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Preface

Aloha!
We would like to welcome you to Hawaii and to the 1st International Wigner Work-

shop (IW2), which is hosted by the 2015 International Symposium on Advanced Nan-
odevices and Nanotechnology. The workshop is being held on Sunday, November 29
in the Waters Edge Boardroom of the Hilton Waikoloa Village Hotel and is organized
by the Wigner Initiative. This workshop brings together researchers to foster discussion
on the current state and future directions of Wigner-related research. The workshop is
composed of three overview talks, each introducing a specific topic. The overview talks
are complemented by five short talks to present some data. The submitted abstracts
were reviewed by the workshop chairs and the program committee.

This booklet contains the scientific program, the abstracts accepted for presentation,
as well as an overview of the special issue on Wigner functions, published in the Journal
of Computational Electronics.

We would like to express our gratitude to the participants to support our workshop
and we hope that you enjoy it as well as the host conference and your stay in Hawaii.

David K. Ferry and Josef Weinbub
Chairs of IW2 2015
November 22, 2015
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1 Program
Location: Waters Edge Boardroom - Chair: Josef Weinbub

Each talk slot contains five minutes of Q&A!

SESSION I - Wigner Distribution Function

09:00-09:30 (Overview Talk)
D.K. Ferry
Wigner Functions, Variations and Entanglement

09:30-09:50 (Short Talk)
B.J. Spisak, M. Wołoszyn
Wigner Representation of Electron Dynamics in Presence of Thermal Dephasing
in Disordered Systems

09:50-10:10 (Short Talk)
K.-Y. Kim, S. Kim
Uncertainty and Quantum Correlation in Discrete Wigner Transport Equations

SESSION II - Boundary Conditions

10:10-10:40 (Overview Talk)
J.-H. Lee, M. Shin, T. Tang
Review of Boundary Conditions and Discretization Schemes for the Solution of
Wigner Transport Equation

10:40-11:00 (Short Talk)
A. Arnold, R. Li, T. Lu, Z. Sun
Convergence of Stationary Wigner Equation with Inflow Boundary Conditions

Break: 11:00-11:45

SESSION III - Simulations and Applications

11:45-12:15 (Overview Talk)
W. Cai
Adaptive Conservative Chebyshev Polynomial Spectral Element Methods for Tran-
sient Wigner Equation in Quantum Transport

12:15-12:35 (Short Talk)
J. Weinbub, P. Ellinghaus, M. Nedjalkov, S. Selberherr
ViennaWD - Status and Outlook

12:35-12:55 (Short Talk)
P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr
ViennaWD - Applications
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2 Abstracts

2.1 Wigner Functions, Variations and Entanglement
D.K. Ferry
Arizona State University, USA
ferry@asu.edu

I will discuss the formulation of the Wigner function, and various other phase space
functions that have been used in the literature. I will discuss the limitations of these
alternative forms. Then I will talk about entanglement that can exist in the Wigner form
for multiple particles, and how it can be used in other applications.

2.2 Wigner Representation of Electron Dynamics in
Presence of Thermal Dephasing in Disordered Systems
B.J. Spisak, M. Wołoszyn
AGH University of Science and Technology, Poland
bjs@agh.edu.pl

Electron transport phenomena in disordered systems demonstrate the non-Markovian
properties due the quantum interference of the conduction electrons in the absence of
mechanisms which destroy the time-reversal invariance. One of the possible manifes-
tations of the quantum interference in the disordered systems is the weak localization
of the carriers. The effect stems from the coherent propagation of the electrons which
are multiply scattered on the spatially distributed ions.

In the present contribution, an influence of an effective thermal field due to the dy-
namics of ions on the weak localization is considered in terms of the generalized kinetic
equation in the Wigner representation. Within this approach, the weak localization man-
ifests itself by the singularity for the multiple backward scattering of the carriers, and we
show that this singularity is removed by the considered dephasing mechanism.
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2.3 Uncertainty and Quantum Correlation in Discrete
Wigner Transport Equations
K.-Y. Kim1, S. Kim2

1Sejong University, Korea
2Hankuk University of Foreign Studies, Korea
kykim@sejong.ac.kr

In this presentation, we discuss two fundamental characteristics of the discrete Wigner
transport equation resulting from the uncertainty principle. First, the discretized mo-
mentum space results in a kind of positional uncertainty of electrons. We show that this
uncertainty determines the maximum length of nonlocal potential correlation. As a re-
sult, the finer the momentum resolution of the discrete Wigner function is, the longer the
region for nonlocal potential correlation becomes. Next, electrons can have positional
uncertainty inside the device. We prove that this uncertainty sets a minimum momen-
tum resolution of the discrete Wigner function to be h/(2L), where h and L denote the
Planck constant and the length of the device, respectively. Therefore, the smaller the
device is, the larger the minimum momentum resolution should be. We show numeri-
cally that its violation deteriorates the simulation results significantly.

2.4 Review of Boundary Conditions and Discretization
Schemes for the Solution of Wigner Transport Equation
J.-H. Lee1, M. Shin1, T. Tang2

1KAIST, Korea
2University of Massachusetts, USA
ttang@ecs.umass.edu

We review the conventional boundary conditions (BCs) and discretization schemes
used for the solution of Wigner transport equation (WTE). The most often used BC
is Frensleys U-scheme [1] with the equilibrium Fermi-Dirac distribution function (F-D
DF). The other is the drifted F-D DF by adjusting the drift k-vector iteratively to maintain
the current continuity [2,3] and/or the charge neutrality [4]. To take the reservoir-device
interaction (R-D I) into consideration, Ho and Yamaguchi [5] moved the artificial bound-
aries inside the reservoir. Knezevic [3] treated the R-D I via Markovian hopping model.
Dolcini et al. [6] used a relaxation-time-approximation model for energy dissipation due
to the R-D I. For finite differencing schemes used in approximating the kinetic term of
WTE, the simplest one is the up/downwind first-order differencing scheme (FDS) [1].
The second-order differencing scheme (SDS) was used by Jensen and Buot [7] which
necessitates introduction of additional contact grids. The differencing schemes (DSs)
of higher orders were used by Kim and Lee [8]. Recently, Yamada et al. [9] have used a
third-order differencing scheme (TDS) which can be viewed as a combination of central
differencing scheme (CDS) and SDS. Comparison of simulation results for a ballistic
gate-all-around nanowire transistor using different BCs and DSs will be presented.
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2.5 Convergence of Stationary Wigner Equation with Inflow
Boundary Conditions
A. Arnold1, R. Li2, T. Lu2, Z. Sun2

1TU Wien, Austria
2Peking University, China
sunzhangpeng@pku.edu.cn

We propose in this paper a well-posed semi-discretization of the stationary Wigner
equation with inflow BCs, making use of the Whittaker-Shannon interpolation formula
with shifted sampling points. The convergence of the solutions of the discrete problem
to the continuous problem is then analyzed, providing certain regularity of the solution
of the continuous problem.

2.6 Adaptive Conservative Chebyshev Polynomial Spectral
Element Methods for Transient Wigner Equation in
Quantum Transport
W. Cai
University of North Carolina at Charlotte, USA
wcai@uncc.edu

We will present a cell average spectral element method (SEM) for solving the time-
dependent Wigner equation for transport in quantum devices. The cell average SEM
with Chebyshev orthogonal polynomials in the phase space has two distinct features:
(1) no artificial periodic boundary conditions in the k-space as in Fourier series based
approximations, (2) allowing adaptive non-uniform meshes to reduce the high-dimensional
computational cost of Wigner functions while preserving exactly the mass conservation
for the numerical solutions. This conservation property is a result of the use of k-cell
averages of the Wigner distribution and their exact analytical transformation to and from
the Wignerdistribution function itself. Numerical results with the method are provided to
demonstrate its high accuracy, conservation, convergence and a reduction of the cost
using adaptive meshes.

Reference:
[1] Sihong Shao, Tiao Lu and Wei Cai, Adaptive Conservative Cell Average Spectral El-
ement Methods for Transient Wigner Equation in Quantum Transport, Communications
in Computational Physics, Vol. 9, No. 3, pp. 711-739, March 2011.
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2.7 ViennaWD - Status and Outlook
J. Weinbub1, P. Ellinghaus1, M. Nedjalkov1,2, S. Selberherr1
1TU Wien, Austria
2Bulgarian Academy of Sciences, Bulgaria
weinbub@iue.tuwien.ac.at

We will present the current state of the Wigner Monte Carlo quantum transport simulator
shipped with the free open source software package ViennaWD. The underlying Wigner
transport model based on signed particles will be briefly introduced and compared to
the alternative affinity approach. The applied spatial domain decomposition-based par-
allelization approach, which drastically reduces simulation time, is discussed. Additional
simulator features, such as usability and supported output quantities, will be described.
The future road map will be laid out, focusing on self-consistency, load-balanced par-
allelization approaches, and the use of modern large-scale computing platforms. The
current computational and numerical challenges will be presented. A discussion regard-
ing missing features or feature prioritization will be triggered to tune the future research
and Wigner model development road map.

2.8 ViennaWD - Applications
P. Ellinghaus1, J. Weinbub1, M. Nedjalkov1,2, S. Selberherr1
1TU Wien, Austria
2Bulgarian Academy of Sciences, Bulgaria
weinbub@iue.tuwien.ac.at

The Wigner Monte Carlo simulator - part of the free open source ViennaWD project
- implements the signed-particle method, which has been matured to the point where
two-dimensional numerical experiments can be performed accurately and with a rea-
sonable computational effort. The capability of the Wigner simulator to investigate time-
dependent quantum transport is demonstrated by examples investigating the evolution
of wave packets. The propagation of a wave packet in a mesoscopic ring-like struc-
ture reveals the quantum phenomena of interference and also entanglement, which
can be clearly identified using the phase-space perspective. Furthermore, the use of
electrostatic lenses to manipulate electron wave packets will be discussed along with a
demonstration on how focusing can be used to increase the drive-current in nanoscale
channels. An outline of envisioned simulation experiments, which consider decoher-
ence effects and magnetic fields, will be given to highlight the associated theoretical
and computational challenges for the Wigner signed-particle model.
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3 Overview of
Special Issue on Wigner Functions
Journal of Computational Electronics

Closely related to this workshop is the recently published Special Issue on Wigner Func-
tions in the Journal of Computational Electronics, which was edited by M. Nedjalkov, J.
Weinbub, and D.K. Ferry. This Chapter gives an overview of the contributions published
in this special issue, by providing the publication information as well as the individual
abstracts.

3.1 Introduction to the Special Issue on Wigner Functions
M. Nedjalkov1,2, J. Weinbub1, D.K. Ferry3
1TU Wien, Austria
2Bulgarian Academy of Sciences, Bulgaria
3Arizona State University, USA
nedjalkov@iue.tuwien.ac.at
Journal of Computational Electronics 14(4), pp.857-858, 2015.
doi:10.1007/s10825-015-0745-6

The Wigner function was first derived by E.P. Wigner around 1931 as an exotic outcome
of the wave mechanics which, being defined in the phase space, does not favor either
coordinate or momentum variables. Pioneered by H.J. Groenewold and J.E. Moyal
the Wigner formulation of quantum mechanics evolved until the end of last century, to a
fully autonomous, independent alternative to Hilbert space mechanics and path integral
formulations. As S. MacLane put it (Ladies and) gentlemen: There is lots of room left in
Hilbert Space, the same holds true for the phase space, where Wigner and alternative
approaches, like Husimi and Bohmian distributions, are easily accommodated.

Applied to challenges in computational electronics, the Wigner approach offers the
unique ability to describe transient problems for open systems by simultaneously ac-
counting for different levels of approximation for the effects of the degrees of freedom
associated with the environment. For example, the WignerBoltzmann equation enables
the formalism with the efficient Boltzmann model of collisions (local in position/time)
with phonons and impurities featuring the classical era of microelectronics. The equa-
tion bridges the gap between classical and quantum electron dynamics, ensuring a
seamless transition between coherent and scattering dominated modes of transport.
This approach has been applied to simulate stationary and transient behavior of nanos-
tructures, superlattices, to investigate processes of decoherence, quantum chaos, and
recently beyond transport tasks in density functional theory and many body effects. The
continuous accumulation of knowledge results in increased publication activities.
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A good example is the fact that two books by C. Jacoboni as well as D. Querlioz and P.
Dollfus have been published in the year 2010, summarizing the theoretical and applied
achievements of the Wigner research. Nevertheless, critics claim that, although various
groups pick up the work, they abandon it again, never delivering a compelling research
result. This criticism has been addressed by the Wigner community with the founding of
the Wigner Initiative1 in 2015, bringing all research in this area closer together, thereby
increasing synergy effects and fostering knowledge transfer.

This special issue is the first effort of the Initiative in this direction and comprises
theoretical analysis, numerical aspects, and recent applications of the Wigner formal-
ism, as well as comparisons with alternative phase space quasi-distribution functions
and other quantum-mechanical approaches. In contrast to books, the purpose of which
is to provide a systematic description, the contributions in this special issue rather high-
light selected achievements in the field along with important logical and philosophical
points in the phase space formulations of quantum mechanics. In particular, this special
issue contains nine contributions characterized in the following:

I. Dimov et al. investigate the role of boundary conditions for the existence and the
uniqueness of the solution of the stationary and transient formulations of the Wigner
equation.

D.K. Ferry provides an overview of different phase-space approaches with a special
focus on quantum properties, such as entanglement, complemented by identifying core
strengths of the Wigner approach.

B.J. Hiley discusses the close relationship between the Wigner-Moyal algebra and
the original noncommutative quantum algebra introduced by von Neumann.

O. Jonasson et al. employ the Wigner function formalism to simulate partially co-
herent, dissipative electron transport in biased semiconductor superlattices, underlining
the practical capabilities of Wigner function approaches.

M. Nedjalkov et al. introduce an analysis of formulations of the Wigner equation
under a general gauge for the electric field, striving to develop alternative computational
methods applied in the Wigner formalism.

E. Coloms et al. compare the Wigner, Husimi, and Bohmian distributions with re-
spect to constructing a well-defined phase space distribution, providing a critical view
on the properties of the individual formulations.

J.M. Sellier et al. analyzed a harmonic oscillator from the Wigner perspective. A
brief review on utilizing a phase-space approach is given as well as the feasibility of the
so-called signed particle Monte Carlo method is shown.

B.J. Spisak et al. apply the Wigner function to the description of the dynamics of
conduction electrons in finite one-dimensional systems with randomly distributed scat-
tering centers.

J. Weinbub et al. investigate parallelization strategies for two-dimensional Wigner
Monte Carlo method based on the signed particle approach, enabling to utilize large-
scale computing resources to stem the significant memory and computing demands.

As the guest editors of this special issue we would like to thank all authors for their
contributions.
1http://www.iue.tuwien.ac.at/wigner-wiki/.
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3.2 Boundary Conditions and the Wigner Equation Solution
I.Dimov1, M. Nedjalkov1,2, J.M. Sellier1, S. Selberherr2
1Bulgarian Academy of Sciences, Bulgaria
2TU Wien, Austria
ivdimov@bas.bg
Journal of Computational Electronics 14(4), pp.859-863, 2015.
doi:10.1007/s10825-015-0720-2

We consider the existence and uniqueness of the solution of the Wigner equation in the
presence of boundary conditions. The equation, describing electron transport in nanos-
tructures, is analyzed in terms of the Neumann series expansion of the corresponding
integral form, obtained with the help of classical particle trajectories. It is shown that the
mathematical aspects of the solution can not be separated from the physical attributes
of the problem. In the presented analysis these two sides of the problem mutually inter-
play, which is of importance for understanding of the peculiarities of Wigner-quantum
transport. The problem is first formulated as the long time limit of a general evolution
process posed by initial and boundary conditions. Then the Wigner equation is refor-
mulated as a second kind of a Fredholm integral equation which is of Volterra type with
respect to the time variable. The analysis of the convergence of the corresponding
Neumann series, sometimes called LiouvilleNeumann series, relies on the assumption
for reasonable local conditions obeyed by the kernel.

3.3 Phase-Space Functions: Can They Give a Different View
of Quantum Mechanics?
D.K. Ferry
Arizona State University, USA
ferry@asu.edu
Journal of Computational Electronics 14(4), pp.864-868, 2015.
doi:10.1007/s10825-015-0731-z

The Wigner function has been studied for more than eight decades, in the quest to de-
velop a phase-space formulation of quantum mechanics. But, it is not the only phase-
space formulation. Here, we discuss the properties of some of the various phase-space
approaches and how they can give new insights into many quantum properties such as
entanglement, which is not normally observable.

8

mailto:ivdimov@bas.bg
http://dx.doi.org/10.1007/s10825-015-0720-2
mailto:ferry@asu.edu
http://dx.doi.org/10.1007/s10825-015-0731-z


3.4 On the Relationship Between the Wigner-Moyal
Approach and the Quantum Operator Algebra of von
Neumann
B.J. Hiley1,2
1University College London, UK
2University of London, UK
b.hiley@bbk.ac.uk
Journal of Computational Electronics 14(4), pp.869-878, 2015.
doi:10.1007/s10825-015-0728-7

In this paper we discuss the close relationship between the WignerMoyal algebra and
the original non-commutative quantum algebra introduced by von Neumann in 1931.
We show that the ”distribution function”, F(P, X, t) is simply the quantum mechanical
density matrix for a single particle where the coordinates, X and P, are not the coordi-
nates of a point particle, but the mean co-ordinate of a cell structure (a ’blob’) in phase
space. This provides an intrinsically non-local and non-commutative description of an
individual, which only becomes a point particle in the commutative limit. In this gen-
eral structure, the Wigner function appears as a transition probability amplitude which
accounts for the appearance of negative values. The Moyal and Baker brackets play a
significant role in the time evolution, producing the quantum HamiltonJacobi equation
used in the Bohm approach. It is the non-commutative structure based on a symplectic
geometry that generates a generalised phase space for quantum processes.

3.5 Dissipative Transport in Superlattices Within the Wigner
Function Formalism
O. Jonasson, I. Knezevic
University of Wisconsin at Madison, USA
ojonasson@wisc.edu
Journal of Computational Electronics 14(4), pp.879-887, 2015.
doi:10.1007/s10825-015-0734-9

We employ the Wigner function formalism to simulate partially coherent, dissipative
electron transport in biased semiconductor superlattices. We introduce a model col-
lision integral with terms that describe energy dissipation, momentum relaxation, and
the decay of spatial coherences (localization). Based on a particle-based solution to
the Wigner transport equation with the model collision integral, we simulate quantum
electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its
current density vs field characteristics obtained in experiment.
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3.6 The Wigner Equation in the Presence of
Electromagnetic Potentials
M. Nedjalkov1,2, J. Weinbub2, P. Ellinghaus2, S. Selberherr2
1Bulgarian Academy of Sciences, Bulgaria
2TU Wien, Austria
nedjalkov@iue.tuwien.ac.at
Journal of Computational Electronics 14(4), pp.888-893, 2015.
doi:10.1007/s10825-015-0732-y

An analysis of the possible formulations of the Wigner equation under a general gauge
for the electric field is presented with an emphasis on the computational aspects of the
problem. The numerical peculiarities of those formulations enable alternative computa-
tional strategies based on existing numerical methods applied in the Wigner formalism,
such as finite difference or stochastic particle methods. The phase space formulation of
the problem along with certain relations to classical mechanics offers an insight about
the role of the gauge transforms in quantum mechanics.

3.7 Comparing Wigner, Husimi and Bohmian Distributions:
Which One is a True Probability Distribution in Phase
Space?
E. Colomés, Z. Zhan, X. Oriols
Universitat Autònoma de Barcelona, Spain
xavier.oriols@uab.es
Journal of Computational Electronics 14(4), pp.894-906, 2015.
doi:10.1007/s10825-015-0737-6

The Wigner distribution function is a quasi-probability distribution. When properly inte-
grated, it provides the correct charge and current densities, but it gives negative proba-
bilities in some points and regions of the phase space. Alternatively, the Husimi distribu-
tion function is positive-defined everywhere, but it does not provide the correct charge
and current densities. The origin of all these difficulties is the attempt to construct a
phase space within a quantum theory that does not allow well-defined (i.e. simultane-
ous) values of the position and momentum of an electron. In contrast, within the (de
Broglie-Bohm) Bohmian theory of quantum mechanics, an electron has well-defined
position and momentum. Therefore, such theory provides a natural definition of the
phase space probability distribution and by construction, it is positive-defined and it ex-
actly reproduces the charge and current densities. The Bohmian distribution function
has many potentialities for quantum problems, in general, and for quantum transport, in
particular, that remains unexplored.
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3.8 Wigner Functions, Signed Particles, and the Harmonic
Oscillator
J.M. Sellier, I. Dimov
Bulgarian Academy of Sciences, Bulgaria
jeanmichel.sellier@parallel.bas.bg
Journal of Computational Electronics 14(4), pp.907-915, 2015.
doi:10.1007/s10825-015-0722-0

In this paper, we introduce the simple harmonic oscillator and we address it in the
Wigner formulation of quantum mechanics, therefore describing the whole problem in
terms of quasi-distribution functions defined over the phase-space. The harmonic oscil-
lator represents a very important problem as it provides exact solutions in both station-
ary and transient regimes. Subsequently, we outline the time-dependent signed particle
Wigner Monte Carlo method and simulate the oscillator problem starting from station-
ary initial conditions, i.e. rotationally invariant functions in the phase-space, showing no
evolution in time of the distribution function as expected. This work is, thus, twofold. On
the one hand, one may see it as a short review effort to demonstrate the convenience
of utilizing a phase-space approach in this particular context, suggesting that it could
be the case again for different interesting problems. On the other hand, it represents a
further opportunity to validate the signed particle Monte Carlo method, showing that a
new reliable and powerful tool is available for the time-dependent simulation of quantum
systems.

3.9 Dynamical Localisation of Conduction Electrons in
One-Dimensional Disordered Systems
B.J. Spisak, M. Wołoszyn, D. Szydłowski
AGH University of Science and Technology, Poland
bjs@agh.edu.pl
Journal of Computational Electronics 14(4), pp.916-921, 2015.
doi:10.1007/s10825-015-0733-x

The phase-space approach based on the Wigner distribution function is applied to the
description of dynamics of conduction electrons in finite one-dimensional systems with
randomly distributed scattering centres. It is shown that the coherent multiple scattering
of the carriers in the disordered environment leads to the slowdown of its dynamics due
to the weak localisation. This quantum phenomenon can be treated as a source of the
subdiffusion of the quantum particles.
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3.10 Domain Decomposition Strategies for the
Two-Dimensional Wigner Monte Carlo Method
J. Weinbub1, P. Ellinghaus1, M. Nedjalkov1,2
1TU Wien, Austria
2Bulgarian Academy of Sciences, Bulgaria
weinbub@iue.tuwien.ac.at
Journal of Computational Electronics 14(4), pp.922-929, 2015.
doi:10.1007/s10825-015-0730-0

A domain decomposition approach for the parallelization of the Wigner Monte Carlo
method allows the huge memory requirements to be distributed amongst many compu-
tational units, thereby making large multi-dimensional simulations feasible. Two domain
decomposition techniques-a uniform slab and uniform block decomposition-are com-
pared and the design and implementation of the block decomposition approach, using
the message passing interface, is discussed. The parallel performance of the two ap-
proaches is evaluated by simulating a representative physical problem. Our results
show that the presumably inferior slab decomposition method is in fact superior to the
block decomposition approach, due to the additional overhead incurred by the block
decomposition method to set up its communication layer.
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