Method Selection and Development

- Initial Considerations
 - What does the method need to do?
 - What analyte/s need to be assayed?
 - What range or concentration will be evaluated?
 - How will the data generated from this analysis be used?
 - Trend data
 - Identification
 - Quantification
 - What instruments/methods are currently available?
 - Any special needs/criteria that need to be met
 - Sample size
 - Storage/Preservation
 - Utilization of a pilot study may help to answer many of these issues
Analytical Methods

- Qualitative
 - Is a certain analyte present or not?
 - Confirmation of the presence or absence of impurities
 - Identification of unknown substances
 - Sensitivity of method is important

- Quantitative
 - What amount of analyte is present?
 - What level of detection is necessary?
 - Several methods with varying degrees of validation criteria
 » Validation means that the method has been subjected to evaluation and has been found to provide results which are appropriate for their intended purpose
Analytical Methods (cont.)

- Methods are categorized into the following types:

 ■ ROUTINE

 ✓ Screening
 » High throughput; Low cost
 » Small number of false positives/negatives
 » Usually qualitative

 ✓ Surveillance
 » Lower throughput
 » Better sensitivity
 » Quantitative result

 ■ REGULATORY

 ✓ Confirmatory
 » Positive identification
 » Routine method with detection system

 ✓ Reference
 » Fully validated and tested
 » Data accuracy and precision

 ■ ALWAYS remember that the method used must fit the intended utilization of the results
Sources for Methods

- Check the existing methods and QC options currently available (in-house)

- Methods published by scientific literature
 - Journal of Chromatography
 - Journal of Analytical Chemistry

- Methods supplied by trade organizations/suppliers
 - Varian/Shimadzu

- Methods published in books by professional organizations or statutory publications
 - Standard Methods for the Examination of Waste Water (20th Ed.)
 - Environmental Protection Agency EPA
 - U.S. Geological Survey USGS
 - American Public Health Association APHA
 - American Water Works Association AWWA
 - Water Environment Federation WEF
Factors to Consider when Choosing a Method

- Limits of Detection
 - Controversial due to definitions that fall short in explanation and confusion of terms
 - Most analysts agree that the smallest amount that can be detected above the noise in a procedure and within stated confidence limits is the detection limit.

- Several types of detection limits

 ✓ **Instrument detection limit (IDL)**
 - Analyte concentration that produces a signal greater than three standard deviations of the mean noise level.
 - Instruments produce a signal or noise even when no sample is present or a blank is being analyzed.
 - Large number of blank evaluations helps to well define the mean and standard deviation
 - Useful for determination of the Method Detection Limit (MDL)
Factors to Consider when Choosing a Method (cont.)

- Limits of Detection (cont.)
 - Method Detection Limit (MDL)
 » Defined by EPA as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. (EPA PT. 136 App. B rev 1.1 pg.305)

 » MDL is usually based on 7 to 10 replicate aliquots prepared at a concentration that is 1 to 5 times the estimated detection limit; multiple runs may be required to set MDL

 » Ideally the MDL should be at least one-tenth of the concentration to be measured
 • EX: Legal limit for lead concentration in tap water is 50 ppb the method used should be capable of detection of lead to 5 ppb level

 » Formula for calculation of MDL
 • For 7 replicates of a sample
 • MDL= 3.14s
 • 3.14 is the value from the table of one-sided t distribution for t 7-1= 6 degrees of freedom at the 99% level
 • s is the standard deviation for the replicates
Factors to Consider when Choosing a Method (cont.)

- **Limits of Detection (cont.)**
 - Limit of Quantitation (LOQ)
 - LOQ is the low standard in the calibration curve
 - Usually 3 to 5 times the MDL
 - Report results below the MDL as “not detected”
 - Report results between the MDL and the LOQ with qualification for quantitation
 - Report results above the LOQ with the value and its associated error

- **Accuracy**
 - Closeness of measured value to true value
 - Combines bias and precision
 - Developed first with instrument or method; then monitor periodically

- **Precision**
 - Measure of the degree of agreement among replicate analyses of a sample
 - External source QC; material used to determine reproducibility/consistency for method performance; NOT A STANDARD but similar
 - Day to day QC result maintains precision
Factors to Consider when Choosing a Method (cont.)

- **Speed**
 - dependent type of analysis
 - number of samples to be analyzed
 - type of data required
 - Subset of samples
 - Assays in combination
 - Screening method followed up by a confirmation method

- **Equipment Required**
 - Evaluation of resources available
 - Method may be ideal but without proper equipment or technical support not applicable
 - Ex: Respiration experiments requiring detection of CO₂

- **Sample Size**
 - May or may not be a limiting factor in analysis
 - Ex: Precipitation collectors
 - Amount of rainfall collected impacts the number and types of analysis that can be completed
 - Linked to limit of detection
Factors to Consider when Choosing a Method (cont.)

- **Sample Size (cont.)**
 - Linked to limit of detection
 - Detection levels can sometimes be improved by taking larger weights/volumes of sample
 - Homogeneity and representative sampling should be considered

- **Cost**
 - Choice of method may only have small impact on overall cost of analysis
 - Usually instrumentation and resources have a larger impact
 - Some methods may require highly specialized training or expensive chemicals

- **Specificity**
 - Degree of discrimination of the method for the analyte
 - Discrimination of the detection system should also be considered
Factors to Consider when Choosing a Method (cont.)

- Safety

 - Methods that require special facilities or training for safe operation may impact decision

 ✓ Radioactivity; Toxic or hazardous chemicals

 ✓ Some statutory methods may leave no alternative choices

 » Make sure that all personnel associated with method are properly trained and made aware of hazards
Making your choice

- Ultimately the method chosen maybe dependent on one or many of the factors listed
 - Above all chose a method that fits the purpose
 » Will the method chosen be adequate for the decisions that need to be made when the result is determined?

- Choice of the appropriate method

- Now what?
Method evaluation/Validation

- Precision
 - Within run
 - Sample or control is run 10x within run
 - Reproducibility of method
 - Mean Standard deviation for each value
 - Meet manufacturer or authors specifications
 - Between runs
 - 30 to 40 samples on separate days
 - Method/analyst reproducibility
 - Sample stability

- Recovery Study (Spike)
 - Linearity check
 - Adding known quantity of material being assayed for to previously assayed sample
 - Check recovery % of amount added; Should be + 5%

- Correlation with reference material/laboratory
 - Reference material maybe available to authenticate results
 - Reference laboratory can be utilized to authenticate results
Method evaluation/Validation cont.)

- Sample stability
 - Sample evaluated over a period of time to determine stability
 - Storage methods
 - Temperature/Humidity
 - Preservation
 - pH adjustment

- Establishment of range
 - Normal range
 - Suggested reference range listed with instrument from manufacturer
 - 10-12 “normal” samples (normal population) from published method

- Ongoing demonstration of Capability
 - Some of the above listed items should be run routinely with each analysis to check that method is under control
 - Blanks
 - External source QC’s
 - Recovery checks (spike)
Issues that may impact the method

- What can go wrong?

- Quality of Supplies/Reagents
 - Glassware
 - Composition
 - Types
 - Reagents
 - Chemical grades
 - Reagent grade
 - Analytical grade
 - Chemically Pure
 - USP and NF
 - Technical or Commercial grade

- Contamination
 - Low levels
 - Solids
 - moisture
 - turbidity
Issues that may impact the method (cont.)

- Instrumentation
 - Drift
 - Detector malfunction
 - Column integrity
 - Flow rates

- Analyst

- In Conclusion
 - Consider all the factors that may impact your choice of method
 - Pick a method that suits how you will use the analytical result
 - Set all limits; ranges and QC determinations for method
 - Evaluate the method with a “pilot” study if possible
 - Evaluate possible sources of error
 - Once method is in use, check performance of the method routinely