I. Sets

1. $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{g}, \mathrm{h}, \mathrm{k}\} ; \mathrm{B}=\{\mathrm{b}, \mathrm{d}, \mathrm{g}, \mathrm{k}\} ; \mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}\}$
a) What is $A \cup B$
b) What is $n(A \cup B)$
c) What is $A^{\prime} \cap B$
d) What is $(A \cup B)^{\prime}$
2. At the beach people were asked about their activities during the day.

- 18 people had picnics ○ 12 did all 3
- 30 people went swimming $\quad 15$ went swimming or had a picnic
- 25 people sunbathed ○ 18 swam or sunbathed
- 5 people did none of those $\quad 14$ had a picnic or sunbathed
a) How many people only had a picnic?
b) How many sunbathed and swam but didn't have a picnic?

3. Suppose $n(A)=24, n(B)=18$ and $n(A \cap B)=12$. What is $n(A \cup B)^{\prime}$?

II. Counting Techniques

1. There are 10 people in a room. If they leave one at a time, in how many orders could this be done?
2. At the pizza store, there are 3 types of crusts to choose from, 4 sizes to choose from, 2 sauces to choose from, and 14 toppings - you're going to pick 4 of them. How many different pizzas could be made like this?
3. You and four roommates live together in an apartment. Unfortunately, there are only 2 assigned parking spots and all 5 of you have cars. How many different combinations of cars could end up in those two spots?
4. In a class of 20 students, everyone has to give a presentation, but only 6 will be able to go during today's class. If we pay attention to what order the presentations are being given in, in how many different ways can the 6 presenters for the day be determined?
III. Probability \& Odds
5. You will select one card at random from a deck of 52 .
a) What is the probability that it is red and a 4?
b) What is the probability that it is red or a 4?
c) What is the probability that it is not red or not a 4 ?
6. 120 students at ASU are asked whether or not they're taking a math class and a humanities class this semester. 40 are taking a math class. 50 are taking a humanities course. 40 aren't taking either of those two types of classes. If this is a well-conducted survey and we select an ASU student at random...
a) What is the probability that the student is taking math but not humanities?
b) What is the probability that the student is taking both?
c) What are the odds that the student is taking humanities or math?
d) What are the odds that the student is not taking math or is taking humanities?
