sections in this chapter describe

the GOODS UV mosaics we constructed for our LyC analyses, the sample of galaxies

we selected from these fields, the results of our LyC photometric analyses and fesc

constraints, unexpected findings that arose during our analyses, and a discussion and

conclusions of these results.

5.2 Data Description and Processing

The archival HST image data we used for our LyC studies presented here includes

WFC3/UVIS data from the ERS (Windhorst et al. 2011), the CANDELS (Grogin

et al. 2011; A. M. Koekemoer et al. 2011), the Hubble Ultraviolet Ultra Deep Field

(UVUDF; Teplitz et al. 2013), and the Hubble Deep UV Legacy Survey (HDUV;

Oesch et al. 2018), which we independently drizzled using the Astrodrizzle tool found
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in the DrizzlePac software5. The ERS WFC3/UVIS data is described in detail in

§4.2. We used optical ACS/WFC data in F606W, F775W, and F850LP from GOODS

(Dickinson, Giavalisco, and GOODS Team 2003; Giavalisco et al. 2004), WFC3/IR

F098M, F125W, and F160W imaging in the ERS field (Windhorst et al. 2011),

CANDELS WFC3/IR F105W, F125W, F160W and WFC/ACS F814W, and 3DHST

WFC3/IR F140W imaging (Momcheva et al. 2016) for SED fitting (see §5.3.2) and

for studying the rest-frame, non-ionizing UVC (λrest'1400-1800Å) of galaxies.

Our new mosaics include all available CANDELS and HDUV data in F275W and

F336W taken in the GOODS North field, as well as all available data in F225W,

F275W, and F336W from the HDUV and UVUDF surveys that covered the GOODS

South field. We refer to both mosaics as the “GOODS/HDUV” data since much of this

data came from the HDUV program, and the ERS imaging presented in §4.2 is simply

referred to as the “ERS” data. The ERS mosaics reach ∼2 orbit depth (mAB< 26.4 at

5σ for F275W) over a wide ∼58 arcmin2 area in the F225W, F275W, and F336W filters

(Windhorst et al. 2011), where an orbit corresponds to an exposure time of ∼ 2300 s.

The HDUV imaging reaches 4–8 orbit depth in F275W and F336W (mAB< 27.6

at 5σ for F275W) in a combined ∼100 arcmin2 area across the GOODS North and

South fields (Oesch et al. 2018). The UVUDF data covered a single pointing in

GOODS South for 16, 16, and 14 orbits in F225W, F275W, and F336W, respectively

(mAB< 27.8 at 5σ for F275W; Rafelski et al. 2015). The CANDELS survey also

observed GOODS North in F275W and reached a ∼6 orbit depth (mAB< 27.1 at 5σ;

A. M. Koekemoer et al. 2011) that brought the F275W GOODS North data to a total

depth of ∼10 orbits. The HDUV imaging required the use of post-flash at the time of

5http://www.stsci.edu/scientific-community/software/drizzlepac.html

93

http://www.stsci.edu/scientific-community/software/drizzlepac.html


−0.01 −0.0075−0.005−0.0025 0.0 0.0025 0.005 0.0075 0.01

Counts [e−/s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

F
ra

ct
io

n
[−

]

Oesch+ (2018) 0.′′06:

This work 0.′′06:

This work 0.′′03:

µ=0.000021
σ=0.001405

µ=0.000040
σ=0.001525

µ=0.000005
σ=0.000542

GN F275W

−0.01 −0.0075−0.005−0.0025 0.0 0.0025 0.005 0.0075 0.01

Counts [e−/s]

µ=0.000019
σ=0.001268

µ=0.000048
σ=0.001106

µ=0.000009
σ=0.000366

GN F336W

−0.01 −0.0075−0.005−0.0025 0.0 0.0025 0.005 0.0075 0.01

Counts [e−/s]

µ=0.000022
σ=0.000981

µ=0.000020
σ=0.000967

µ=0.000006
σ=0.000341

GS F275W

−0.01 −0.0075−0.005−0.0025 0.0 0.0025 0.005 0.0075 0.01

Counts [e−/s]

µ=0.000019
σ=0.001268

µ=0.000048
σ=0.001106

µ=0.000009
σ=0.000366

GN F336W

Figure 22. Pixel Histograms of the GOODS/HDUV MosaicsPixel histograms of the GOODS/HDUV mosaics from Oesch et al. (2018) and this work in
the WFC3/UVIS F275W and F336W filters for the GOODS North (GN) and GOODS
South (GS) fields. Our mosaics were sky-subtracted and drizzled to 0.′′03 and 0.′′06 pixels
and the Oesch et al. (2018) data was drizzled to 0.′′06 pixels. The mean (µ) and dispersion
(σ) of the histograms is indicated in each plot for all three versions of the GOODS/HDUV
mosaics. The 0.′′06 mosaic pixel-value distributions are generally consistent in the four cases,
and our mosaics show modest improvement in µ and σ in three. The 0.′′03 mosaic pixel-value
distributions have the smallest µ and σ in all four images, due to its smaller pixels and
resulting lower correlated noise.

observation to mitigate CTE degradation effects, such as the loss of faint flux in the

raw image data during readout. Flashing the WFC3/UVIS CCDs with a diffuse light

source before readout attempts to raise the overall sky-background level in order to

fill charge traps in degraded pixels. This strategy can mitigate most effects from CTE
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loss, but some faint flux is still lost, and the raw images suffer a penalty of increasing

the overall background noise (Biretta and Baggett 2013).

Fig. 22 shows sky histograms of our versions of the GOODS/HDUV mosaics

presented here, drizzled at 0.′′03 and 0.′′06 pixels for comparison to the public Oesch

et al. (2018) mosaics drizzled at 0.′′06 pixels. Our mosaics show modest improvements

in the sky-subtraction level µ and the dispersion of the sky-background noise σ, with

reduced values for µ and σ in some cases. The 0.′′03 pixel-value distributions show

the most improvements in µ and σ, due to the smaller pixel size and associated

lower pixel values and correlated noise between pixels (more details of noise scaling

effects in drizzled images can be found in the Appendix of Casertano et al. 2000).

The pixel distributions are generally consistent with Oesch et al. (2018), and the

slight improvements in the 0.′′06 images are likely due to differences in processing

the raw HST frames and Astrodrizzle parameters used for constructing the mosaics.

Our image processing steps before drizzling included subtracting a stacked dark

current image from each frame to remove any thermal structure, more robust cosmic

ray removal resulting in fewer bad pixels, and the removal of gradients caused by

scattered background light. Each frame of the GOODS/HDUV mosaics was also

CTE-corrected (Anderson and Bedin 2010) and aligned to the same pixel grid as the

GOODS ACS/WFC F435W v2 image6. We drizzled the GOODS/HDUV data to a

0.′′06 pixel scale for comparing to the public Oesch et al. (2018) mosaics, and to 0.′′03

for our LyC studies (i.e., our LyC photometric analysis and fesc constraints).

We chose to use the 0.′′03 mosaics primarily because the smaller pixels increase the

ability to resolve smaller features. This allowed for improved deblending of neighboring

galaxies that can potentially contaminate LyC measurements with non-ionizing flux.

6https://archive.stsci.edu/prepds/goods/
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Such compact galaxies can be detected at higher S/N ratios in optical ACS/WFC HST

images and masked in the WFC3/UVIS mosaics. The smaller pixel scale also allowed

us to determine more accurate statistics on the local sky-background noise due to

the increased number of pixels in a given area of sky. This also improved subsequent

photometric estimates of LyC, which we based on the total count rate in the drizzled

mosaic image within a measurement aperture, the local sky-background dispersion,

and the RMS-values of the pixels used for photometry within the aperture. The

improvements in the photometric statistics also led to improvements in the accuracy

of the constraints of subsequent MC analyses of the LyC escape fraction, which are

directly proportional to this photometry.

5.3 Sample Selection and Characteristics

Our sample used for LyC studies at 2.26≤ z≤ 4.3 in the GOODS fields was

selected from a compilation of spectroscopic surveys including the 3D-HST (Brammer

et al. 2012; Momcheva et al. 2016), GMASS (Kurk et al. 2013), GOODS/FORS1

(S. Cristiani et al. 2000), GOODS/FORS2 (Vanzella et al. 2006; Vanzella et al. 2008),

GOODS/VIMOS (Popesso et al. 2009; Balestra et al. 2010), K20 (Mignoli et al. 2005),

MUSE-Wide (Herenz et al. 2017), SDSS DR14 (Abolfathi et al. 2018), TKRS (Wirth

et al. 2004), TKRS2 (Wirth et al. 2015), VANDELS (Pentericci et al. 2018), VUDS

(Tasca et al. 2017), VVDS (Le Fèvre et al. 2013), and the Szokoly et al. (2004), Reddy

et al. (2006), Wuyts et al. (2009), Silverman et al. (2010), and Xue et al. (2016) surveys.

This redshift range was selected so that the non-ionizing continuum (λrest> 912Å) of

a typical SFG SED would not exceed more that 0.5% of the total flux transmitted

through the WFC3/UVIS filters. Including galaxies with redshifts lower than our
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defined redshift-bin ranges from Table 1 would introduce more “red-leak” of non-

ionizing flux into the filter, and in some cases become comparable or dominate the

LyC flux by several times. Since LyC flux can be 3–4mag fainter than the UVC (see

Table 4 and Table 2), we used the same redshift bins in Table 1 to keep the percentage

of red-leak to ' 0.3%.

5.3.1 Sample Selection Criteria

We repeated the same selection process of ranking 265 individual objects with 330

spectra among 8 experts in spectroscopy this time, as described in §4.3.1. To summa-

rize, the main objective was to select galaxies with spectra showing multiple, clearly

visible emission/absorption lines that align with their expected positions at the stated

redshift of the galaxy. These lines include the Lyman Break at 912Å, Lyman-α 1216Å,

Si 2 1260Å, O 1 1304Å, C 2 1335Å, Si 4 1398Å, C 4 1549Å, and C 3] 1909Å, and when

present, C 2] 2326Å, Fe 2 2344Å, and sometimes N 5 1240Å, Fe 2 2600Å, Mg 2 2798Å,

O 2 3727Å, [Ne 3] 3869Å, He 2 4686Å, H 0β 4861Å, or [O 3] 4959+5007Å. This was

to ensure that all galaxies in our sample would not introduce any contaminating,

non-ionizing flux into our LyC analyses from erroneous redshift determinations. This

selection criterion does bias our sample towards predominantly luminous galaxies

about as bright as M∗ at these redshifts (see Fig. 23), and also towards galaxies with

blue SEDs (see Fig. 24–25). This should be taken into account when interpreting our

subsequent LyC analyses on this sample.

Using the multi-band HST image data, we also ensured that each galaxy had no

nearby, potentially contaminating neighbors, and that the flux of the galaxy under

consideration showed a drop-out in the expected band. Of those 265 unique objects,
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eight of us selected and agreed on 65 unique objects to have high quality spectra with

accurate redshifts. Combining these with the 46 galaxies in the ERS field selected in

Chapter 4 (also Smith et al. 2018), our total sample was increased to 111 galaxies

with high quality spectra. This sample includes 17 galaxies with AGN and 94 galaxies

without AGN. We identified AGN from typical (broad) emission lines in their spectra,

for example Lyman-α, N 5, Si 4, C 4, He 2, C 3], and Mg 2. We also checked

the positions of our spectroscopic sample against Chandra 4 Ms and Very Large

Array 1.4 GHz source catalogs to identify possible obscured/type II AGN using their

radio/X-ray luminosities and photon indices (e.g., Xue et al. 2011; Fiore et al. 2012;

Miller et al. 2013; Rangel et al. 2013; Xue et al. 2016).

After discovering one variable AGN amongst the 17 in our sample, the total sample

was reduced to 110 galaxies after discarding this object from further study. This left

16 galaxies with AGN in our sample. We exclude this object from our sample because

unstable flux measured across non-coeval surveys can lead to unreliable SED fits.

More details for the signatures of variability are discussed in §5.3.3. Our subsequent

analyses are based upon the remaining 110 galaxies in the ERS and GOODS/HDUV

fields. We perform our LyC analyses on the sample of galaxies selected from each of

these fields separately and combined to determine if differences in LyC results are due

to differences in the mosaics themselves. We also perform analyses on the sample of

galaxies with AGN separately from galaxies without AGN. We further sub-divide these

galaxies by field, which results in 9 subsamples. These include galaxies without AGN

in ERS, GOODS/HDUV, and both fields, which we refer to as “Total,” galaxies with

AGN in ERS, GOODS/HDUV, and Total, and all galaxies in our sample (referred to

as “All”), again in ERS, GOODS/HDUV, and the Total sample.

In Fig. 23 we show the distributions of mAB andMAB sampled at λrest =1500±100Å
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Figure 23. Apparent and Absolute Magnitude Distributions of Galaxies and AGN in
the GOODS/HDUV+ERS Samples
[a] Absolute and apparent magnitude distributions at rest-frame 1500Å of the spectroscopic
samples for galaxies without AGN. [b] Same, for galaxies with evidence of AGN activity in
their spectra. [c] Same, for all galaxies in the sample. These magnitudes were derived from
the observed SED fits at λrest =1500±100Å, and therefore do not require k-corrections. The
blue dashed curve indicates the slope of the luminosity function (LF) of 〈z〉'2.97 galaxies
with MAB

∗ '–20.86, and α'1.45 dex/mag. The Total sample is approximately representative
of the galaxy LF at their 〈z〉 to MAB≤ -21mag and mAB≤ 24.5mag.

for (a) galaxies without AGN signatures in the spectra, (b) galaxies with AGN, and

(c) the Total sample. The rightmost panel shows that our sample generally follows the

luminosity function of galaxies to MAB'−21mag (mAB' 24.5mag) at their average

redshift of 〈z〉' 2.97, withM∗=−20.86mag and α = 1.45 dex/mag. The Total sample

is seen to be approximately representative of the galaxy LF at their average redshift

to MAB≤ -21mag and mAB≤ 24.5mag. These histograms are also consistent with the

ERS sample from Chapter 4 and Smith et al. (2018).

Two galaxies stand out in these histograms, both exceptionally bright galaxies with

an AGN. One was found in the GOODS North field measured to be mAB' 20.4mag

in all observed optical+IR HST bands, and the other was found in GOODS South

measured at mAB' 21 mag in the optical HST bands. The brighter QSO in GOODS

North had a significant detection of LyC, while the other showed no detectable flux.

We refer to this LyC-detected AGN at z=2.5920 as QSO J189.095582+62.257407.
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We detect the LyC emitted by this AGN in the F275W band, which allows negligible

redleak into the filter (see Appendix B.1.1), at mAB=23.19±0.01mag. Bianchi, Shiao,

and Thilker (2017) also detect this source at mAB =23.77±0.08mag with the Galaxy

Evolution Explorer (GALEX ) Near-Ultraviolet (NUV) detector. Their GALEX Far-

Ultraviolet (FUV) flux was determined to be mAB=26.02mag with a signal-to-noise

ratio S/N∼ 1.8σ, centered on the flux detected in the NUV, and thus not considered

to be a significant FUV detection. We study this object and its LyC emission in more

detail in §5.4.2.

Since this object has the brightest LyC detection by far, with S/N' 133, it will

likely dominate any LyC analyses that include it. We therefore study this object

individually, combined with all other AGN in GOODS/HDUV, and combined with All

galaxies in the ERS, GOODS/HDUV, and the Total samples. We refer to the sample

of AGN excluding QSO J189.095582+62.257407 as the AGN− sample, and likewise

the sample of all objects excluding this QSO as the All− sample. Measurements

performed on samples that include or exclude this object are useful for understanding

cosmological averages of LyC emission for galaxies and AGN at their average redshifts,

and the impact of very rare, unusually bright AGN.

5.3.2 SED Fitting

We fit SEDs to each of the 110 objects in our sample of galaxies and AGN with

reliable spectroscopic redshifts. We incorporated all available HST WFC/ACS and

WFC3/IR photometry longwards of Lyman-α at the fixed spectroscopic redshift of

the galaxy. We used two versions of the FAST software (Kriek et al. 2009) written in

C++ and IDL to fit both galaxies with and without AGN.
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Figure 24. Example Best-fitting SEDs of the GOODS/HDUV and ERS Samples
Example set of best-fitting BC03 SEDs using FAST (red curve; Kriek et al. 2009) fit to
observed HST ACS/WFC and WFC3/IR photometry (red filled circles), and the intrinsic
BC03 SED with no extinction applied (blue). The best-fitting dust extinction law and AV is
indicated for each SED. The spectroscopic redshift is shown, along with the corresponding
Lyman limit plotted as a black vertical dashed line. The remaining SEDs are shown in
Appendix A.1, and their age, mass, star-formation rate, and metallicity are listed in Table 7.

Due to our large sample of 94 galaxies without AGN, we used the C++ based
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Figure 25. Best-fitting AGN SEDs of the GOODS/HDUV and ERS Samples
Best-fit two-component SEDs from FAST (red curve; Aird, Coil, and Georgakakis 2018).
The best-fit SEDs (red curve) were fit to the plotted HST ACS/WFC and WFC3/IR
photometry (red filled circles), and are the sum of a BC03 SED (orange) and the best-fit
AGN template (green; Silva, Maiolino, and Granato 2004; Polletta et al. 2007). NH

indicates the H 1 column density absorption applied to the AGN template. The blue line is
the un-reddened SED, i.e., equivalent to the red line without the Calzetti et al. (2000)
extinction law applied. The best-fit BC03 SED parameters for dust extinction law and AV,
AGN template, and AGN SED flux percentage at λrest=5000Å are indicated. Their age,
mass, star-formation rate, and metallicity are listed in Table 7
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FAST++ program7 (Schreiber et al. 2018) for fitting their SEDs. FAST++ is ad-

vantageous for use with large galaxy samples as it has a faster runtime and supports

multi-threading for fitting SEDs in parallel or for parallelizing MC simulations to

estimate SED parameter uncertainties. For galaxies with AGN, we use the IDL version

of FAST8 (Kriek et al. 2009; Aird, Coil, and Georgakakis 2018) since this software

can simultaneously fit two-component SEDs, i.e. a SED with a stellar and an AGN

component. Example best-fitting SEDs are shown in figs. 24–25, where the best-fit is

defined to be the SED fit with the lowest χ2 value between the available measured

WFC/ACS and WFC3/IR photometry and the synthetic photometry calculated from

the inner product of the corresponding filter curve and the SED.

We fit our galaxies without AGN to the synthetic stellar SEDs from the Bruzual

and Charlot (2003) (BC03) program GALAXEV, and galaxies with AGN to BC03 and

AGN templates from Silva, Maiolino, and Granato (2004) and Polletta et al. (2007).

Their best-fitting BC03 parameters are listed in Table 7, and are also indicated in

the example SEDs in Fig. 24. We also list the best-fitting AGN template and the

percentage of flux produced by the AGN component at 5000Å in Fig. 25 and Table 7.

The AGN template was allowed to vary from 0-100% of the total SED, in increments

of 1%.

Histograms of the BC03 SED parameters AV , mass, age, and star-formation rate

(SFR) of our galaxies with and without AGN are shown in Fig. 26. These parameters

are more representative of the dominant UV-bright stellar population since the SEDs

were fit to the rest-frame UV and optical photometry, and not necessarily representative

7https://github.com/cschreib/fastpp

8https://github.com/jamesaird/FAST
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Figure 26. GOODS/HDUV+ERS SED Parameter Comparison with 3D-HST
Histograms of best-fitting BC03 SED parameters of the GOODS/HDUV+ERS galaxies
without AGN that have reliable spectroscopic redshifts, compared to the SED parameters in
the 3D-HST catalogs (Brammer et al. 2012; Momcheva et al. 2016) within the same
redshift-range (right panel in each pair). The applied SED dust attenuation law is indicated
in each of the left panels. The light-red bin in the 3D-HST age histogram indicates that the
authors did not fit to SEDs below log(Age/yr)<7.6. The y-axis of the 3D-HST mass, age,
and SFR histograms are in log-scale and all others are linear. The general shape of the
histograms from our sample is similar to the much larger 3D-HST sample of ∼42,000
galaxies.

of the bulk of the stellar population. We also show the same parameters from SED fits

performed by the 3D-HST Collaboration (Brammer et al. 2012; Skelton et al. 2014;

Momcheva et al. 2016) for galaxies within the same redshift range z=2.26− 4.3. We

use a minimum SFR of 10−4 M�/yr, and the 3D-HST survey restricted the age of their

SEDs to ≥ 40 Myr. We shade this 3D-HST age-bin light-red, since it is artificially

large and encompasses many galaxies that may have younger ages than 40Myr. In

contrast to the 3D-HST study that only uses the Calzetti et al. (2000) dust-law, we fit

all of our galaxies to SEDs attenuated by the Calzetti et al. (2000), Milky Way (MW),
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Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC), and the average

dust-law of Kriek and Conroy (2013) (A1500/AV =2.55, 2.66, 4.37, 2.79, and 2.91,

respectively). Since several of the AGN templates used in the SED fitting included

a dusty torus component, we do not apply a secondary dust-attenuation law to the

AGN template. The respective best-fitting dust-attenuation law of the BC03 SEDs are

color coded in Fig. 26 in each AV bin. We also fit SEDs with solar (Z=0.02), subsolar

(Z=0.004, 0.008), and supersolar (Z=0.05) metallicities. Despite the constraints in

SED parameter space and increase in degrees of freedom in our fits, the profile of our

parameter histograms are very similar to those from the 3D-HST SEDs.

We also compare the redshift z vs. AV and AV vs. log(mass) of our galaxies

to the 3D-HST sample in Fig. 27. This allows us to compare the distributions of

these parameters to the 3D-HST sample, and how the parameters correlate with one

another in the two samples. Our SED parameters are seen to reside in the densest

regions of the 3D-HST parameter space. The few outliers in our sample are seen to be

consistent with the less dense regions in the 3D-HST parameter space as well. From

these plots, we conclude that our sample resembles the larger 3D-HST sample and is

approximately representative of galaxies at these redshifts.

The rightmost panel in Fig. 27 compares the χ2 value of the SED fits using

only a Calzetti et al. (2000) dust-law to the χ2 of SED fits using the MW, SMC,

LMC, and Kriek and Conroy (2013) dust-laws. We plot the Calzetti et al. (2000)

χ2 vs the difference in the best-fitting SED dust-law and the Calzetti et al. (2000)

dust-law, normalized by the Calzetti et al. (2000) dust-law χ2. We find mostly

marginal improvements in χ2 for most cases. However, we find a subset of galaxies

with substantial improvements when the best-fitting SED used a SMC dust-law. We

indicate these larger improvements using a dashed horizontal line. This suggests that
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Figure 27. SED Parameter Space Comparison with 3D-HST
[Top Left]: AV vs. spectroscopic redshift of galaxies in our sample taken from their
best-fitting BC03 SED, plotted according to their dust-attenuation law. The AV and
redshift of galaxies in the 3D-HST catalog are plotted as black dots for comparison; [Top
Right]: Same, but comparing the SED log(mass) vs. AV ; [Bottom Middle]: The normalized
difference of the χ2 from the best-fit SED using the Calzetti et al. (2000) dust-attenuation
law and the better fitting SED with a different dust-law vs. the original χ2 using a Calzetti
et al. (2000) dust-attenuated SED, indicated by the color of the plotted dot. As indicated by
the dashed lines, a subset of the SED fits using a SMC dust-attenuation law shows the
greatest improvements in χ2 compared to fits using Calzetti et al. (2000).

simply using a Calzetti et al. (2000) dust-law may not result in the most accurate

SED fits for this subsample.
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5.3.3 AGN Variability

In order to maximize the accuracy of our SED fits and fesc analyses that use them

for modeling intrinsic LyC, we do not include any galaxies with AGN that display

obvious signs of variability. For a galaxy with variable flux, the photometry measured

from non-coeval data in different bands may not fit well to a SED based on a static,

physically-based stellar or AGN model. The resulting fit may therefore not accurately

predict flux in bands not used in the fitting, e.g. bands used for LyC photometry.

Thus, variable AGN may provide a source of statistical error in fesc analyses that

include them, unless the variability is accounted for in the AGN SED model.

Our first indication of AGN variability in J53.034441−27.698210 9 was the resulting

poor SED-fit (χ2=30.9; see Fig. 28). The two-component SED fitting of FAST has an

added degree of freedom compared to a single-component BC03 template, and the

majority of AGN SED χ2-values were comparatively much lower, as seen in Fig. 25.

The optical WFC/ACS data, indicated by red-open circles in the left and right

panels in Fig. 28, were taken by the GOODS and Type Ia SNe surveys (Riess et al. 2007)

and collected from July 2002–Feb. 2003 in cycle 11 and from Apr. 2004–Feb. 2005 in

cycles 12–13. The WFC3/IR and ACS/WFC F814W data, indicated in those panels by

red-filled circles, were collected in Aug. 2010–Feb. 2012 by CANDELS. The wavelength

captured by the CANDELS F814W photometry lies between the GOODS F775W

and F850LP photometric data, and is seen to differ substantially from these earlier

data points. The only other possibility to explain this offset might be a very bright

emission line. However, no lines exist in this spectral region. J53.034441−27.698210

9Not to be confused with the LyC-bright QSO J189.095582+62.257407
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was also found to be variable by Sarajedini et al. (2011) at a high significance. This

AGN was one of 85 to be classified as varying, with their population statistics showing

a 74% chance of variability in broad-line AGN and 15% in narrow-line AGN, and a

2% chance among all galaxies they surveyed. This roughly reflects our population as

well, which was 1/17∼6% variable for our AGN sample and 1/111∼1% in our total

sample of galaxies.

In the middle panel of Fig. 28, we show how much the non-coeval data differs

from one another. Here, we interpolated the later epoch WFC3/IR CANDELS

photometry (blue circles) using a spline function (blue curve), then determined the

average multiplicative difference between this curve and the observed early epoch

WFC/ACS data (red circles). We find that the optical ACS/WFC flux decreased by

a factor of ∼2.1 over the timespan between two epochs of ∼5–6 years. The Sarajedini

et al. (2011) study found variability in J53.034441−27.698210 over a span of ∼6

months, however, our findings may indicate variability of this object over a timespan

of years as well. We scale the flux down by this factor and perform the same fitting on

this object with the modified photometry to compare the two fits. We see a substantial

improvement in the χ2 value by a factor of ∼60 down to χ2=0.51 as shown in the right

panel of Fig. 28, which is consistent with our 16 other two-component SED fits listed

in Table 7 and Fig. 25. Since this AGN clearly displays variability in its photometry,

we exclude it from all subsequent analyses.

5.4 Quasar LyC Detections and Escape Fractions

Our sample contains a single object (QSO J189.095582+62.257407) with a highly

significant individual detection of LyC at mAB=23.19±0.01mag in WFC3/UVIS
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F275W (S/N' 133) and with GALEX NUV at mAB=23.77±0.08mag (S/N' 13).

We therefore study QSO J189.095582+62.257407 in more detail in an attempt to infer

why this AGN has such a bright LyC signal while other AGN in our sample show no

significant LyC flux individually.

5.4.1 Quasar SED Fitting

To characterize this LyC bright QSO, we first determine a physically-based model

that fits well to all the available observations, from the Chandra X-ray to the optical

HST data. We selected the OPTXAGNF model (Done et al. 2012) since it incorporates

the accretion disk black-body emission and the optically thin and optically thick

Comptonization components of the inner disk and SMBH corona. The Comptonization

component of the OPTXAGNF model accounts for AGN SED flux from λ'1–900Å,

which is important for modeling the intrinsic AGN LyC. We use the XSpec software

(Arnaud 1996) to fit our observed data to this model, a method also used by Lusso

et al. (2015) to characterize their stack of 〈z〉=2.4 AGN HST WFC3/UVIS grism

spectra. There are several input parameters in this model corresponding to physical

properties of the AGN10, some of which we determined from available archival and

published data and were held fixed during fitting. The first parameter we determined

was the SMBH mass using the observed C 4 line from the SDSS BOSS spectrum

(Dawson et al. 2013) released in DR14. We used the method from Coatman et al. (2016)

to estimate this mass by first fitting the continuum-subtracted C 4 line to a 6th order

Gauss-Hermite polynomial (van der Marel and Franx 1993; Cappellari et al. 2002),

10See https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/ for a full list and description of all
parameters in the model.
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which allows for more robust estimations of the FWHM of the line. We then estimated

the line’s blueshift to correct the FWHM. This corrected C 4 FWHM corresponded

to a SMBH mass of log(MSMBH

M�
)' 8.37, a mass similar to the SMBH mass of the

Andromeda galaxy (Bender et al. 2005).

Using this mass, we calculated the Eddington luminosity of this AGN to

be LEdd'2.9×1046 erg/s. We then computed the bolometric luminosity to be

Lbol'1.5×1046 erg/s using the methodology of Brotherton, Shang, and Runnoe (2012)

at λrest =1450Å. These parameters result in an Eddington ratio of λEdd'0.5, which,

along with the SMBH mass, is typical of X-ray selected AGN (see, e.g., Lusso et

al. 2012). We infer an accretion rate of Ṁ'3.4M�/yr from Lbol, assuming a matter-

radiation conversion efficiency of ε=8% (Marconi et al. 2004). If this accretion rate

represents the average accretion, the SMBH would have been accreting for ∼7.3×107

years. We use the X-ray spectral index Γ'1.687 from the Xue et al. (2016) catalog

as input. The measured soft (0.5–2.0 keV) and hard (2–7 keV) X-ray fluxes from

Xue et al. (2016) are plotted as magenta filled circles in the left panel of Fig. 29 for

reference.

Our full XSpec model used a Tuebingen-Boulder ISM absorption model (Wilms,

Allen, and McCray 2000) to account for the X-ray absorption by the MW ISM,

and five additional Gaussian profiles for fitting bright emission lines in the spectra.

After inputting the GOODS North hydrogen column density of 1.6×1020 cm−22 (Stark

et al. 1992), our calculated mass, comoving distance, and log(LEdd), we simultaneously

fit the SDSS BOSS spectrum and the Chandra spectrum plotted in the left panel

of Fig. 29. Before fitting, we first corrected the BOSS spectrum for aperture losses

using the measured HST ACS flux shown in Fig. 29. The Chandra X-ray spectrum,

background spectrum, and response curve were then extracted from the Chandra Deep
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Field North (CDFN; Brandt et al. 2001) data taken with the Advanced CCD Imaging

Spectrometer (Garmire2003) using the CIAO software (Fruscione et al. 2006) tool

specextract11. Because the CDFN data12 was taken at two different roll angles in

Feb. 2000–Feb. 2002, we reprojected the CDFN event data onto a common tangent-

plane using CIAO tool reproject_events. We then fit these spectra using the

Levenberg-Marquardt method (Levenberg 1944; Marquardt 1963) to simultaneously

minimize a combination of the χ2 and “cstat” (Cash 1979) statistics for the BOSS

optical and Chandra X-ray spectra, respectively.

The resulting model is shown as the blue curve in Fig. 29, which was scaled by

the response curve extracted from the combined CDFN ACIS data. The model also

returned values for the dimensionless blackhole spin parameter a?=0.57, coronal

radius rcor=5.3 rs where rs is the Schwarzschild radius, and electron temperature

Te' 1.4×105 K. We use this model to compute the fesc values from the measured

WFC3/UVIS F275W and GALEX NUV flux.

5.4.2 Quasar LyC Escape Fractions from GALEX and WFC3/UVIS

We estimate the LyC escape fraction for all QSO J189.095582+62.257407 LyC

measurements using the method outlined in §3.3. In summary, we modeled the intrinsic

LyC flux from QSO J189.095582+62.257407 by attenuating our best-fitting dust-free

SED with the simulated line-of-sight intergalactic medium (IGM) transmission curves

of Inoue et al. (2014), then taking the inner-product of the attenuated SED and its

11http://cxc.harvard.edu/ciao/threads/pointlike/

12For specific datasets, see: http://cxc.harvard.edu/cda/DefSet/CDFN1.html and http://cxc.
harvard.edu/cda/DefSet/CDFN2.html
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respective LyC filter curve and HST optical throughput. This calculation gives us

the modeled, intrinsic LyC flux in this band, i.e.,

f LyC,mod =

∫
FSED(ν)TIGM(ν, z)T LyC

obs (ν)dν
ν∫

T LyC
obs (ν)dν

ν

(5.1)

where FSED(ν) is the dust-free SED, TIGM(ν, z) is the IGM transmission at redshift z,

and T LyC
obs (ν) is the filter transmission+optical throughput used for the LyC observation.

Components of the total system throughput used in this model include the reflectivity

of the telescope mirrors, quantum efficiency of the detectors, obscuration by the

secondary mirrors, and transmission of the filter used for observation (Morrissey

et al. 2007; Kalirai et al. 2009). The integrated product of the dust-free SED, IGM

transmission, and filter curve+optical throughput simulates the effective intrinsically

produced LyC from stellar and AGN components, and does not account for ISM

effects captured by the fesc parameter.

We perform 103 MC simulations of the LyC fesc parameter using 104 line-of-sight

IGM attenuation curves from the IGM absorber distribution-based Inoue et al. (2014)

code. These attenuation curves were used to generate distributions of 104 modeled

intrinsic LyC flux values as described above. Using the LyC flux measured with

SExtractor (Bertin and Arnouts 1996) from our GOODS North F275W mosaic

described in §5.2 and the GALEX NUV flux from Bianchi, Shiao, and Thilker (2017),

we modeled the observed LyC fluxes (f LyC,obs) as Gaussian Random Variables (GRV)

in our MC runs with the mean of the Gaussian µ representing the measured flux

values and the standard deviation of the Gaussian σ representing the uncertainty of

the measurements. We generated 104 random values in these Gaussian distributions,

which we used to estimate the fesc values shown in Fig. 29. To generate our LyC fesc

distribution, we simply calculate the ratio of the observed LyC flux distribution to

the modeled LyC flux distribution, i.e. fesc = f LyC,obs/f LyC,mod, where f LyC,obs and
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f LyC,mod are the flux values in arbitrary linear units. We perform the fesc calculation

103 times on the generated f LyC,obs and f LyC,mod distributions in a MC fashion to

get more robust statistics of the probability distributions of the fesc values. The 103

fesc distributions for the measured HST WFC3/UVIS F275W and GALEX NUV

fluxes are shown in Fig. 29 as the group of transparent light and dark violet curves,

respectively.

We then merged the 103 fesc distributions into one, and binned the data using

equally-spaced logarithmic bins to optimize the resolution of fesc in each decade

between 10−4 and 1. We normalized the merged distribution by the sum of the bins

to generate the probability mass function (PMF) of fesc. We also constrained the

distributions to physical values of fesc, i.e., all values above 100% were redrawn during

the MC simulations until all fesc values were within 0–100%. The middle and right

panels of Fig. 29 show the resulting distributions. The lighter shaded regions are

individual MC realizations of fesc and the darker lines are the full distribution of the

merged simulated data. We extracted our statistics from these curves, taking the peak

of the curve as the most-likely (ML) value of highest probability, the ±1σ values as

the two points on the curve that have equal probability and where the integrated area

under the ML value down to these points is equal to 84%. The expected value of fesc

(E[Val]), or the probability-weighted average fesc, i.e., E[fesc]=
∑

i pifesc,i is shown as

well. For QSO J189.095582+62.257407, the GALEX NUV data, which captures LyC at

λrest' 490–780Å, we find the ML fesc value to be fesc
NUV' 30+22

−5 % and E[fesc
NUV]'45%.

For the WFC3/UVIS F275W data, effectively covering LyC from λrest∼680–850Å,

we find the ML fesc value to be f F275W
esc ' 28+20

−4 % and E[f F275W
esc ]'43%. These values

show a consistent escape fraction of LyC for this AGN to within their errors. These

results are discussed in more detail in §5.6.1.
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5.5 Stacking Results

5.5.1 LyC Image Stacks and Photometry

Since LyC measurements have been historically very faint or resulted in non-

detections (see references in §2.3), we perform the weighted-sum based “stacking” algo-

rithm described in §3.1, taking “subimage” cutouts of galaxies from the WFC3/UVIS

mosaic observed in the filter that corresponds to the galaxy’s LyC, then co-adding

them all onto the same 151×151 pix (4.′′53×4.′′53) grid. Before stacking, we again

created χ2 images of each galaxy in our sample, which were comprised of the HST

WFC3/UVIS F225W, F275W, F336W, WFC/ACS F435W, F606W, F814W, F850LP,

WFC3/IR F098M, F105W, F125W, F140W, and F160W images when available. We

then ran SExtractor on the χ2 images to detect any faint objects in the HST images

that may potentially add contaminating, non-ionizing flux to our stacked image. Using

the resulting segmentation map, we masked all neighboring and foreground objects in

each subimage, except the galaxy from our sample in the center of the subimage. We

improved our SExtractor object detection and deblending parameters from those

used in Smith et al. (2018) to minimize the unintentional masking of image noise

during stacking, which accounts for the differences between the photometry tabulated

here and what is listed in Table 2.

These stacks contain galaxies with redshift ranges listed in Table 1, corresponding

to 2.26≤ z < 2.47 for F225W, 2.47≤ z < 3.08 for F275W, and 3.08≤ z < 4.35 for

F336W. These redshift bins reduced the inclusion of non-ionizing flux into our LyC
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photometry down to ∼0.3% of the total flux within the filter, based on our average

SED. We created stacks for each subsample as described in §5.3, which can be seen in

figs. 30–32. These include galaxies without AGN (Gal), all galaxies with AGN (AGN),

all galaxies with AGN excluding QSO J189.095582+62.257407 (AGN−), all galaxies

with and without AGN (All), and all galaxies with and without AGN excluding

QSO J189.095582+62.257407 (All−). We created these stacks for the GOODS/HDUV,

ERS, and the GOODS/HDUV+ERS (Total) fields. This corresponds to the 30 stacks

shown in figs. 30–32, along with their corresponding UVC stacks that were created in

the same way as the LyC stacks, but using the corresponding rest-frame non-ionizing

UVC images (λrest & 1400Å) indicated in those figures. The number of galaxies in

each stack is also indicated.

The results of our photometric analyses on the stacks shown in figs. 30–32 are listed

in Table 4. We performed our photometry in the same manner as outlined in §3.2 using

a Gaussian additive noise model. We performed matched-aperture photometry with

SExtractor on our LyC stacks shown in figs. 30–32 using the corresponding UVC

stack as the detection image in all cases. To generate a representative distribution of

the LyC flux, we iterated through all 104 2-dimensional slices along the z-dimension

of our flux datacubes and measured the flux within the UVC aperture. This provided

104 possible flux values that were based on the WFC3/UVIS LyC subimage, the sky

variance in the LyC subimage, and the RMS in the pixels from detector noise.

To generate the values listed in Table 4, we took the mean of our flux distribution

and the 16th and 84th percentile for the -1σ and +1σ uncertainty bounds, respectively.

The ratio of the mean and the uncertainty was used to calculate the S/N ratios. When

this S/N was less than one, we list the 84th percentile from the distribution as the 1σ

upper limit to the LyC flux, and denote the S/N by (1.0)† in Table 4.
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From the Total sample stacks, we find that the galaxies with AGN at z=2.573–2.828

have the only >5σ detection, while other AGN samples have LyC S/N measurements

around, or below, 2σ. All stacks of galaxies without AGN show only upper limits,

with S/N<1. Although there is visible flux in the GOODS/HDUV and Total F336W

stacks for galaxies without AGN, the significance is only ∼1σ. Thus, we cannot yet

rule out the possibility this signal is spurious noise rather than real LyC flux.

5.5.2 Composite Stacks of the Total Sample

To visualize the LyC flux from the various types of galaxies in our sample, we stack

all LyC subimages from the various fields and WFC3/UVIS filters onto the same grid

using the methodology outlined in §5.5.1. The resulting stacks are shown in Fig. 33

and the number of galaxy subimages they contain are indicated. While stacking the

subimages, we also scaled the pixel values in all subimages in the stack such that all

images had a common AB-zeropoint magnitude equal to that of the F275W filter

(ZP=24.04mag) for the LyC stacks, and the UVC subimages were scaled to match

the F606W zeropoint (ZP=26.51mag).

We performed a similar photometric analysis on these LyC stacks described in §5.5.1

to assess the S/N of the central flux measured within the blue UVC-detected apertures

of Fig. 33. For the Total sample of galaxies without AGN, we find low levels of LyC

flux (likely due to dilution from multiple stacked non-detections) with S/N∼1. From

all galaxies with AGN, excluding QSO J189.095582+62.257407, we find a S/N∼ 1.8,

and for the Total sample of all galaxies with AGN we measure a S/N' 10.3, which is

dominated by the bright LyC flux from QSO J189.095582+62.257407. In the AGN

stacks, we observe possible indications of LyC flux extending outside of the central
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UVC aperture, though the S/N cannot distinguish this fluctuation from sky noise.

Combining the LyC flux from all galaxies (aside from QSO J189.095582+62.257407),

we find a S/N' 1.3 (again likely diluted from the non-detections in the galaxies

without AGN), while the LyC flux from all 110 galaxies from our sample amounts to

a S/N' 3.1.

On average, we find that the flux from AGN outshines the galaxies without

AGN by a factor of ∼10, and excluding QSO J189.095582+62.257407 the AGN still

outshine galaxies without AGN by ∼2 times. The low S/N of these measurements

makes these ratios highly uncertain, and only larger samples of spectroscopically

verified high-redshift galaxies can reduce these uncertainties. Larger samples will

also increase the chances of observing sources of brighter LyC flux, e.g., the bright

QSO J189.095582+62.257407 found among the 16 AGN in our sample. Increasing

the sample size may also increase the chance of including more rare sources of LyC

emission, e.g., lower mass, star-bursting galaxies with extreme [O 3] emission (e.g.,

Fletcher et al. 2019).

5.5.3 Stacked LyC Escape Fractions

To estimate the LyC fesc from our subsamples discussed in §5.3, we apply the same

statistical methodology outlined in §3.3 described in §5.4.2. The fesc distributions

shown in figs. 34–36 are generated by taking the ratio of the photometric distributions

measured in §5.5.1 to the distribution of intrinsic LyC flux derived from the best-

fitting SED, the IGM attenuation models at the galaxy’s respective redshift, and the

WFC3/UVIS throughput curve corresponding to the filter used for the LyC observation.

These distributions are useful for inferring the most likely, sample-averaged fesc values
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of a given photometric dataset, even if the photometry is highly uncertain, or shows a

non-detection of LyC. We calculate the intrinsic LyC flux distributions in the same

way as in §5.5.1 for each galaxy in a stack, then we perform a weighted average of all

these distributions using the average weight map value used in the image stacks. This

was to ensure that the same proportions of flux from the sets of galaxies included in

the image stack used for photometry matched the modeled intrinsic LyC flux.

We generated 103 of these distributions (shaded regions in figs. 34–36) and merged

them into one (solid lines in figs. 34–36) after constraining each individual fesc

distribution to physical values between 0–100%. The fesc values produced by the

simulations were histogrammed using equally-spaced logarithmic bins and normalized

by the sum of the bins to produce the fesc PMF. The y-axis of these PMFs thus

represents the relative probabilities of the fesc values in the x-axis. We extracted the

ML, ±1σ uncertainties, and the E[fesc] statistics from the merged distributions and

plotted each in figs. 34–36. We quote the ML and its ±1σ values in Table 6 as the

estimated fesc, since it has the highest probability of representing the global-average

〈fesc〉 of galaxies at their average redshifts. Each subsample and its redshift-range is

color-coded and indicated in the figure, along with the type of galaxy and the field

the analysis was performed on.

Several of these distributions display large asymmetries and some show bimodal-

ities. These asymmetries are caused mostly by the variations in IGM transmission

along different lines-of-sight, and bimodalities result from some sources in the stacks

dominating the modeled intrinsic LyC flux. This creates a peak of higher f LyC,mod

values amongst the (on average) fainter modeled LyC flux as in, e.g., the light-blue
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curve of the left panel of Fig. 35. However, with more sources added to the stacks, the

distributions begin to become more Gaussian-like (see, e.g., the right panel of Fig. 36).

Because of the uncertain flux estimation in the GOODS/HDUV F336W stack,

whether spurious or not, our fesc peak is located near 100%, indicating that the current

IGM+SED models do not properly account for flux this bright at 〈z〉'3.5. If this flux

is indeed real LyC emission, these high fesc values may be a result of anisotropic LyC

escape mechanisms (Nakajima and Ouchi 2014; Paardekooper, Khochfar, and Dalla

Vecchia 2015) or stochastic periods of star-formation (Kimm et al. 2017; Trebitsch

et al. 2017) in these galaxies, allowing for higher fesc than average during the life-time

of these galaxies. Starbursts composed of star-formation with multiple waves of SNe

relatively close in time can sustain the higher pressure in the ISM needed to drive

galactic winds (Veilleux, Cecil, and Bland-Hawthorn 2005).

Due to the random nature in selecting IGM attenuation sight-lines for our fesc

simulations, another possibility is that the IGM models underestimate the frequency

of regions of lower IGM H 1 column densities. A realistic, highly inhomogeneous

large-scale structure may provide more clear sight-lines in the IGM on scales smaller

than a galactic halo (e.g., D’Aloisio, McQuinn, and Trac 2015; Keating, Puchwein,

and Haehnelt 2018; Bosman et al. 2018). Our MC analysis redraws simulated fesc

values above 100% in an attempt to reject these over-estimated column densities,

which causes the observed pile up of fesc values near 100% as a result of this constraint.

These fesc values are listed in column 11 of Table 6 as upper limits, and the LyC

fluxes they are based on are listed in column 5 of Table 4.
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5.6 Discussion

5.6.1 AGN LyC Detections

We surveyed an area of ∼ 175 arcmin2 from z=2.26–4.35, corresponding to a

comoving volume of ∼1.3×106 Mpc3, and uncovered a single LyC detection from

QSO J189.095582+62.257407. This space density of ' 8×10−7 Mpc−3 is consistent

with the space densities of very luminous (LX =1045–1047 erg s−1) Compton-thin AGN

at z=2.59 (Ueda et al. 2014). The X-ray luminosity of this AGN is LX = 1044.9 erg s−1

and has an intrinsic NH=0.6±0.1×1023 cm−2 (Laird et al. 2006). Therefore, this AGN

falls within the parameter space of the observed space density trends for AGN with

similar properties. This may allude to the existence of more LyC-bright AGN than

have so far not been detected.

In §5.4.1, we describe the SED model fitting and resulting parameters of the

best-fit, which were revealed to be typical of AGN at z∼ 2.6. Since this object does

not exhibit exotic or extreme AGN accretion parameters, likely causes of the bright

LyC emission may be that the escape path of LyC is advantageously aligned to the

line-of-sight of the observation, the neutral density of the IGM along this line-of-sight

was especially lower than the average, and/or that the LyC production and subsequent

escape from AGN is delayed compared to the optical, unobscured portions of the

spectrum.

This first hypothesis has support from the bright flux detected in all other

HST bands. The UVC band for this AGN (WFC/ACS F606W) is measured at

mAB' 20.42mag, and the WFC3/IR bands F125W, F140W, and F160W measure

mAB' 20.25mag. The MAB1500Å is ∼ –24.44mag, which falls well outside of the
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luminosity function of galaxies at these redshifts. It is possible that the luminous

nature of this AGN can be due to collimation of the AGN jet or outflow clearing a

direct path for LyC escape into the line-of-sight of the observation alone.

This single line-of-sight may also have much lower neutral column density than

predicted by IGM simulations, which is also hinted at by very high (though highly

uncertain) fesc values found at z& 3. Other LyC studies in the protocluster SSA22

(Micheva, Iwata, and Inoue 2017; Fletcher et al. 2019) have suggested a spatially

varying H 1 density in the IGM or CGM in the field in order to explain the LyC

non-detections in their sample. Spatial variations of H 1 in the IGM may also be

present in the GOODS North field, allowing for higher fesc values in under-dense IGM

regions.

The possibility of a time-lag effect between lower energy continuum and high

energy, ionizing photons has been observed in the production of hard X-rays, where

multiple inverse Compton scattering (ICS) events of thermally produced optical

and UV photons from the accretion disk gain energy by scattering off of relativistic

electrons in AGN coronae (e.g., Fabian et al. 2009; Kara et al. 2016). Furthermore,

LyC from AGN has also been found to be produced via this same ICS mechanism

at wavelengths of λrest . 1000 Å (e.g., Zheng et al. 1997; Telfer et al. 2002; Shull,

Stevans, and Danforth 2012; Stevans et al. 2014). Thus, the discrepancy between

the bright LyC escape measured from this AGN and its ordinary SMBH/accretion

parameters inferred from the unobscured continuum may be explained by a time lag

between the production and subsequent escape of the LyC photons, where the time

lag accumulates from multiple LyC-producing ICS events.
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5.6.2 Galaxy fesc Evolution

The results of our fesc simulations are tabulated in Table 6, and the fesc results for

all galaxies without AGN in our Total sample are plotted in Fig. 37 as filled purple

circles. We plot our results along with fesc parameters inferred by other authors in

the literature as light blue filled circles. Upper limits are shown as downward light

blue arrows.

Compared to Table 3, the observed trend in fesc is more pronounced, mainly

due to the higher implied fesc values at 〈z〉' 3.6. These high fesc values at z& 3

are dominated by two uncertainties in the data used to construct the PMF for the

fesc ranges. The first is high uncertainty in the LyC photometry of the 〈z〉' 3.6

F336W stack. Table 4 shows that galaxies without AGN at 〈z〉' 3.6 consistently

have the faintest upper limits of all the stacks without AGN. The F336W Gal stack

from the ERS field in Fig. 31 shows no clear flux, though the same stack from the

GOODS/HDUV field shows very faint but possibly spurious flux in fig 30. We cannot

rule out the possibility that this flux is a background fluctuation due to its low S/N

ratio. The GOODS/HDUV F336W flux from galaxies is still visible in the Total Gal

F336W stack, though diluted from the combination with the ERS non-detections.

The addition of the ERS also improved the S/N by a factor of ∼3.7, caused by a

reduction in the background noise by a factor of ∼4.3. The S/N of the Total stacked

flux for galaxies without AGN is ∼0.9, with a formal mAB =29.4±1.2. The possibility

that the marginal fluxes of galaxies without AGN in F336W seen in figs. 30–32 are

real cannot yet be ruled out. Only adding more galaxy LyC subimages to the stack

can improve the uncertainties in the photometry, which is shown to still increase the
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S/N of the photometry in Table 4, i.e., we have not yet reached the noise floor in the

stack.

The second cause of the high fesc values at 〈z〉' 3.6 is a result of the high

frequency of sight-lines with low LyC transmission through the IGM, where the

average transmission value of photons passing through the F336W filter is T ' 4.4%.

Furthermore, the percentage of the sight-lines with T ≤1% in the MC simulations of

Inoue et al. (2014) is ∼68.7%, and ∼ 99.9% of the lines-of-sight have transmission

values below T < 50%. These low transmission values cause our inferred fesc to increase,

due to the inverse proportionality of the modeled IGM transmission values with fesc.

The combination of a large percentage of low IGM transmission, and therefore low

modeled LyC flux, with low S/N LyC photometry that varies widely allows the implied

fesc values to grow very large, even well above 100% if not constrained.

If the fluxes measured through the F336W filter for the 〈z〉' 3.6 stacks are taken

at face value, this may allude to an IGM that has more variation on smaller scales

in their lines-of-sight than sampled here. As mentioned in §5.6.1, similar studies in

over-dense regions find LyC detections in only a portion of their homogeneous samples

with no obvious reason for the dichotomy. One reason suggested is that IGM and

CGM H 1 is spatially varying in the field, allowing for some lines-of-sight to have

much lower LyC attenuation than the bulk in the field. More variation in the IGM

transmission at smaller scales may be needed in future transmission models in order

to explain the LyC detections and non-detections at z > 3. Only adding more galaxies

from spectroscopic samples to improve the S/N of LyC stacks will be able to address

this question.

The current stacked fesc value at 〈z〉' 3.6 is not well constrained, and the highest

likelihood value from the fesc MC simulations result in extreme values of fesc∼ 100%.

123



Until these values can be better constrained, they hint at fesc values that may be

increasing more significantly at z > 3. The fesc values from the literature shows similar

trends, with fesc increasing at z&3. This is consistent with the scenario expressed

in §4.5.2, where galaxies undergo more accretion and mergers until the peak of the

star-formation history at z'2, which causes fesc to decrease during this epoch due

to the accumulated higher H 1 densities. The feedback from AGN accretion and

SNe heat reduces the SFR, thereby reducing the formation of OB stars that could

clear channels for LyC escape after going supernova, which consequently reduces fesc

further at lower redshift. Declining AGN and star-formation feedback at z. 2 can

also reduce fesc, as these mechanisms can also assist in carving out paths in the ISM

for LyC to escape.

5.6.3 The fesc of Galaxies with AGN

It is now believed that AGN LyC fesc values are expected to be less than 100%

(Stefano Cristiani et al. 2016; Micheva, Iwata, and Inoue 2017; Grazian et al. 2018),

rather than ∼ 100% as assumed in earlier models (Giallongo et al. 2015; Madau and

Haardt 2015). The production of LyC in galaxies by AGN is mostly well understood

from theoretical models and observations of AGN spectra (e.g., Telfer et al. 2002; Done

et al. 2012; Kubota and Done 2018; P. O. Petrucci et al. 2018). In short, the accretion

disk emits like a blackbody when the heat energy produced by accretion thermalizes

(Shakura and Sunyaev 1973), with a disk temperature increasing radially towards the

SMBH. The spectrum produced by such a model (e.g., Mitsuda et al. 1984) does not

reproduce the observed UV spectrum of AGN, which requires a broken power-law

to fit (e.g., Zheng et al. 1997; Davis, Woo, and Blaes 2007; Lusso et al. 2015). The
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same warm Comptonization component that can explain the soft X-ray excess seen in

some AGN spectra (e.g., Kaufman, Blaes, and Hirose 2017; P. O. Petrucci et al. 2018)

could also extend across the H 1 absorption gap and connect the UV broken power

law to the soft X-ray component (e.g., Mehdipour et al. 2011; Mehdipour et al. 2015).

In this model, a portion of the accretion energy is not thermalized in the disk, but

rather is emitted from a warm (kTe' 0.1–1 keV), optically thick region (τ ' 10–25;

see, e.g., P.-O. Petrucci et al. 2013; Middei et al. 2018; Porquet et al. 2018). UV

photons down to ∼ 1000Å can also be produced by the same region (Kubota and

Done 2018). However, the physical origin of this emission is still not well understood

phenomenologically (Crummy et al. 2006; Walton et al. 2013; Różańska et al. 2015;

P. O. Petrucci et al. 2018).

The determinants of LyC photon absorption or escape are more unclear. As

mentioned in §2.3, it is likely that the well studied, nearby, LyC emitting galaxies

Tol 1247-232 (Leitherer et al. 2016), Haro 11 (Leitet et al. 2011), and J0921+4509

(Borthakur et al. 2014) have AGN exhibited by their X-ray detections (Kaaret et

al. 2017, Prestwich et al. 2015, Jia et al. 2011, respectively). Grazian et al. (2018)

suggest that these galaxies likely have measurable fesc values due to their AGN

component creating a mechanical force to drive away nearby ISM, thereby increasing

fesc from the AGN and surrounding stars. Giallongo et al. (2012) propose that

AGN outflow shock-waves triggered by accelerating disk outflows can clear enough

paths in the ISM surrounding the AGN to increase the fesc parameter (see Menci

et al. 2008, Dashyan et al. 2018, Penny et al. 2018, and Menci et al. 2019 for models

and observations supporting this scenario). Here, the LyC can escape along a narrow

bi-polar cone unobscured, and paths outside this cone will have a reduced fesc. In
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these highly ionized cones however, dust extinction becomes the dominant source of

LyC absorption, which is later re-emitted as IR radiation (e.g., Netzer 2013).

Dust can survive in the environment of the inner accretion disk only in regions

where the effective temperature of the disk is below the dust-sublimation temperature

(e.g., Czerny and Hryniewicz, K. 2011). In these regions, pressure acting on the grains

from the ambient radiation field can raise dusty clumps above the disk surface. As

the clumps rise, they become exposed to the central radiation source and clumps get

pushed in a radial direction into sublimation regions, and the dust can evaporate.

Bipolar outflows in the narrow-line region (NLR) of AGN have been observed from

UV and optical (integral field) spectroscopy (Müller-Sánchez et al. 2011; Harrison

et al. 2014; Karouzos, Woo, and Bae 2016; Woo, Son, and Bae 2017), which can

potentially clear some emission line emitting clouds that absorb LyC. Liu et al. (2013)

were able to detect dense, optically thick, dusty gas clouds embedded in hot, low-

density winds in the NLR transitioning into optically thin clouds at a distance of

' 7.0±2 kpc away from the SMBH, caused by declining radiation pressure on the

cloud. As the clouds flow outwards with the AGN wind, the binding external radiation

pressure declines, allowing the clouds to expand from their own internal gas pressure.

These dense, pressure bounded clouds in the NLR produce emission lines on a thin,

outer shell. Their main source of ionization is likely from the AGN continuum, both

thermal and non-thermal. The transition from optically thick to optically thin would

have have a direct effect on the fesc of AGN as well, and thus outflows may play a

dominant role in determining the fesc from their resulting dynamics.

The fesc values for AGN shown in Fig. 37 (dark and light green points) are

relatively consistent across all redshift ranges, showing a possible slight downward

trend from z' 4–2. However, the mean values of these data points are consistent with
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a constant fesc to within their error bars. This may indicate that optically selected

AGN with broad emission lines may modulate their fesc with the same mechanisms.

With AGN accretion rates on the rise at z∼ 3–4 and peaking near z∼2–3 (e.g.,

Fanidakis et al. 2012; Ueda 2015), the fesc parameter could show decline due to this

effect at lower redshift (z. 2), mainly due to the reduction in powerful shocks from

outflows and winds. AGN disks are fed by cold-accretion from the nearby ISM and

inflows onto dark-matter halos, as well as advection dominated hot-accretion. These

accretion modes are generally associated with outflows, AGN winds, and/or jets (Ho

2002; Chatterjee et al. 2011; Yuan and Narayan 2014), thus decreasing accretion

rates should also accompany a reduction in outflow luminosity. This may provide a

mechanism for an fesc parameter for AGN that declines with cosmic time, as AGN

accretion and outflow energy evolves with redshift. To determine the evolution fesc of

AGN with redshift more precisely, additional data at lower and higher redshifts are

needed, and the intrinsic nature of the AGN must also be better understood through

more detailed theoretical modeling.

5.7 Conclusions

We analyzed and quantified the LyC radiation escaping from a survey of 110

spectroscopically verified galaxies in the GOODS North, GOODS South, and the

ERS fields in three WFC3/UVIS filters where LyC can be observed at z' 2.26–4.35.

We independently drizzled the GOODS/HDUV data together with the available

CANDELS and UVUDF WFC3/UVIS data and found good agreement with the Oesch

et al. (2018) publicly released data, with modest improvement in sky background

and depth. The ERS UV images are more shallow than the GOODS/HDUV mosaics.

127



Nevertheless, since the ERS data were taken shortly after WFC3 was installed onto

HST, losses in sensitivity from CTE degradation are not a concern for this dataset.

We studied several subsamples of these galaxies based on their redshift, observed

field, and spectroscopic evidence of (weak) AGN activity. We studied our single LyC

detected galaxy QSO J189.095582+62.257407 in more detail alone, as well as including

it in stacks, and combined the various subsamples to determine any biases from the

imaging data and to study the LyC escaping from galaxies with and without AGN.

We first stacked extracted sub-images centered on galaxies from the GOODS North

and South and ERS mosaics in their appropriate LyC filters, and quantified the LyC in

the stack using a MC approach. We removed all potential neighboring and foreground

galaxies during the stacking process using χ2 images of all available HST data for

each galaxy. We performed SED fitting on all the galaxies and used these to estimate

their intrinsic LyC flux, then estimated the fesc parameter of the stacked galaxies, as

well as for QSO J189.095582+62.257407, using the modeled intrinsic flux and the MC

simulated IGM transmission curves of Inoue et al. (2014) for various lines-of-sight.

We find the following main results:

(1) Our quantitative analysis of the LyC flux from the stacks of galaxies at z' 2.3–4.3

is tabulated in Table 4. We find upper limits to the total LyC flux of MAB'M∗

galaxies without AGN at 〈z〉' 2.36, 2.73, and 3.61 to be mAB> 27.5, > 28.5, and

> 28.6mag, respectively. For galaxies with (weak) AGN, we find fluxes of mAB & 27.6,

' 26.15, and ' 27.73mag at 〈z〉' 2.37, 2.65, and 3.36, where the first flux is a 1σ

upper limit and the other two measurements have S/N' 13.1 and ∼ 1.8, respectively.

(2) Our only LyC detection was measured from the galaxy QSO J189.095582+62.257407,

detected at mAB=23.19±0.01mag in the WFC3/UVIS F275W filter and with GALEX

NUV at mAB =23.77±0.08mag, with S/N' 133 and 13, respectively. Our modeling
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suggest that this AGN is not especially extreme in its SMBH parameters, and neither

in its accretion characteristics. This implies that the LyC escaping from this AGN

may instead be advantageously directed toward the line-of-sight of observation, that

the LyC production and subsequent escape took much longer than the time-scale of

the peak of its accretion, or that the particular line-of-sight of this AGN had a very

low H 1 IGM column density.

(3) The combined LyC emission averaged over the three WFC3/UVIS filters implies

that the AGN dominate the LyC production in the epoch of 〈z〉'2.3–4.3 by a factor of

∼10. The overall LyC flux distribution of AGN may also be non-centrally concentrated,

though additional data are needed to make this feature more visible above the deeper

image noise. If real, this could suggest a radial dependence of fesc based on axial

direction of the AGN LyC escape, ISM porosity, and/or scattering of the LyC photons

from ionized regions in the galaxy.

(4) Our best-fit BC03 SED models fit to HST continuum observations longwards of

Lyman-α suggest that the observed LyC fluxes for galaxies without AGN correspond

to average LyC escape fraction of fesc'3+23
−2 % at 〈z〉'2.4, fesc'13+26

−9 % at 〈z〉'2.7,

and fesc .99.5+0.5
−2.1% at 〈z〉'3.6. This large fesc at 〈z〉'3.6 is due to a combination of

two effects. The first is caused by the low S/N LyC flux in the image stack, which

cannot be ruled out as spurious, and the second is implied by the majority of very low

IGM line-of-sight transmission in simulations, with 91% of the transmission values

lying at T < 20%, and 68% having transmission values T < 1%. This effect is seen

to be mitigated in the AGN fesc simulations, which had higher LyC S/N values than

galaxies without AGN. We measure average LyC fesc values of all galaxies with AGN

to be fesc'8+42
−5 % at 〈z〉'2.4, fesc'3+37

−0.6% at 〈z〉'2.7, and fesc'27+67
−9 % at 〈z〉'3.4.

(5) Our uncertainty ranges on fesc for galaxies without AGN remain large, though
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they are generally consistent and improved from the ERS study in Smith et al. (2018).

This data reaffirms the observed increasing trend of fesc with redshift from §4.5.2. For

our galaxies, the steepest decline in fesc appears to occur near z' 2 from fesc<26% to

.2%, which correlates with the peak of the cosmic star-formation history within an

interval of ±1Gyr (Madau and Dickinson 2014).

For galaxies with AGN, their stacked fesc appears to remain roughly constant with

redshift within their error ranges, though shows hints of decline within their 1σ limits,

dropping from <94% to <26% from z' 3.6 to z' 2.4, respectively. The AGN fesc

trend can also be compared to trends in AGN luminosity functions and space density,

which steadily peak near z' 2 and decrease at z < 2 (Ueda 2015). The evolution of

these parameters may be linked by the decrease in AGN fuel from major mergers

and/or accretion (Fabian 2012) and star-formation feedback through cosmic time.

The evolution in these parameters may be correlated to changing dynamics of galaxies,

where infall/merger driven star-formation at 2. z. 6 transitions to a more passively

evolving universe by giant galaxies at z. 1–2. This may result in gas and dust rapidly

accumulating in the disks and nuclei of forming galaxies, combined with a SNe rate

that has progressively less impact on clearing gas/dust in galaxies that are steadily

growing in mass with cosmic time. The accumulating H 1 gas and decreasing SFR

may have caused fesc to decrease over a relatively narrow interval of cosmic time from

2<z <3 (∼1Gyr), as feedback effects inhibit the formation of new massive stars that

could clear LyC escape paths. When AGN outflows began to increase after the peak

in the cosmic star-formation history at z' 2, their outflows may have cleared enough

paths in the ISM of host galaxies to enhance the fraction of escaping LyC radiation

produced by massive stars and from the accretion disk, resulting in AGN beginning

to dominate the ionizing background at z. 2–3.
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(6) If the trend in fesc for galaxies without AGN continues beyond z∼5, these galaxies

may have had a sufficient LyC escape fraction to reionize the IGM by z& 6. Since

AGN outshine galactic-stellar LyC by a factor of ∼10, combined with their consistently

larger fesc seen in this work and in the literature, AGN likely contributed a significant

portion of the ionizing photons needed to finish and maintain cosmic reionization at

z. 3.

More data on LyC fesc are essential to reducing the uncertainties in these trends.

The current sample of deep, high quality spectra are still very small, and larger

spectroscopic samples taken with the JWST FGS/NIRISS grisms and with NIRSpec

(Gardner et al. 2006) could improve uncertainties in LyC stacks. Additional deep

imaging of wider HST fields in the UV would also supplement these studies, e.g., in the

COSMOS and EGS fields where large spectroscopic samples at high redshift already

exist. The future release of the Ultraviolet Imaging of the Cosmic Assembly Near-

infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS; PI: Teplitz) data

will provide additional LyC sources larger than our current sample size, and further

increase the sensitivity to faint LyC in the GOODS fields. Additional theoretical and

observational work is needed to improve the statistics of IGM line-of-sight transmission

curves, in order to explain the observed larger fesc values at z' 3 in this study and

others in the literature.
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Figure 28. A Variable AGN in the ERS Sample

[Top Left]: Best-fit two-component SED from FAST (red curve; Aird, Coil, and Georgakakis
2018) for variable AGN J53.034441−27.698210. The best-fit SEDs (red curves) were fit to
the plotted HST ACS/WFC and WFC3/IR photometry (red open circles indicate the
WFC/ACS data observed during the 2002-2005 epoch, the red filled circles indicate the
WFC3/IR data from the 2010-2012 epoch). The red curve is the sum of the best-fit BC03
SED (orange) and the best-fit AGN template (green; Silva, Maiolino, and Granato 2004;
Polletta et al. 2007). The best-fit BC03 SED parameters (dust extinction law, AV, age,
mass, star-formation rate, and metallicity), AGN template, and AGN SED flux percents at
5000Å are indicated. The difference in observation epoch appears to have provided enough
time for J53.034441−27.698210 to display variability. [Top Right]: The observed flux of
J53.034441−27.698210 taken in the early epoch (2002-2005; blue points) and the
cubic-spline interpolation through those points (solid blue line), compared to the observed
flux taken in the later epoch (2010-2012; red points). The red points were scaled down by a
factor of ∼0.47 to match the interpolated data as closely as possible (green points). [Bottom
Middle]: The best-fit two-component SED from FAST after scaling the later-epoch flux.
The χ2 is seen to improve significantly, and the observed changes in SED parameters can be
compared between the two fits.
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10−15

10−14

10−13

10−12

λ
F
λ

[e
rg
/
s/

cm
2
]

BOSS

Chandra

Model

Xue+ (2016) Flux

WFC3 F275W Flux

GALEX NUV Flux

20 10030 40 60 80

〈fesc〉 (%)

0.001

0.01

0.002

0.005

0.02

P
ro

b
a
b
il
it
y

GALEX NUV

E[Val]

ML Val

±1σ

20 10030 40 60 80

〈fesc〉 (%)

WFC3/UVIS F275WWFC3/UVIS F275W

Figure 29. LyC-Bright QSO SED and LyC Escape Fraction PMFs in GALEX NUV
and WFC3/UVIS F275W

[Left]: SDSS BOSS (Dawson et al. 2013) spectrum of QSOJ189.095582+62.257407 and ±1σ
uncertainty (green) together with its Chandra ACIS Spectrum (magenta). The OPTXAGNF (Done
et al. 2012) model was fit to the Chandra and BOSS spectra simultaneously using the XSpec
software (blue; Arnaud 1996). The observed GALEX NUV and WFC3/UVIS F275W fluxes are
plotted as light and dark violet diamonds, respectively, and the Chandra soft (0.5–2.0 keV) and hard
(2–7 keV) band fluxes as measured by Xue et al. (2016) are shown as magenta circles. [Middle]: The
probability mass function (PMF) of escaping LyC flux derived from the GALEX NUV flux. The
shaded region represents the 1000 fesc MC simulations, and the dark violet line is the combination
of all 1000 simulations. The estimated LyC escape fraction for GALEX NUV is estimated to be
fNUV
esc '30+22

−5 %. [Right]: The PMF of escaping LyC flux observed in the WFC3/UVIS F275W filter.
The estimated LyC escape fraction here is estimated to be fF275Wesc '28+20

−4 %.
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Figure 30. LyC Stacks of Galaxies in the GOODS/HDUV Sample

Sub-image stacks for the three different redshift bins in our sample selected from the
GOODS/HDUV field for the galaxies without AGN that have reliable spectroscopic redshifts
(indicated by Gal in green), galaxies with AGN (AGN in green), and all galaxies (All in
green). These stacks sample LyC emission in F225W, F275W, and F336W and the
corresponding F606W and F775W stacks sample the UVC (∼1400.λrest . 1800Å) emission.
The AGN− label indicates the exclusion of the LyC-bright QSOJ189.095582+62.257407
from the stack. Blue ellipses indicate the SExtractor MAG_AUTO UVC detected matched
apertures. All sub-images are 151×151 pixels (4.′′53×4.′′53) in size.
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Figure 31. LyC Stacks of Galaxies in the ERS Sample

Same as Fig. 30, but for galaxies selected from the ERS field.

a) F225W b) F275W c) F336W

d) F606W e) F606W f) F775W

N=18 N=40 N=36

Gal Gal GalTotal

LyC LyC LyC

UVC UVC UVC

a) F225W b) F275W c) F275W d) F336W

e) F606W f) F606W g) F606W h) F775W

N=2 N=9 N=10 N=5

−AGN AGN AGN AGNTotal

LyC LyC LyC LyC

UVC UVC UVC UVC

a) F225W b) F275W c) F275W d) F336W

e) F606W f) F606W g) F606W h) F775W

N=20 N=49 N=50 N=41

−All All All AllTotal

LyC LyC LyC LyC

UVC UVC UVC UVC

Figure 32. LyC Stacks of Galaxies in the GOODS/HDUV+ERS Samples Combined

Same as Fig. 30, but for galaxies from the ERS and GOODS/HDUV fields combined, or the
“Total” sample.
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Table 4. LyC Stack Photometry of the GOODS/HDUV and ERS Samples
Filter z-range 〈z〉 Nobj mLyC ABerrLyC S/NLyC AUVC mUVC ABerrUVC S/NUVC

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

GOODS/HDUV
Galaxies without AGN:
F225W 2.4680–2.4680 2.4680 1 >25.63 . . . (1.0)† 0.49 25.006 0.095 11
F275W 2.4845–3.0604 2.7263 33 >26.94 . . . (1.0)† 1.00 24.674 0.010 110
F336W 3.1673–4.2830 3.6093 26 >27.51 . . . (1.0)† 0.59 25.218 0.025 43
Galaxies with AGN:
F225W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F275W− 2.5760–2.8280 2.7020 2 >26.36 . . . (1.0)† 0.16 21.509 0.002 690
F275W 2.5760–2.8280 2.6653 3 24.66 0.17 6.2 0.17 21.118 0.001 1179
F336W 3.1930–3.6609 3.4270 2 >26.89 . . . (1.0)† 0.20 25.508 0.078 14
All Galaxies:
F225W 2.4680–2.4680 2.4680 1 >25.63 . . . (1.0)† 0.96 25.006 0.094 12
F275W− 2.4845–3.0604 2.7249 35 >27.45 . . . (1.0)† 0.51 23.922 0.004 261
F275W 2.4845–3.0604 2.7212 36 27.61 0.97 1.12 0.87 23.422 0.003 423
F336W 3.1673–4.2830 3.5962 28 >27.45 . . . (1.0)† 0.62 25.224 0.024 46

ERS
Galaxies without AGN:
F225W 2.2760–2.4490 2.3496 17 >27.69 . . . (1.0)† 1.08 24.430 0.012 92
F275W 2.5658–3.0762 2.7516 7 >27.87 . . . (1.0)† 1.03 24.402 0.013 81
F336W 3.1320–4.1486 3.6029 10 >32.56 . . . (1.0)† 0.51 24.843 0.023 47
Galaxies with AGN:
F225W 2.2980–2.4500 2.3740 2 >27.07 . . . (1.0)† 0.81 25.215 0.049 22
F275W 2.5730–2.7260 2.6431 6 >27.76 . . . (1.0)† 0.27 25.102 0.014 80
F336W 3.2171–3.4739 3.3157 3 27.58 0.64 1.7 0.42 24.494 0.023 46
All Galaxies:
F225W 2.2760–2.4500 2.3522 19 >27.73 . . . (1.0)† 1.16 24.481 0.012 90
F275W 2.5658–3.0762 2.7016 13 >27.73 . . . (1.0)† 0.84 24.681 0.013 87
F336W 3.1320–4.1486 3.5366 13 >28.80 . . . (1.0)† 0.52 24.708 0.018 59

Total
Galaxies without AGN:
F225W 2.2760–2.4680 2.3562 18 >27.54 . . . (1.0)† 1.20 24.442 0.012 92
F275W 2.4845–3.0762 2.7307 40 >28.47 . . . (1.0)† 0.96 24.614 0.009 123
F336W 3.1320–4.2830 3.6075 36 >28.60 . . . (1.0)† 0.65 25.078 0.018 62
Galaxies with AGN:
F225W 2.2980–2.4500 2.3740 2 >27.04 . . . (1.0)† 0.83 25.215 0.050 22
F275W− 2.5730–2.8280 2.6578 8 28.84 1.08 1.01 0.19 22.909 0.002 534
F275W 2.5730–2.8280 2.6505 9 26.15 0.08 13.1 0.19 22.251 0.001 874
F336W 3.1930–3.6609 3.3602 5 27.73 0.61 1.77 0.35 24.723 0.023 48
All Galaxies:
F225W 2.2760–2.4680 2.3580 20 >27.56 . . . (1.0)† 1.22 24.490 0.012 90
F275W− 2.4845–3.0762 2.7186 48 >28.63 . . . (1.0)† 0.57 24.071 0.004 276
F275W 2.4845–3.0762 2.7160 49 27.86 0.27 3.95 0.89 23.630 0.003 354
F336W 3.1320–4.2830 3.5773 41 29.00 0.76 1.43 0.65 25.007 0.016 69

Table columns: (1) Observed WFC3/UVIS filter (− indicates the exclusion of the LyC-bright
QSO J189.095582+62.257407); (2) Redshift range of galaxies included in LyC/UVC stacks; (3)
Average redshift of all galaxies in each stack; (4) Number of galaxies with reliable spectroscopic
redshifts included in each stack; (5) Observed total AB magnitude of LyC emission from stack
(SExtractor MAG_AUTO) aperture matched to UVC, indicated by the blue ellipses in Figs. 30–32;
(6) 1σ uncertainty in LyC AB-mag; (7) Measured S/N of the LyC stack flux († indicates a 1σ upper
limit); (8) Area (in arcsec2) of the UVC aperture; (9) Observed total AB magnitude of the UVC
stack; (10) 1σ uncertainties of UVC AB-mag. Listed uncertainties do not include systematic filter
zeropoint uncertainty; (11) Measured S/N of the UVC stack flux.

135



a) b) c) d) e)

f) g) h) i) j)

k) l) m) n) o)

N=94 N=15 N=16 N=109 N=110

− −Gal AGN AGN All AllTotal

LyC LyC LyC LyC LyC

LyC smooth LyC smooth LyC smooth LyC smooth LyC smooth

UVC UVC UVC UVC UVC

Figure 33. Composite LyC Stacks of the GOODS/HDUV+ERS Samples

[Top Row]: Composite LyC stacks of all galaxies in our sample; [Middle Row]: The same as
the top row but convolved with a 1σ Gaussian kernel. [Bottom Row] The UVC counterparts
of the top row; [Left column of panels]: Composite stacks of all galaxies without AGN in our
sample (indicated by Gal in green) observed in the F225W, F275W, and F336W filters; [2nd
column]: Composite stacks of all galaxies hosting AGN, excluding
QSOJ189.095582+62.257407 (indicated by AGN− in green); [3rd column:] Composite
stacks of all galaxies hosting AGN; [4th column]: Composite stacks of 109 galaxies with and
without AGN in our sample, excluding QSOJ189.095582+62.257407; [5th column]: Stack of
all 110 galaxies in our sample. These stacks represent the average observed LyC Fν from all
galaxies integrated from 2.28. z. 4.28, scaled to a common F225W zeropoint magnitude.
The blue ellipses were fit to the UVC stacks (bottom row).

Table 5. Composite Stack LyC Photometry of the GOODS/HDUV+ERS Samples
Stack z-range 〈z〉 Nobj mLyC ABerrLyC S/NLyC AUVC
(1) (2) (3) (4) (5) (6) (7) (8)

Gal 2.2760–4.2830 2.9948 94 >28.3 . . . (1.0)† 0.89
AGN− 2.2980–3.6609 2.8541 15 >27.8 . . . (1.0)† 0.23
AGN 2.2980–3.6609 2.8377 16 26.5 0.1 10.3 0.21
All− 2.2760–4.2830 2.9754 109 >28.4 . . . (1.0)† 0.64
All 2.2760–4.2830 2.9719 110 28.3 0.4 3.1 0.50

Table columns: (1) Galaxy type subsample (− indicates the exclusion of the LyC-bright
QSOJ189.095582+62.257407); (2) Redshift range of galaxies included in LyC composite
stacks; (3) Average redshift of all galaxies in each stack; (4) Number of galaxies with reliable
spectroscopic redshifts included in each stack; (5) Observed total AB magnitude of LyC
emission from stack (SExtractor MAG_AUTO) aperture matched to UVC, indicated by the
blue ellipses in Fig. 33; (6) 1σ uncertainty in LyC AB-mag (7) Measured S/N of the LyC
stack flux († indicates a 1σ upper limit); (8) Area (in arcsec2) of the UVC aperture.
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Figure 34. PMFs of the LyC Escape Fraction from Galaxies Without AGN in the
GOODS/HDUV and ERS Samples
PMFs of the sample-averaged fesc values of galaxies without AGN from the MC simulations described in
§3.4, plotted against their relative probability. The respective sample is indicated in each top right corner.
This analysis was performed 103 times using the measured and modeled intrinsic stacked apparent LyC
flux and their ±1σ ranges. We apply the IGM attenuation models of Inoue et al. (2014) to our modeled
LyC fluxes. Downwards triangles and circles indicate the resulting ML and expected values of fesc in each
probability distribution function, respectively, while the left/right facing triangles indicate the ±1σ range
around the ML value.
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Figure 35. PMFs of the LyC Escape Fraction from Galaxies With AGN in the
GOODS/HDUV and ERS Samples
PMFs of the sample-averaged fesc values of galaxies with AGN. This analysis was performed in the same
manner as in Fig.34, and the symbols are equivalent in meaning as well. The darker blue curve is the same
analysis as the lighter blue curve, except the LyC-bright QSO J189.095582+62.257407 is excluded.
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Figure 36. PMFs of the LyC Escape Fraction from All Galaxies in the
GOODS/HDUV and ERS Samples
PMFs of the sample-averaged fesc values of all galaxies. This analysis was performed in the same manner
as in Fig.35, and the symbols are equivalent in meaning as well.
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Table 6. Summary of fesc Constraints from the GOODS/HDUV and ERS Samples
Filter 〈z〉 Nobj

〈
fUVC
fLyC

〉
obs

〈
fUVC
fLyC

〉
int

Age AV log(M?/M�) SFR 〈TIGM〉 〈fesc〉
[log(yr)] [mag] [log(M�/yr)] [%] [%]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
GOODS/HDUV
Galaxies without AGN:
F275W 2.726 33 6+15

−6 4.57+0.01
−0.01 9+0

−2 0.1+0.5
−0.1 9.4+0.3

−1.1 0.8+0.7
−0.3 22+33

−22 20+51
−17

F336W 3.609 26 8+19
−8 6.99+0.03

−0.02 8.9+0.3
−0.7 0.03+0.08

−0.03 9.0+0.6
−0.6 0.8+0.2

−0.6 4+6
−4 <99.5+0.5

−4.8
Galaxies with AGN:
F275W− 2.702 2 >208 2.666+0.002

0.002 6.9+0.2
−0.2 0.8+0.2

−0.2 9.4+0.7
−0.7 2+1

−1 22+33
−22 0.5+5.0

−0.4

F275W 2.665 3 24+7
−1 2.760+0.002

0.002 6.9+0.2
−0.3 0.6+0.3

−0.3 9.4+0.7
−0.6 2+1

−1 22+33
−22 20+24

−17

F336W 3.427 2 3+8
−3 3.93+0.02

−0.03 8.9+0.3
−0.3 0.4+0.2

−0.2 9.9+0.3
−0.3 <-4 9+14

−9 <98.6+0.9
−3.1

All Galaxies:
F275W− 2.725 35 17+52

−17 2.945+0.002
0.002 8.82+0.01

−1.88 0.2+0.5
−0.2 9.4+0.3

−1.1 0.7+0.8
−0.2 22+33

−22 4+40
−2

F275W 2.721 36 26+67
−9 2.999+0.002

0.002 8.82+0.03
−1.92 0.2+0.5

−0.2 9.4+0.3
−1.1 1.0+0.6

−0.4 22+33
−22 5+40

−3

F336W 3.596 28 7+19
−7 6.57+0.02

−0.02 9.0+0.1
−0.9 0.01+0.16

−0.01 9.4+0.4
−1.0 0.8+0.2

−0.7 4.5+6.1
−4.5 <99.5+0.5

−2.1

ERS
Galaxies without AGN:
F225W 2.350 17 19+52

−19 3.84+0.02
−0.03 7.7+0.5

−0.3 0.8+0.0
−0.7 8.81+0.85

−0.03 0.1+0.6
−1.8 33+39

−32 9+50
−5

F275W 2.752 7 >51 6.80+0.03
−0.03 7.30+1.40

−0.03 0.3+0.3
−0.3 8.9+0.7

−0.2 0.6+0.7
−0.9 19+31

−19 30+57
−19

F336W 3.603 10 >23 6.60+0.01
−0.02 8.99+0.01

−1.09 0.01+0.01
−0.01 9.2+0.3

−0.7 0.9+0.2
−0.3 4+6

−4 <99.5+0.5
−4.1

Galaxies with AGN:
F225W 2.374 2 4+11

−4 2.69+0.02
−0.02 7.6+0.8

−0.8 1.1+0.3
−0.3 9.6+0.4

−0.4 2.0+0.6
−0.6 29+38

−29 8+44
−5

F275W 2.643 6 11+32
−11 2.63+0.01

−0.01 7.9+1.3
−1.4 0.6+1.0

−0.4 10.34+0.03
−1.52 1.1+2.0

−0.1 26+35
−26 0.9+9.2

−0.6

F336W 3.316 3 12+21
−2 7.62+0.06

−0.08 7.3+0.7
−1.6 1.5+0.6

−1.5 9.9+0.8
−1.8 2.75+0.04

−0.09 12+19
−12 9+44

−3

All Galaxies:
F225W 2.352 19 20+53

−20 3.61+0.02
−0.02 7.6+0.5

−0.5 0.75+0.05
−0.58 8.90+0.79

−0.04 0.1+1.0
−1.7 29+38

−29 15+39
−9

F275W 2.702 13 16+43
−16 2.85+0.01

−0.01 7.1+1.8
−0.6 0.4+0.9

−0.4 9.3+0.7
−0.6 0.8+1.5

−0.6 22+33
−22 2+23

−1

F336W 3.537 13 36+67
−36 7.52+0.06

−0.06 8.7+0.3
−2.5 0.15+0.02

−0.15 9.5+0.2
−1.2 0.8+1.9

−0.2 6+9
−6 13+61

−7

Total
Galaxies without AGN:
F225W 2.356 18 16+49

−16 3.30+0.01
−0.01 7.7+0.5

−0.6 0.75+0.05
−0.61 9.64+0.05

−0.83 1.18+0.09
−2.77 29+38

−29 3+23
−2

F275W 2.731 40 25+81
−25 4.884+0.008

0.008 8.82+0.02
−1.82 0.2+0.5

−0.2 9.1+0.6
−0.7 0.9+0.5

−0.8 21+34
−21 13+26

−9

F336W 3.607 36 23+76
−23 6.87+0.01

−0.02 9.0+0.2
−0.9 0.03+0.08

−0.03 9.3+0.4
−1.0 0.8+0.2

−0.6 4+6
−4 <99.5+0.5

−2.1

Galaxies with AGN:
F225W 2.374 2 5+9

−5 2.70+0.02
−0.02 7.6+0.8

−0.8 1.1+0.3
−0.3 9.6+0.4

−0.4 2.0+0.6
−0.6 29+38

−29 8+42
−5

F275W− 2.658 8 122+333
−65 2.652+0.006

0.003 8+1
−1 0.42+0.95

−0.09 10.34+0.01
−1.90 1.2+2.4

−0.7 23+33
−23 0.3+2.1

−0.2

F275W 2.651 9 36+4
−2 2.718+0.005

0.004 7.1+1.8
−0.6 0.4+0.9

−0.3 9.7+0.6
−1.2 1.2+2.2

−0.6 23+33
−23 3.0+37

−0.6

F336W 3.360 5 11+20
−1 7.48+0.09

−0.05 7+2
−2 0.4+1.2

−0.4 9.0+1.9
−0.7 <-4 9+15

−9 27+67
−9

All Galaxies:
F225W 2.358 20 18+47

−18 3.24+0.01
−0.01 8.20+0.07

−1.10 0.5+0.3
−0.3 8.90+0.82

−0.01 1.2+0.2
−2.7 29+38

−29 3+22
−2

F275W− 2.719 48 66+187
−66 2.915+0.005

0.004 8.88+0.01
−2.04 0.2+0.7

−0.2 9.1+0.8
−0.7 1.0+0.6

−0.6 22+33
−22 3+10

−2

F275W 2.716 49 44+22
−5 2.954+0.005

0.003 8.88+0.04
−2.08 0.2+0.6

−0.2 9.1+0.8
−0.7 0.8+0.9

−0.4 22+33
−22 6+5

−4

F336W 3.577 41 27+53
−7 7.36+0.05

−0.05 9.1+0.1
−1.3 0.15+0.02

−0.15 9.5+0.3
−1.3 1.0+0.1

−0.8 5+6
−5 <82+18

−3

Table columns: (1) Observed WFC3/UVIS filter (− indicates the exclusion of QSO J189.095582+62.257407);
(2) Mean redshift range of galaxies included in LyC/UVC stacks;(3) Number of galaxies included in the
stack; (4): Mean observed flux ratio fν,UVC/fν,LyC and its ±1σ uncertainty, as measured from the LyC
and UVC stacks in their respective apertures (see §5.5.1 and Table 4); (5): Mean intrinsic flux ratio
fν,UVC/fν,LyC and its ±1σ uncertainty, as derived from the best-fit BC03 SED models and their
respective WFC3/UVIS and WFC/ACS filter curves for each of our redshift bins; (6): Peak age of the
stellar populations distribution from the best-fit BC03 models and their ±1σ standard deviations in years;
(7): Peak dust extinction AV and its ±1σ uncertainty of the best-fit BC03 SED model in AB magnitudes;
(8): Peak stellar mass and its ±1σ uncertainty of the best-fit BC03 SED model in solar masses; (9): Peak
star-formation rate and its ±1σ uncertainty of the best-fit BC03 SED model in solar masses/year; (10):
Average filter-weighted IGM transmission of all sight-lines and redshifts in the stacks and their ±1σ
standard deviations, calculated from the Inoue et al. (2014) models; (11): ML and ±1σ uncertainties for
the sample-average fesc inferred from the MC analysis described in §3.3, i.e., the escape fraction of LyC
including effects from all components of the ISM and reddening by dust, corrected for IGM attenuation.
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Figure 37. Updated LyC Escape Fraction vs. Redshift from the
GOODS/HDUV+ERS Samples

The inferred sample-averaged LyC escape fraction for various galaxy samples as a function of
redshift. Plotted are our ML average fesc value with their ±1σ range or 1σ upper limits for
our galaxies without AGN (purple filled circles) and galaxies with AGN (green filled circles;
the open green circle indicates the exclusion of QSOJ189.095582+62.257407) taken from the
probability mass functions of Figs. 34–36, generated from our MC simulations described in
§3.4. The green ? symbol represents fesc in F275W of QSOJ189.095582+62.257407. The
blue points indicate available published sample-averaged fesc values for galaxies without
AGN that have 〈M1500Å〉. -21. Some blue points were converted from the quoted f rel

esc

values using extinction values from the literature source. Light green points are available
published sample-average fesc values for AGN. References to these data are found in §2.3.
All vertical error bars are the ±1σ uncertainty on the inferred fesc values. Some errors were
converted from the quoted 2–3σ uncertainties in the literature. Upper limits are shown as
downward triangles. Although the blue points represent galaxy samples with properties that
differ from those of our samples, and the quoted errors were derived from uncertainties based
on different methods of error assessment, the combined data suggests a trend of fesc with
redshift for both galaxies with and without AGN. This compiled dataset does not rule out
the possibility that massive galaxies may have had high enough LyC fesc values to complete
hydrogen reionization by z∼ 6, if galaxies at 2.z.4 can serve as analogs for those at z&6.
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Chapter 6

CONCLUSIONS AND FUTURE PROSPECTS

6.0.1 LyC Detections

This work presented the published LyC photometric analysis from Smith et

al. (2018) in Chapter 4, which used the most sensitive UV images available to study

the LyC emission of high-redshift galaxies at the time. In Chapter 5, these results

were extended from the ERS to include the recently acquired GOODS UV data, and

quantified the LyC radiation escaping from a total of 110 spectroscopically verified

galaxies at z' 2.26–4.3 across all three fields and in WFC3/UVIS F225W, F275W,

and F336W filters. The ERS imaging was collected when WFC3 was newly installed,

and so it provides the purest raw data of any UV deep field to date, since the camera

had not been degraded by the constant bombardment of relativistic charged particles

that permeate space. The ERS data does not contain many of these pristine raw

images unlike UV surveys like UVUDF and HDUV, which were taken at later time

and resulted in less than pristine data. The ability to capture faint LyC signals from

the high-redshift Universe in these surveys is greatly decreased, and WFC3/UVIS

may have not be able to preserve faint signals observed by HST like it could when

the ERS data taken. These two datasets are complimentary, however, since these

later surveys extend the sampling area on the sky, which increases the likelihood of

detecting rarer bright LyC sources like we found in this work.

The ERS data, with its ability to preserve flux from faint LyC signals, showed

that galaxies with typical brightnesses around M∗ were not emitting as much LyC

140



as their AGN counterparts. AGN were seen to be ∼3× brighter, with the limited

statistics and shallow survey depth of the ERS. Upon extending our LyC survey

with the GOODS/HDUV mosaics, we found one QSO to dominate the LyC output

of all galaxies in these fields combined, and otherwise found similar results to the

photometry of the ERS sample alone. Our search for LyC in these fields began with

the intention of stacking LyC signals of many galaxies, though stacks of LyC signals

from many galaxies are seen to be drowned out by bright emission of single objects,

as is the case with recent studies on extreme O 3 emitters as well (e.g., Y. I. Izotov

et al. 2016; Y I Izotov et al. 2017; Y I Izotov et al. 2018; Fletcher et al. 2019).

For Cosmological purposes, stacking these galaxies is important for understanding

the LyC production and the efficiency of emission from all galaxies in the Universe as a

whole. These galaxies require precisely ascertained redshifts for their LyC photometry

to be relevant, which can be attained with high quality and high SNR spectroscopy.

With enough spectroscopic information, statistically significant samples of galaxies

can be compiled, which can be used to address questions about the bulk of galaxies

completing the reionization of the Universe. These spectra can also allow for more

refined study of the LyC production from galaxies, such as relation to LyC emission

and internal dynamics and how the interplay between these factors evolve throughout

the history of the Universe.

With the upcoming completion of the UVCANDELS survey, additional deep HST

UV data will be available in the EGS and COSMOS fields for further studies on the

sources of reionization. This data is also limited by CTE losses, though may be able to

fortuitously reveal more bright LyC sources as with the HDUV survey. After JWST

begins collecting near-IR spectra in these deep UV surveys, including the ERS, an
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abundant amount of high-redshift sources will be available for studying their LyC

signal and the physical phenomena that lead to LyC escape (Maseda et al. 2019).

The WFC3/UVIS detector will continue to degrade with time, so no UV extra-

galactic survey will be as sensitive as those that come before it. Another potential

route for greatly improving the future of UV astronomy is to replace the UVIS channel

on HST via another service mission, as proposed by Lopez-Morales et al. (2019). This

would surely bring the quality of HST UV data back to that of the ERS, and would

allow for early deep surveys to be performed when these cameras are still at their

peak sensitivity.

6.0.2 LyC Escape Fractions

Our sample of AGN from the GOODS/HDUV sample contains two luminous

AGN, though only one displayed a LyC signal, which was brighter than all of the

LyC sources in our sample combined. It is not exactly clear why only this AGN is

so bright in LyC, and a few ideas were put forth in Chapter 5. Perhaps it could be

the case that the particular line-of-sight towards this AGN had a very low H 1 IGM

column density. We also found a potential, though low SNR LyC signal from the

galaxies with no AGN stacked at 〈z〉' 3.6, possibly indicating a similar phenomenon

occurring without the need of a bright QSO.

We used the latest models from Inoue et al. (2014), which incorporates the latest

neutral IGM absorber distribution data available. Their models allow for realistic

MC simulations of the transmission of photons propagating through the IGM at high

redshift, and is either somewhat better or nearly equal to other models replicating

the average Lyman-α transmission constrained observationally by several studies at
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various redshifts (Fan, Carilli, and Keating 2006; Kirkman et al. 2007; Faucher-Giguère

et al. 2008; Becker and Bolton 2013). These models, however, may not account for

smaller spatial resolutions in the IGM that may deviate greatly from the average their

models are benchmarked after.

This may explain why we detect this LyC-bright QSO and why we see some

marginal flux from galaxies where the models predict the IGM would attenuate the

signal to ≤ 1% with a ∼ 70% probability. The IGM may be more inhomogeneous

than what the current set of observations of QSO absorption spectra show, and so

additional research on the Lyman-α forest, and the distribution of DLAs and LLSs

at finer scales through more lines-of-sight is needed to improve the statistics of these

models. These models are essential for accurately inferring fesc, and its possible,

though poorly constrained evolution through Cosmic time.

Our stacked LyC observations of galaxies without AGN shows the steepest decline

in fesc appears to occur near z' 2 from fesc<26% to .2%, which correlates with the

peak of the cosmic star-formation history within an interval of ±1Gyr (Madau and

Dickinson 2014). For galaxies with AGN, their stacked fesc mostly appears constant

with redshift within their error bars, though shows the beginning of a decline if the

data was better constrained. A drop may occur from <94% to <26% from z∼ 3.6

to z∼ 2.4. This could be due to decline in AGN luminosity functions and space

density, which steadily peak near z' 2 and decrease at z < 2 (Ueda 2015). The

evolution of these parameters may share a common link, perhaps by the decrease in

AGN fuel from major mergers and/or accretion (Fabian 2012) and star-formation

feedback through cosmic time. The evolution in these parameters may be correlated

to changing dynamics of galaxies on cosmological scales, where the rising infall and

merger driven star-formation at 2. z. 6 transitions to a more passively evolving
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universe, characterized by giant galaxies at z. 1–2. The decline in fesc from galaxies

may be the result of gas and dust accumulating in the disks and nuclei of forming

galaxies, with a SNe rate that looses efficiency in clearing the LyC-obscuring gas

and dust in galaxies, which are steadily growing in mass with cosmic time. The

accumulating H 1 gas and decreasing SFR may have caused fesc to decrease from

2<z <3, corresponding to ∼1Gyr. Feedback effects can inhibit the formation of new

massive LyC-producing stars that could clear LyC escape paths after going supernova.

When AGN activity and outflows began to increase after the peak in the cosmic

star-formation history at z' 2, their outflows may have cleared enough paths in the

ISM of host galaxies to enhance the fraction of escaping LyC radiation produced by

massive stars and from the accretion disk, resulting in AGN beginning to dominate

the ionizing background at z. 2–3, and eventually reionizing helium in the IGM.

Since AGN outshine galactic-stellar LyC by a factor of ∼10, combined with their

consistently larger fesc seen in this work and in the literature, AGN likely contributed

a significant portion of the ionizing photons needed to finish and maintain cosmic

reionization at z. 3. Due to the anti-hierarchical evolution of SMBHs (Ueda et al. 2003;

Hasinger, Miyaji, and Schmidt 2005), AGN of similar masses to QSO J189.095582+

62.257407 may exist in higher abundance during reionization and could provide a

significant portion to the ionizing background. Resolving the X-ray background above

∼10 keV may reveal more heavily obscured, Compton-thick AGN that would increase

the observed space density of all AGN at z& 2 (Alexander et al. 2008). Improvements

in the accuracy of AGN space densities and their luminosity functions may provide

enough statistics to prove the effectiveness of AGN in assisting SFGs significantly

with the reionization of the IGM.
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APPENDIX A

SED FITS AND PARAMETERS FOR THE GOODS/HDUV AND ERS SAMPLES
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The remaining SED fits for galaxies without AGN continued from Fig. 24 are
shown here, and BC03, dust extinction, and AGN parameters of our sample are shown
in Table 7.

A.1 Best-fitting BC03 SEDS for Galaxies Without AGN

1000 2000 3000 4000 5000

100

101

102

Dust Law=LMC

AV=0.50
+−0.01
−0.50 mag

z=2.627

500 1000 1500 2000 2500 3000 3500 4000 4500

100

101

AV=0.00
+0.12
−0.00mag

z=3.47

500 1000 1500 2000 2500 3000 3500 4000 4500
10−1

100

Dust Law=Calzetti (2000)

AV=0.50
+0.24
−0.50mag

z=3.47

500 1000 1500 2000 2500 3000 3500 4000

10−1

100

AV=0.00
+0.00
−0.00mag

z=3.66

1000 2000 3000 4000

100

101

F
λ

[1
0
−

1
9
e
r
g
s
s
−

1
c
m
−

2
Å
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Figure 38. The Remainder of the BCO3 SEDs for Galaxies Without AGN in the
GOODS/HDUV and ERS Samples
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Table 7. List of Galaxies and SED parameters
RA (J2000) Dec (J2000) zspec mJ,AB M

AB
1500Å

(V −I) fAGN Dust Law AV Age log( M?
M�

) SFR Z χ2

[deg] [deg] [mag] [mag] [mag] [%] [mag] [log(yr)] [log(M�
yr

)]
189.095582 62.257407 2.5920 21.25 −24.69 −0.15 56 C2000 0.1 6.8 9.52 2.69 0.020 7.44
189.106541 62.230628 2.9320 24.96 −20.40 0.24 0 SMC 0.1 8.5 9.36 0.86 0.050 2.08
189.127325 62.273982 2.4845 24.78 −20.69 0.01 0 C2000 0.3 6.8 8.11 1.28 0.050 0.19
189.173849 62.210796 2.5890 25.56 −19.93 −0.02 0 . . . 0.0 7.8 8.23 0.56 0.050 2.72
189.247387 62.158714 2.9900 25.46 −20.47 0.12 0 K&C 0.3 7.0 8.3 1.03 0.004 3.72
189.297223 62.179011 2.5965 25.47 −20.34 0.04 0 SMC 0.1 6.4 7.77 1.55 0.050 16.8
189.317191 62.257343 2.9560 25.73 −19.45 0.33 0 . . . 0.0 8.4 9.4 0.04 0.050 6.88
189.367139 62.244453 2.5480 23.65 −21.32 0.09 0 MW 0.2 8.9 10.1 1.37 0.050 0.09
189.424448 62.226140 2.8635 . . . −18.81 0.21 0 . . . 0.0 8.2 8.88 −0.30 0.050 0.66
53.006583 −27.724170 2.7212 24.06 −20.98 0.07 38 C2000 1.1 6.5 9.09 2.89 0.020 0.49
53.008846 −27.724348 2.7260 24.28 −19.66 0.84 0 C2000 2.5 6.5 9.98 3.63 0.020 4.98
53.012648 −27.747244 2.5730 24.71 −19.01 0.69 0 C2000 1.4 9.4 10.8 1.52 0.020 6.39
53.013515 −27.755235 3.2171 25.14 −21.12 . . . 59 . . . 0.0 5.7 8.06 2.65 0.020 0.66
53.013948 −27.756821 2.3170 24.74 −20.48 −0.09 0 . . . 0.0 7.7 8.93 −1.01 0.004 4.97
53.014539 −27.727922 3.1320 25.01 −20.86 0.30 0 . . . 0.0 9.3 9.65 0.79 0.004 3.62
53.020573 −27.742150 3.4739 24.45 −21.93 . . . 62 . . . 0.0 6.0 8.39 2.67 0.020 1.59
53.020927 −27.770185 3.9170 25.22 −21.13 0.62 0 . . . 0.0 8.3 8.88 0.98 0.004 6.5
53.033326 −27.782577 2.6123 25.25 −19.73 0.23 27 C2000 0.7 8.4 9.13 1.15 0.020 0.53
53.035231 −27.744125 4.1486 26.02 −20.49 0.55 0 . . . 0.0 7.6 8.14 0.89 0.004 11.1
53.039361 −27.801888 2.8280 20.93 −24.50 0.17 23 C2000 1.0 6.5 10.4 4.02 0.020 1.92
53.040821 −27.719068 2.3021 24.09 −20.34 0.12 0 MW 0.6 7.6 9.68 −1.09 0.004 8.01
53.042456 −27.737862 2.3036 23.94 −20.55 0.09 0 C2000 0.6 7.7 9.49 0.25 0.004 0.32
53.048311 −27.813928 2.6061 24.84 −20.72 0.06 0 SMC 0.2 7.0 8.35 1.23 0.004 2.57
53.051643 −27.804598 2.8121 24.74 −20.90 0.05 0 . . . 0.0 8.8 9.29 0.89 0.020 1.74
53.054090 −27.811396 4.2830 25.52 −20.83 0.63 0 . . . 0.0 8.2 8.7 0.87 0.004 0.98
53.056091 −27.786294 2.6167 24.08 −21.07 0.14 0 MW 0.3 9.0 10 1.44 0.050 0.46
53.061617 −27.846248 3.2078 24.88 −21.12 0.12 0 . . . 0.0 8.8 9.3 0.91 0.004 3.16
53.062466 −27.735445 2.6730 24.46 −19.65 0.20 0 C2000 1.3 7.7 10 −2.07 0.004 3.28
53.065221 −27.742901 2.6160 25.26 −20.05 0.08 0 K&C 0.5 7.5 8.59 1.28 0.008 0.31
53.065771 −27.695980 3.6433 25.81 −20.34 0.40 0 . . . 0.0 9.0 9.19 0.59 0.004 1.1
53.071733 −27.798436 3.6520 25.50 −20.80 0.29 0 . . . 0.0 8.0 8.53 0.90 0.004 5.34
53.072558 −27.744441 2.6503 25.54 −20.54 −0.15 49 . . . 0.0 6.3 7.81 1.76 0.020 3.56
53.074769 −27.825031 3.1673 25.04 −20.61 0.18 0 C2000 0.3 8.7 9.3 1.03 0.004 1.83
53.076203 −27.858430 3.6571 26.83 −19.29 0.19 0 . . . 0.0 8.3 8.14 0.25 0.004 5.41
53.078023 −27.731020 2.4160 23.77 −20.36 0.27 0 SMC 0.2 8.1 9.72 0.63 0.050 1.05
53.078460 −27.859851 3.6609 25.58 −20.17 . . . 37 C2000 0.7 8.4 10.3 −8.18 0.020 0.59
53.078800 −27.693745 2.3060 25.08 −19.80 0.00 0 C2000 0.3 7.6 8.89 −1.88 0.004 5.79
53.079284 −27.691368 2.4352 24.97 −19.10 0.27 0 K&C 0.6 8.1 9.45 0.73 0.050 0.06
53.081690 −27.811114 3.7080 25.91 −20.28 0.35 0 . . . 0.0 8.5 8.69 0.61 0.004 1.29
53.084024 −27.823427 3.6580 26.11 −20.02 0.20 0 . . . 0.0 9.0 9.01 0.47 0.004 2.53
53.084173 −27.838138 2.8108 25.06 −20.24 0.18 0 SMC 0.1 8.8 9.22 0.84 0.050 1.46
53.086983 −27.821134 2.4845 25.28 −20.39 −0.03 0 C2000 0.1 7.0 7.96 0.84 0.020 2.65
53.089909 −27.872595 3.2051 25.91 −20.00 0.07 0 . . . 0.0 9.2 9.3 0.44 0.004 2.18
53.094142 −27.854997 3.6600 26.94 −19.16 0.51 0 . . . 0.0 9.2 8.85 0.11 0.004 5.96
53.094398 −27.856172 3.7060 27.08 −19.08 0.58 0 . . . 0.0 9.2 8.82 0.08 0.004 17.2
53.095384 −27.687524 3.3565 25.56 −20.31 0.22 0 . . . 0.0 9.0 9.4 0.54 0.004 5.35
53.096834 −27.866071 3.4700 25.69 −19.92 0.61 0 C2000 0.5 9.1 10.1 0.87 0.004 0.74
53.097230 −27.865792 3.4700 23.99 −21.87 0.60 0 . . . 0.0 8.5 10.1 0.97 0.008 0.52
53.100815 −27.715987 2.2980 23.60 −19.91 0.12 10 C2000 0.7 8.8 10.2 1.09 0.020 0.61
53.101449 −27.832682 2.6885 25.01 −20.08 0.16 0 C2000 0.5 8.8 9.49 1.11 0.050 0.92
53.102783 −27.759367 2.3115 25.03 −20.62 −0.07 0 . . . 0.0 8.1 8.65 0.75 0.004 20.1
53.110319 −27.845594 3.0604 25.07 −20.37 0.40 0 . . . 0.0 8.1 9.55 −1.63 0.020 0.83
53.113001 −27.745551 2.3230 24.78 −19.38 0.08 0 C2000 0.8 7.7 9.35 −1.51 0.004 0.7
53.113675 −27.812727 2.6310 25.07 −20.32 0.05 0 . . . 0.0 9.0 9.24 0.70 0.050 2.46
53.117831 −27.734305 3.2560 24.26 −20.45 . . . 31 C2000 3.0 9.0 11.8 2.84 0.020 1.23
53.118440 −27.805315 2.6270 24.68 −20.80 0.06 0 LMC 0.5 7.0 8.75 1.48 0.004 1.02
53.120610 −27.736585 3.3680 25.11 −21.04 0.25 0 . . . 0.0 8.7 9.19 0.89 0.004 4.43
53.121412 −27.814619 3.5970 25.04 −21.00 0.40 0 . . . 0.0 9.2 9.59 0.85 0.004 1.42
53.121611 −27.672921 3.3083 25.58 −20.50 0.17 0 . . . 0.0 8.8 9.07 0.66 0.004 1.2
53.124717 −27.824518 3.2293 24.88 −20.92 0.30 0 . . . 0.0 9.1 9.85 0.80 0.008 0.12
53.131718 −27.669018 3.0762 24.30 −21.36 0.15 0 . . . 0.0 8.6 9.57 1.08 0.050 1.47
53.132762 −27.830592 2.5781 24.63 −20.26 0.20 0 C2000 1.5 6.7 9.3 2.81 0.004 1.4
53.134558 −27.690656 2.3200 23.73 −21.33 0.05 0 C2000 0.6 7.1 8.96 1.41 0.008 8.39
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Table 7. Continued
RA (J2000) Dec (J2000) zspec mJ,AB M

AB
1500Å

(V −I) fAGN Dust Law AV Age log( M?
M�

) SFR Z χ2

[deg] [deg] [mag] [mag] [mag] [%] [mag] [log(yr)] [log(M�/yr)]
53.134819 −27.713359 2.4300 24.53 −19.48 0.15 0 C2000 2.1 6.6 9.64 3.34 0.004 2.16
53.135359 −27.814467 2.8179 24.88 −20.45 0.14 0 SMC 0.1 9.3 9.87 0.92 0.050 1.06
53.138759 −27.700469 2.4500 24.39 −19.67 0.33 57 C2000 1.5 6.4 8.98 2.87 0.020 0.32
53.138854 −27.835370 3.7910 25.34 −20.93 0.32 0 C2000 0.1 7.0 8.18 1.06 0.004 4.18
53.140741 −27.803986 2.6182 25.00 −20.55 −0.05 0 LMC 0.3 6.9 8.28 1.25 0.020 3.78
53.142623 −27.826539 3.5705 25.85 −20.43 0.11 0 . . . 0.0 7.0 7.9 0.63 0.004 9.1
53.143115 −27.815496 4.1420 25.33 −20.66 1.06 0 LMC 0.2 8.8 9.93 1.01 0.020 0.45
53.144489 −27.728071 2.2760 25.25 −19.42 0.10 0 LMC 0.4 7.6 8.99 −1.78 0.004 6.0
53.145431 −27.698008 2.3129 25.26 −20.25 −0.06 0 C2000 0.2 7.1 8.12 0.57 0.008 17.9
53.145621 −27.685249 2.7708 25.16 −20.41 0.09 0 . . . 0.0 8.8 9.12 0.73 0.050 1.27
53.146045 −27.806442 2.7970 24.82 −19.73 0.31 0 MW 0.9 7.9 10.3 −3.35 0.008 1.77
53.148822 −27.821115 2.5760 25.76 −19.62 0.23 1 C2000 0.5 7.2 8.36 0.45 0.020 7.26
53.149223 −27.748588 2.5658 24.76 −20.69 −0.04 0 K&C 0.6 6.8 8.71 2.18 0.004 1.53
53.149815 −27.697213 3.6180 24.72 −21.50 0.30 0 . . . 0.0 8.6 9.26 1.09 0.004 0.42
53.151291 −27.742911 3.4173 24.52 −21.18 0.43 0 . . . 0.0 8.3 9.89 0.10 0.008 0.1
53.153434 −27.766114 3.7970 25.21 −20.87 0.53 0 . . . 0.0 8.5 9.36 0.72 0.008 0.35
53.157430 −27.709016 2.9752 25.17 −20.28 0.23 0 SMC 0.1 8.7 9.25 0.85 0.050 1.34
53.158912 −27.742675 2.3277 26.29 −18.08 0.12 0 MW 0.5 8.1 9.22 −0.37 0.020 1.71
53.161953 −27.722657 2.4490 24.24 −20.65 0.08 0 C2000 0.3 7.6 9.23 0.08 0.020 0.1
53.164729 −27.807903 2.8218 25.05 −20.22 0.18 0 SMC 0.1 8.6 9.38 0.80 0.050 0.43
53.165578 −27.788170 2.8414 25.03 −20.43 0.12 0 . . . 0.0 8.8 9.48 0.71 0.050 0.72
53.166236 −27.819816 3.4192 27.04 −18.99 0.31 0 . . . 0.0 9.2 9.28 0.00 0.004 12.4
53.167996 −27.711349 2.5845 24.71 −20.55 0.04 0 . . . 0.0 7.4 8.76 −0.20 0.050 1.28
53.168265 −27.741939 4.1200 26.00 −20.46 0.44 0 C2000 0.3 6.2 8.23 2.32 0.004 2.46
53.169581 −27.826858 4.0279 27.42 −18.81 0.47 0 . . . 0.0 8.8 8.35 0.00 0.004 21
53.170605 −27.823771 2.6918 25.81 −19.38 0.06 0 . . . 0.0 8.0 8.86 −0.14 0.050 3.04
53.174442 −27.733297 2.5760 25.89 −18.75 0.19 16 C2000 0.3 9.1 9.9 0.25 0.020 0.51
53.178282 −27.815807 2.6933 25.97 −19.01 0.32 0 C2000 0.7 8.7 9.2 0.89 0.050 1.57
53.178482 −27.784031 3.1930 25.04 −20.21 . . . 97 . . . 0.0 9.3 9.41 −99 0.020 9.06
53.180475 −27.829740 3.3329 25.07 −20.88 0.19 0 . . . 0.0 9.2 9.54 0.80 0.004 0.86
53.180778 −27.786255 2.6915 24.99 −20.65 −0.05 0 . . . 0.0 7.6 8.59 0.59 0.020 1.47
53.181483 −27.831793 2.6500 24.78 −20.60 0.08 0 K&C 0.1 8.6 9.11 0.95 0.050 0.61
53.181805 −27.729920 2.3168 24.49 −20.12 0.16 0 C2000 0.8 7.7 9.6 −0.34 0.004 1.29
53.182025 −27.779539 2.4680 24.64 −20.12 0.14 0 MW 1.4 6.8 9.77 3.18 0.004 1.95
53.182798 −27.705269 2.3682 25.07 −20.48 −0.09 0 . . . 0.0 8.0 8.65 0.61 0.004 2.95
53.182838 −27.734909 2.4284 24.41 −20.41 0.32 0 MW 0.4 8.0 9.95 −8.17 0.004 4.26
53.185823 −27.809963 2.5860 25.01 −19.97 0.38 0 SMC 0.2 9.1 9.64 0.90 0.050 3.3
53.187092 −27.812653 2.8038 25.47 −19.41 0.28 0 MW 0.7 8.1 9.67 1.22 0.050 1.3
53.188112 −27.841128 3.3924 25.71 −19.79 0.35 0 SMC 0.4 6.5 8.07 1.84 0.050 2.1
53.188249 −27.829353 2.5712 26.51 −18.39 0.22 0 C2000 1.3 7.2 8.43 1.51 0.004 1.9
53.189130 −27.836274 3.3188 26.76 −19.02 −0.04 0 K&C 0.1 8.6 8.45 0.21 0.004 5.29
53.192689 −27.813047 4.0200 25.25 −20.98 0.74 0 . . . 0.0 9.1 9.57 0.83 0.004 1.42
53.193044 −27.848046 2.8984 24.76 −20.55 0.36 0 SMC 0.4 7.0 8.62 1.60 0.004 4.46
53.195570 −27.834564 2.9994 25.38 −20.38 0.16 0 . . . 0.0 8.8 9.04 0.68 0.020 3.1
53.202603 −27.815619 3.7090 26.15 −20.12 0.40 0 . . . 0.0 8.7 8.79 0.53 0.004 5.23
53.203270 −27.821657 2.6105 25.48 −20.02 0.07 0 LMC 0.6 6.9 8.52 1.91 0.004 2.63
53.220439 −27.808750 3.6496 25.95 −20.27 0.16 0 . . . 0.0 8.2 8.46 0.65 0.004 7.94

Table columns: The column header fAGN indicates the percentage of light in the SED from
the AGN at 5000Å and log( M?

M�
) indicates the stellar mass of the galaxy that produces it’s

best-fitting BC03 SED. C2000 represents the Calzetti et al. 2000 dust-attenuation law and
K&C represent the dust law from Kriek and Conroy (2013)
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APPENDIX B

SOURCES OF SYSTEMATIC UNCERTAINTIES OR SPURIOUS SIGNALS IN
CONTRAINING THE LYC ESCAPE FRACTION
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B.1 Possible Sources of Contaminating Non-ionizing Flux

B.1.1 In-filter Red-leak of Non-ionizing Flux

The WFC3/UVIS filters were designed to minimize the transmission of photons
with wavelengths higher or lower than their specified cutoffs (see Fig. 6(a)). However,
as seen in Fig. 6(b), a small amount of flux red-ward of the Lyman Limit from galaxies
observed in these filters with redshifts in the ranges of Table 1 can still leak into
the filter and contaminate LyC observations with non-ionizing UVC flux. The lower
redshift bounds in Table 1 were carefully chosen such that no light > 912Å is sampled
below the filter’s red edge. The filter red edge is defined as < 0.5% of the filter’s
peak transmission. For galaxies at the higher redshifts in the ranges of Table 1, and
especially those at higher redshifts than the designated upper bound, the contribution
from UVC “red-leak” can become the dominant source of photons measured in the
filter, as the portion of the spectrum intended for LyC observation becomes exceedingly
faint at shorter wavelengths and the non-ionizing continuum remains roughly constant
at longer wavelengths. Thus, in order to accurately measure LyC photometry and
escape fractions from these samples of galaxies, we must verify that the flux measured
from our sample is dominated by LyC photons.

Since we cannot directly measure the fraction of non-ionizing flux leaking nto the
filter from the observation, we estimate this value by modeling the contribution of
LyC and UVC to the observed flux from the total sample. Using SEDs fit from con-
tinuum observations of our galaxy sample and average line-of-sight IGM transmission
models (see §3.3), we calculate the average UVC “red-leak” of our observation in the
WFC3/UVIS F225W, 275W, and F336W filters by comparing the total flux integrated
in the entire filter, and the total flux integrated below the Lyman Limit of each galaxy.
We calculate this value as:

FUVC
ν

F LyC
ν

=

Ngal∑
i=1

λ2∫
λ912

T LyC
obs (ν)TIGM(zi, ν)Fν,i(ν)dν

ν

λ2∫
λ1

T LyC
obs (ν)dν

ν

/ λ2∫
λ1

T LyC
obs (ν)TIGM(zi, ν)Fν,i(ν)dν

ν

λ2∫
λ1

T LyC
obs (ν)dν

ν

(B.1)
where λ1 and λ2 are the minimum and maximum wavelengths of the full filter trans-
mission curve, λ912 is the observed wavelength of the Lyman Limit of the galaxy, Fν is
the SED flux of the galaxy in erg s−1 cm−2 Hz−1, TIGM is the average line-of-sight IGM
transmission at the redshift of the galaxy, and T LyC

obs (ν) is the combined throughput
of the filter, detector quantum efficiency (QE), and optical telescope assembly (OTA).
This value quantifies the fraction of flux we measure from these galaxies in the filter
intended for LyC observations that is non-ionizing. For the F225W, F275W, and
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F336W filters, the percentage of total “red-leak” photons that contribute to the mea-
sured LyC flux of our sample are ∼ 0.65%, 0.64%, and 0.19% respectively. That is, less
than 1% of the anticipated and measured LyC flux itself could be red-leak flux from
longwards of 912Å. From these values, it is clear that LyC observations of galaxies at
the redshift ranges indicated in Table 1 with their respective filters are dominated
by LyC photons. We also note that our MC analysis of the observed LyC flux from
these galaxies accounts for these “red-leak” photons, in order to make appropriate
corrections for low level non-ionizing contamination of the order of ∼ 0.28%.

B.1.2 UVIS filter Pinholes

Pinholes are very small voids in the coating on the surface of a filter. These voids
appear usually due to poor adhesion of the coating in these regions where particulate
matter on the surface of the filter is coated over when the substrate is cast, or from
mechanical abrasion or chemical interactions when the filter is in use. Several of
the WFC3/UVIS filters have pinholes, so we must make sure that none of the LyC
flux that we measure is due to out-of-band flux leaking in through the filter in an
area where such a pinhole exists. Most of the obvious pinholes were known before
WFC3’s launch, and the filters with the fewest pinholes were chosen for flight (Dressel
et al. 2015). To the best of our knowledge, the number of pinholes did not increase
during the 7 years that the WFC3 filters were on the ground. Visible pinholes on the
selected filters were painted over when possible (Baggett et al. 2006). Any remaining
pinholes not painted over before launch are likely .0.2 mm in diameter, or they would
have been treated before final instrument assembly. Unfortunately, no record was
kept of any less obvious pinholes in the flight filters that were not painted over before
launch. Remaining pinholes could cause subtle field dependent red-leaks and very low
level sky gradients, which we quantify here.

We need to first estimate how large the footprint and the amplitude of any pinhole
red-leak on the WFC3 CCDs could be. The HST f/24 beam gets re-imaged inside
WFC3 to f/31 (Dressel et al. 2015), so that the plate scale on the WFC3 UVIS
detector changes from 3.′′58/mm to 2.′′77/mm (i.e., 206265/(2400× 31) ”/mm). The
WFC3 UVIS Marconi CCDs have 15µmpixels, so the two 2k×4k CCD arrays are
about 61 mm in physical size. The WFC3/UVIS F225W filter is in Selectable Optical
Filter Assembly (SOFA) filter wheel 3, F336W in filter wheel 4, and F275W in filter
wheel 6 out of 12, where wheel 12 is closest to the CCD’s. The average location of
these three filter wheels is about 190±25 mm away from the focal plane (Fig. 2.1 of
Dressel et al. 2015), which we hereafter refer to as the “center of the SOFA”. The ±25
mm indicates the approximate range over which these three UVIS filter wheels are
mounted inside the SOFA. Each SOFA filter is 57.3mm square and .5.151mm thick
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(Baggett et al. 2006), as fabricated by the filter vendor to the specifications defined
by the WFC3 Scientific Oversight Committee and Instrument Product Team.

The SOFA is about 1/3 of the way between the focal plane and the pupil, which is
the anamorphic asphere mirror inside WFC3 that corrects for the spherical aberration
in HST’s primary mirror. Fortunately therefore, all pinholes in the WFC3 UVIS
filters will be severely out of focus, since the filters are so far from the focal plane.
We first need to calculate how large the pupil of each image is in the filter plane. The
anamorphic asphere mirror has a diameter of about 25 mm and is about 630 mm away
from the CCD. It is about 440 mm from the center of the SOFA, so that the radius of
the image pupil at the filter distance is about rip−f ' (190/630) · 25/2 ' 3.77mm.
Hence, the image pupil at the filter is about 7.54/57.3' 13% of the filter size.

Next, we need to estimate how large the footprint and the amplitude of any pinhole
flux on the WFC3 CCDs could be. If WFC3’s f/31 beam goes through a pinhole
with an r& 0.08mm radius (i.e., & 0.5× 5.151/31) in a . 5.151mm thick UV filter
about 190mm in front of the CCD, this pinhole will affect a beam with an opening
angle θ=90◦–atan(31) ' 1.85◦ projected onto the CCD. As viewed from the CCD, the
remainder of the pixels outside this beam will not view the sky through the pinhole.
At the CCD, the circular beam that is affected by this pinhole will have a 190/31
' 6.1 mm ' 17.′′0 ' 430 pixel radius on the CCD, and so its diameter will cover
about 20% of the WFC3 CCD FOV. To avoid internal reflections in the camera, the
UVIS CCDs are tilted by ∼21◦ with respect to the axis of the beam, so the projected
footprint of each pinhole is actually about 430/cos(21)'460 pixels in radius. In other
words, the footprint projected by the pinhole on the CCD is very large, and will
significantly dilute the extra SB signal projected through the pinhole. In the limit, a
much smaller pinhole (r<<0.08) mm would not see the entire f/31 beam, and will
thus act like a pinhole camera that illuminates the entire CCD, diluting the extra SB
that goes through this smaller pinhole even more.

If the interference or AR coating were not present in a pinhole for one of our
WFC UVIS filters, Fig. 6b shows that it could have a significant increase in local
throughput, or less in case that the local defect was only partial in transmission. In a
worst case, the pinhole would act like a F606W or F775W WFC3 filter at that location,
if the OTA×Filter-Throughput×CCD-QE at those wavelengths reached the WFC3
maximum in the F606W filter of ∼28% (see Fig. 3.2 and 5.2 of Dressel et al. 2015).
In such cases, the Zodiacal sky in the beam illuminated by the pinhole would be much
higher than seen in our UVIS filters, possibly as high as that in our broadband optical
filters, or slightly higher if the pinhole were fully transparent.

The brightest object in the WFC3 ERS has V ' 17mAB and the most commonly
seen objects are faint galaxies with V ' 26–27mAB (Fig. 12 of Windhorst et al. 2011).
Hence, their collective SB is well below the average Zodiacal background, which is
23.7–22.6 mag arcsec−2Ḣence, for all practical purposes, the pinhole contribution will
just be the full white light Zodiacal background if its throughput reaches the maximum
total throughput of ∼28%. We assume that the white light Zodi would have on average
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a SB'22.9 mag arcsec−2 through such a pinhole, which is roughly the observed value
in F606W (e.g., Windhorst et al. 2011). We will also consider the case of a single V'17
mAB star shining behind a pinhole, as well as the integrated sky SB derived from the
faint galaxy counts in Fig. 12 of Windhorst et al. (2011) to mAB.26mag. In F606W,
the latter reaches 105 galaxies/0.5mag/deg2 to mAB.26mag, and in F275W, they
reach 3× 104 galaxies/0.5mag/deg2 to mAB.25.5 mag. On a per square arcsecond
basis, the integrated sky SB from faint galaxies is therefore ∼29.3 mag arcsec−2 in
F606W and ∼30.1 mag arcsec−2 in F275W, respectively, i.e., fully negligible compared
to the Zodiacal sky SB values of SBZodi

V '22.9 and SBZodi
NUV'25.5 mag arcsec−2 in

these filters, respectively. Hence, only the Zodiacal light and the effective SB of
the occasional bright star behind the filter would be the main sources of pinhole
contamination. All calculations below are done in terms of surface brightness (SB in
mag arcsec−2) or Intensity (I in relative counts/sec).

In a slow f/31 beam, when the pinhole is larger than the minimum size to transmit
through the filter, the total white light transmitted would increase proportionally to
the pinhole area compared to the total area of the image pupil at the filter (rph/rip−f)2,
both measured in mm. For an untreated pinhole with an assumed rph'0.1mm, we
can now estimate the increase in sky SB contribution from this pinhole over a r=460
pixel radius on the CCD. In relative units, this is increase is:

Iph
V = F · [r2

ph/r
2
ip−f ] · [IStar

V + IZodi
V ] (B.2)

with IStar
V = 10−0.4(SBStar

V −ZPV), IZodi
V = 10−0.4(SBZodi

V −ZPV), and:

Iph
NUV = [(r2

ip−f − r2
ph)/r2

ip−f ] · [IStar
NUV + IZodi

NUV] (B.3)

and IStar
NUV = 10−0.4(SBStar

NUV−ZPNUV), IZodi
NUV = 10−0.4(SBZodi

NUV−ZPNUV).
Eq. B.2 describes the relative counts of optical white light through the pinhole,

and Eq. B.3 the relative counts for the uncorrupted NUV sky SB. Note that the
optical white light SBZodi

V '22.9 mag arcsec−2 is compared here to the WFC3 F606W
zeropoint of ZPV=26.08 mag (i.e., not the ACS ZP in this case), and the original UV
SBZodi

NUV'25.5 mag arcsec−2 is compared to the combined F225W and F275W zeropoints
of ∼24.1mag. The factor F'(10000-4000)/2000)'3 reflects that the pinhole could
transmit three broadband filters worth of white light from 4000-10,000Å (see Fig. 6b).
We find approximately the same values if we instead use the WFC3 white light filter
F200LP and its zeropoint ZP=27.36 mag, and set the factor F=1. The limit of
rph'rip−f would describe a hypothetical pinhole so large that it transmits full white
light over the entire image pupil at the filter, which now acts like a wide V band filter.
In that case, both equations still give the correct results: Eq. B.2 describes its wide V
band SB, and Eq. B.3 describes its now vanishingly small NUV SB.

At first, we ignore the terms with IStar
V and IStar

NUV due to a bright star near a pinhole.
The SB from the pinhole in V and NUV then are Iph

V '0.039 and Iph
NUV'0.28 in the

205



same relative units, respectively. The ratio Iph
V /Iph

NUVis 0.14, so that about 14% of
white light background through the pinhole gets added to the UV sky:

SBSky
NUV = SBZodi

NUV − 2.5log(Iph
V /Iph

NUV) (B.4)

The error on this is at least 25/190∼0.13 mag, depending how far the SOFA filter
is from the CCD. That is, a full white light pinhole footprint could add ∼14±2%
to the sky SB over an annulus with a diameter about 20% of the 61 mm CCD area.
This is the worst case — a smaller pinhole that doesn’t project the entire f/31 beam
through the filter could instead add a much fainter SB over the whole chip.

If we also add the effect from a mStar
V '17mag, mStar

NUV' 18 mag star whose image
pupil in the filter plane illuminates the pinhole, we must first correct for the fact
that the light from this point source is now spread out by factor of (rip−f/rph)2 at
the filter, so we must add 2.5log(3.77/0.1)2 to the star’s point source flux of mAB∼17–
18mag in Eq. B.2–B.3 to get the equivalent SB from the star that actually affects
the pinhole, expressed in the appropriate relative units. Note that the Zodiacal
background and integrated galaxy counts do not have this problem, since they are
already expressed as proper SB in Eq. B.2–B.3. These numbers are SBStar

V '24.9 and
SBStar

NUV'25.8mag arcsec−2. Eq. B.2–B.3 converts these SB numbers to relative fluxes,
then adds them linearly. With a V∼17mag star, the white light SB from the pinhole
now grows from Iph

V '0.039 to Iph
V '0.046. This is only 17% larger than just the light

from Zodiacal light alone, since the star is so much more spread out behind the filter.
The NUV comparison term remains at Iph

NUV'0.28. Hence, an out of focus image of a
V∼17mag star behind the pinhole adds ∼17±2% of white light background to the
NUV sky.

To first order, both the proper NUV light and any white light pinhole flux would
get flat-fielded away, although the pinhole regions would have a different color of the
sky-background than the regular UV sky. The WFC3 UVIS Marconi CCDs have QE
curve that is fairly flat as a function of wavelength, with most QE values between
2000-8000Å peak around QE∼70% with a range of ±10%. This peak actually lies
within the F275W filter. We therefore did the experiment to flat-field a WFC3 F606W
image with a high SNR flat-field taken in the F275W filter, and — owing to WFC3’s
flat QE curve — this did not result in a residual gradient larger than about 10% of
sky corner-to-corner across the whole CCD frame. Below we will assume a worst case
of ∼10%.

We can use this result to compute the additional sky gradient that an npainted
pinhole with r'0.1 mm could have caused in our UV images. When a pinhole adds
about 14–17% extra flux to the regular UV Zodiacal sky over a 920 pixel diameter
circle on the CCD, the residual sky gradient that the improper flat-fielding induces
is at most 0.6–0.8% of the total Zodiacal sky over 920 native pixels, or about 404
drizzled pixels. Across our sub-image size of 71×71 drizzled pixels, this residual sky
gradient — if present in our object sub-images — is thus less than ∼0.22-0.26% of
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the local Zodiacal sky. That is, the error in the UV sky of Eq. B.4 from sky gradients
induced by the partial improper flat-fielding of any pinhole white light is:

σSky ' SBSky
NUV + 2.5log(Iph

V /Iph
NUV · 0.1 · 71/404) (B.5)

For our average UV sky of 25.36 mag arcsec−2 (which is now brightened by –0.14 mag
due to the extra pinhole flux), the residual sky-gradients left by pinholes in 151×151
drizzled pixels are thus fainter than 25.36–2.5 log(0.22%) '31.9 mag arcsec−2 and
fainter than '31.7 mag arcsec−2 if a V'17 mag star is also nearby the pinhole. These
pinhole induced systematics are at worst slightly brighter than those possibly caused
by subtle residual gradients left at the 32.3 mag arcsec−2 level across the CCD’s due
to remaining errors in the bias, dark frames, or flat-fields, as discussed in §4.2.2 and
Appendix B.2.1). Of course, the latter may affect our stacks everywhere in the CCD
mosaics, while the former occur only in sporadic (although unknown) locations.

We investigated if the effects of any pinhole red-leaks were in fact seen in the
ERS data, since obvious pinholes would appear as large donut shaped objects in the
drizzled images. No obvious defects with &14–17% increased transmission were seen in
the raw ERS data on scales of ∼920 native pixels, although this is hard to see due to
cosmic rays and the shallow depth of individual images. Partial transmission defects
might exist at lower levels. As discussed in §3.1, we inspected all LyC sub-images
individually, and removed the ones with suspected increased noise due to residual
cosmic rays, structure in the weight maps due to drizzled image borders, and other
image defects. The objects removed from the LyC stacking all appear to have higher
image rms due to the proximity of structure in the weight maps due to drizzled image
borders. No obvious enhancements in the LyC signal were seen due to the proximity
of bright stars.

We find that both red-leak flux from UV filter pinholes and other subtle calibration
errors may result in residual sky gradients of order ∼32–32.3 mag arcsec−2 across our
stacking sky boxes. Unless these effects can be removed through further refinement
of the WFC3 calibration techniques, residual systematic subtraction errors of order
'32 mag arcsec−2 may well pose a fundamental limit to the LyC stacking method of
WFC3 data. This is why the light profiles in Fig. 17 cannot be extended to SB levels
much fainter than AB'32 mag arcsec−2.

Finally, if our LyC detections were in fact caused by subtle sky gradients on
r'920 pixel scales, they should have been preferentially located near the same physical
regions of the CCD. We saw no evidence of our strongest LyC candidates being located
in the same physical CCD region of each exposure. On the contrary, our strongest
LyC emitters are known “Galaxies with AGN” (Table 4), and show no correlation
in their observed position on CCDs. On average, their LyC flux is brighter than
that of our “Galaxies without AGN”. The AGN LyC flux is sometimes compact (.a
few pixels; Fig. 30) — as opposed to that of the galaxies — and therefore occurs
on too small of an optical scale to be caused by the severely out of focus red-leak
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through pinholes. Thus, since the physical location of the AGN on the CCDs is
spatially uncorrelated, their enhanced LyC flux is unlikely associated with residual
sky-background gradients from pinholes. Had that been the case, a number of our
much more numerous “Galaxies without AGN” would likely have also been exposed
near pinhole induced sky gradients and shown the same amount of red-leaked flux,
which is not the case. Hence, local residual sky-background gradients due to pinhole
induced red-leak enhancements are not likely to have affected our LyC measurements,
at least not to the level of AB'32mag arcsec−2.

B.1.3 Estimating LyC Contamination from Objects Below the χ2 Image Detection
Limit

Here we estimate the potential non-ionizing contamination to our LyC stacks
from interloping objects below the χ2 image detection limit. As seen in §5.5, the
deepest χ2 images allow us to locate possible low-redshift contaminants in sub-images
to AB∼27.5mag, such that they can be removed from our stacks so they cannot
contribute any flux to our photometry. However, the possibility that fainter objects
which may remain undetected in χ2 detection image must be addressed, since those
objects could potentially contribute some flux within the SExtractor aperture
photometry.

As an example, the F336W stack LyC photometry is taken within an aperture
area of ∼0.5 arcsec2 (see Table 4). To assess this fainter contaminating flux, we need
to estimate to the total F336W stack sky-surface brightness from objects undetected
at AB&27.5mag. For this, we will use the galaxy galaxy counts of Driver et al. (2016)
from 20 filters ranging from λ'0.15–500 . At nearly all wavelengths, their normalized
differential counts (Fig. 8 or A1) converge with a well determined slope of ∆ρL

∆m
'–0.177.

The total sky-surface brightness contributed by each magnitude bin in the F336W
counts peaks at AB'24mag. The faintest galaxy counts that contribute in F336W are
the UVUDF counts in the HUDF (Teplitz et al. 2013), which reach AB∼28mag. Driver
et al. (2016) performed MC tests to determine the uncertainty in the extrapolated
total sky-signal, which is .20% in F336W.

We extrapolate this converging signal with the same slope as measured be-
tween AB'24 and AB'28mag to arbitrarily fainter fluxes, e.g. from 27.5mag
to 38mag. This is the F336W flux that a very dim (MAB'–10 mag) galaxy
would have at z'3, where the distance modulus in Planck 2016 cosmology
is DM=47.47mag. The actual F336W sky-brightness in Driver et al. (2016)
drops from ∼10−28.3 WHz−1 m−2 deg−2 (0.5 mag−1) at AB=27.5 mag to ∼10−30.2

WHz−1 m−2 deg−2 (0.5 mag−1) at AB=38.0mag. Over the 21 contributing 0.5 mag-
bins from AB=28 to AB=38mag, this sky-integral is ∼10−28 WHz−1 m−2 deg−2 or
1.85×10−9 Jy arcsec−2, or 30.73mag arcsec2.
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Within the 0.5 arcsec2 SExtractor aperture, the contribution of contamination
from unresolved, unseen galaxies between AB=27.5–38mag amounts to a total inte-
grated flux of AB=31.5mag. This is well below the level of our AGN LyC detections
in Table 2. Any such contaminating flux from unresolved objects at AB&27.5mag
will also be present in the surrounding sky around the aperture, and so would be
statistically subtracted to first order. Thus, after subtracting all detectable contami-
nating neighbors at AB.27.5mag using the χ2 images, statistically the LyC signal is
not significantly affected by contaminating objects below the HST χ2 image detection
limit of AB∼27.5mag.

B.2 Sources of Systematic Uncertainties

B.2.1 Impact of Gradients in the Residual Sky-Background

Subtle gradients still exist in the new ERS UV mosaics, but at a much reduced level
from the ERS mosaics of Windhorst et al. (2011). These are .3–5% of the Zodiacal
sky values from corner to corner across each of the eight individual 4096×4096 pixel
CCD images that were drizzled onto the UVIS mosaics. This subtle gradient pattern
was not very discernible, but appears to be similar in each of the 8 full WFC3/UVIS
CCD frames in the ERS to a good approximation, and roughly linear across each
CCD. The cause of these remaining gradients could be subtle residual errors in the
on-orbit master bias frames, in the delta-flat corrections used in the recent WFC3
pipeline reduction, and/or from variation in exposure time or background noise across
the drizzled mosaic (Baggett and Anderson 2012; Mack, Sabbi, and Dahlen 2013).
These remaining gradients are too faint to accurately map and remove from individual
WFC3/UVIS UV exposures prior to drizzling, and removal of inaccurately measured
gradients would introduce additional unintended errors in the mosaics. We therefore
will assess the effects that these 3–5% global gradients have on the .151 pixel scales
at which local sky-subtraction is performed in the LyC image stacks.

Dividing each LyC stack into our 9 segment grid, we determine the sky-background
level and uncertainty in each of the 8 segments around the central box that contains
the LyC candidate itself, which we exclude from the sky-background calculation. We
compute these by optimally binning the count rates of the 8 outer segments, then
we fit a normal distribution to the inner quartile of this data, taking the average
of the fitted distribution as the sky value and the +1σ value to be the 84% of the
pixel histogram. We estimate the gradients in the stacks from the rms value of the
fitted average count rate in each segment. We find that any residual sky-background
gradient left in the image stacks is ∼ 5.2–40× (∼ 1.8–4mag) fainter than the residual
sky-background numbers derived from Fig. 8. This then implies that any gradients in
the local sky-background in the LyC image stacks (containing 13–19 objects each) are
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fainter than ∼32.3, 32.1, and 32.5 mag arcsec−2 in WFC3/UVIS F225W, F275, and
F336W across the 4.′′53× 4.′′53 extent of each sub-stack, respectively.

These numbers are consistent with the aforementioned ∼3–5% linear gradient
across each of the full WFC3/UVIS mosaic images before drizzling, and corresponds to
a .0.2% error in the sky-subtraction across typical 151×151 pixel sub-image stacks.
For a UV sky brightness of µsky∼ 25.5mag arcsec−2, this amounts to a sky-subtraction
error of ∼ 32.3mag arcsec−2 across a 151×151 pixel stack. One possible source of such
gradients are residual dark current subtraction errors. Rafelski et al. (2015) show that
the 2009 WFC3/UVIS dark current may vary between 0.00045 e−/s and 0.00035 e−/s
across the CCDs (black curve in their Fig. 15). From experience, the quality of the
calibration files is such that these gradients are typically subtracted at the level of
(conservatively) ∼20% of the gradient itself. That is, this dark current subtraction
error across the 151 pixel sub-images (out of 4096 pixels across the two CCDs) will
amount to a residual sky subtraction error in the subimages of approximately: –
2.5 log[0.20×(0.00045/0.00035)-1)*151/4096]' 6.7mag below sky. This could then
leave a residual dark current gradient on top of the UV zodiacal sky (25.5mag arcsec−2)
of 25.5+ 6.7= 32.2mag arcsec−2, consistent with the limits given above. This level of
uncertainty in the local sky-background level may pose a fundamental limit on the
sensitivity and accuracy of any LyC (surface) photometry, which is slightly fainter
than that potentially imposed by pinholes. These residual gradients are also much
fainter than the measured LyC signal.

B.3 Modeling and Uncertainties

B.3.1 SED Fitting Uncertainties due to Extinction

In order to obtain accurate estimates for LyC and UVC dust extinction and
subsequent absolute LyC escape fractions, we must adopt the best available dust
attenuation models for galaxies with accurate redshifts and no contaminating AGN
signatures when performing the minimized χ2 stellar SED fits that results in the most
likely AV values from the observed panchromatic ERS data.

From SED fitting of Calzetti et al. 2000 attenuated BC03 models using the 10
band WFC3+ACS photometry of all ∼6900 galaxies at 2. z. 6 within the GOODS-S
ERS field (Windhorst and Cohen 2010; Windhorst et al. 2011, see also §3.3), we find
that most ERS galaxies have 0.0.AV . 1.0mag.

Fig. 27 shows the distribution of dust extinction AV values from best fit SEDs for
all galaxies in the 10 band GODS/HDUV and ERS data (small black dots), compared
to our spectroscopic sample. The SED fitting sampled the AV parameter space in
0.1 mag intervals. Table 6 lists the AmedV values and their ±1σ ranges a function of
redshift.
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Fig. 27 shows that the AV values of our galaxy samples with spectroscopic redshifts
are consistent with those found for the entire ERS sample of 6900 galaxies with 10
band fitted photometric redshifts to mAB.27mag. This implies that our galaxies are
sampling the available parameter space of AV values at their approximate redshifts.
Since the AV uncertainty in the SED fits is unknown, the MC simulated fesc values in
§3.3 and §3.4 do not include an AV uncertainty, even though they utilize the extinction
corrected (intrinsic) SEDs. This implicit AV error is one of the dominant errors in
the f abs

esc calculation, but is less important than the IGM transmission variations in
the MC derived fesc values (see § 3.4 and §5.5.3). We also note that there may exist a
degeneracy between the AV values and the ages of the best fit SEDs, which would
also add to the uncertainty of the AV values. The AV induced error can be as large as
the combined uncertainty of the photometric observations that we fit, and can further
increase the overall uncertainty of the SED fit. Furthermore, the error in RV derived
by Calzetti et al. 2000 (RV=4.05±0.80) is not propagated into the SED fit, which
would also increase the AV error. However, the uncertainty in IGM transmission,
which is primarily due to variations in sight-lines and redshifts in the stacks (see Inoue
and Iwata 2008), dominates the error in the MC fesc values, and so an additional AV
error would only slightly increase their ±1σ values, as discussed in §3.4 and Table 6.

Table 6 also shows that AmedV , for the samples with spectroscopic redshifts, increases
from ∼0 mag at z'3.1–4.1 to ∼0.4 mag at z'2.3–3, consistent with the behavior
seen in the entire GOODS/HDUV+ERS sample as a gradual increase in reddening
towards the lower redshifts, when the stellar populations have aged more and produced
more dust over cosmic time. Hence, the median AV values and their rms for galaxies
appears to increase at the lower redshifts.
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