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1. SIMPLE INTEREST

Interest is the money earned (profit) on a savings account or investment. Principal
or present value is the amount of money invested, sometimes referred to as the nitial
amount.

Simple interest is when the money earned is computed as a percentage of the principal
per year. The interest rate is the decimal equivalent of the percentage that will be earned.

Simple Interest Formula:

I = Prt

where [ is the interest, P is the principal, r is the rate, and ¢ is the time in years.

Example 1. Calculate the interest for a deposit of $850 into an account paying 3.5% annual
simple interest if the money is in the account for 7 months.

Solution: We are given P = 850 and r = 0.035, since there are 12 months in a year and the
money will be in the account for 7 months, t = 7/12. So the interest will be:

7
[=Prt = I=2850(0.035) (E) ~ $7.35.

We round our answer to two decimal places since this is money.

At the end of the time, the total amount, principal and interest, is called the future value
or maturity value. There are two ways to compute this value.

Future Value for Simple Interest Formula:
FV=P+1 or FV=P(l+rt)

where [ is the interest, P is the principal, r is the rate, and ¢ is the time in years.

Example 2. What is the future value of a savings account earning 3%% simple interest, if
the present value is $538 and the money is in the account for 7 months?

Solution:



(1) The first method is to compute the interest and then add that to the principal. We
are given P = 538, r = 0.035, and t = 1—72

7
I =538(0.035) (E) =1098 = FV =538+ 10.98 = $548.98.

(2) The second method is to compute the future value directly.

1
FV =538(1+0.035 (ﬁ) = $548.98.

Simple interest is used as the basis for other types of interest. The most common application
of simple interest is called an add-on loan. An add-on loan is a loan in which the future
value of the loan is calculated and then payments are determined by dividing this by the
number of payments to be made. The following example demonstrates this type of loan.

Example 3. The Perez family buys a bedroom set at Mor Furniture for $3,700. They put
$500 down and finance the rest through the store at 9.8% add-on interest. If they agree to
make 36 monthly payments, find the size of each payment.

Solution: This is a simple interest problem. The interest is determined at the simple interest
rate and added on to the amount of the loan. Our first step in the problem is to determine
the amount of the loan. Since $500 is used as a down payment, the amount of the loan will
be $3700 — $500 = $3200. Now we need to figure out what formula we will need to use.
Remember that the amount of the loan plus the interest is the future value of the loan. Thus
we will need to use the future value simple interest formula of FV = P(1 + rt) . In our
problem P is the amount of the loan or $3200. The interest rate is 9.8%. We need this to
be changed from a percent to a decimal. To do this, we divide 9.8 by 100 to get 0.098. t is
the time in years. Since the Perez family will be paying for 36 months, ¢ will be 3.

FV =3200(1 + 0.098 * 3).
Now we will plug all this in to our calculator to get
FV = 4140.80.

We now know how much the Perez family will pay in total for the bedroom set. We still
have to figure out how much this will cost them in monthly payments. To do this, we will
need to divide the future value by the number of month. This will give us

4140.80

pymt = = 115.02222222.

Since we are talking about an amount of money, we must have only dollars and cents (two
places to the right of the decimal). In this class we will round using standard rounding. This
will make the payment amount $115.02.

2. COMPOUND INTEREST

Interest is compounded when the interest eaned for a specified time period is added into
the account and then it also earns interest. Here is a simple example of how it works.
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Example 4. George makes a deposit of $50 into an account that earns 24% per year com-
pounded monthly. He will leave the money in the account for 3 months. How much will he
have at the end of three months.

Solution: Since the interest is 24% per year, at the end of the first month, George will get
50(0.24)(1/12) = $1.00 in interest (simple interest formula) deposited into the account. This
increases his balamce to $51 At the end of the second month, he will get 51(0.24)(1/12) =
$1.02 in interest deposited into the account. His balance increases again to $52.02. At the
end of the third month, he will have another 52.02(0.24)(1/12) = $1.04 deposited into his
account, so that when he draws out his money he will get $53.06.

It should be pretty clear that we do not want to build this up one month at a time whenever
we need to find the amount of an account earning compound interest. Hence. we use a
formula but first we need to know another term.

The compounding period is the length of time that elapses before a new interest is de-
posited into the account. In our Example 4, the compounding period is one month or
monthly.

Compound Interest Formula:
r (7t)
FV =P (1+1)
n

where F'V is the future value, P is the principal, r is the rate, ¢ is the time in years
and n is the number of compounding periods per year.

Example 5. When Jacob was born, his grandparents deposited $10,000 into a special ac-
count for Jacobs college education. The account earned 6}l % interest compounded daily.

(1) How much will be in the account when Jacob is eighteen?
(2) If, on becoming eighteen, Jacob arranges for the monthly interest to be sent to him,
how much would he receive each 30-day month?

Solution:

(1) The first part of this problem is a basic future value of a compound interest account
question. For this, we will need the future value formula for compound interest
FV=Pr (1 + %)(m). For our problem P is 10000; r is 0.0625 (obtained by calculating
(6+1-=+4)+100); n is 365 (number of days in a year); and ¢ is 18 (number of years
from Jacob’s birth to age 18). We now plug these numbers into the formula to find
the future value.

0.0625
365

(365-18)
F'V = 10000 (1 + ) = 30799.20215.

Since we are talking about an amount of money, we must have only dollars and cents
(two places to the right of the decimal). In this class we will round using standard
rounding. This will make the future value $30799.20.
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(2) For this part of the problem, we only need to determine how much interest in earned
in a total of 30 days. To determine the interest, we use the formula FV = P + I.
The part that we need to realize here is that the principal that we are determining
the interest on is the amount in Jacob’s account when he turns 18. We will use the
same formula that we used in part (1). For this part though, our P is 30799.20; r
remains the same as in part (1); and n is still 365. Another thing that is different
about this part of the problem is that nt will not be used here. In the previous
problem nt produced the total number of compounding periods over the 18 years.
In this case there is not even one year of compounding periods. Since we are asked
about a 30-day month, there will only be 30 periods. Thus nt will be 30 for this part
of the problem. When we plug this into the formula, we get

0625\ %
00655> = 30957.80853.

FV = 30799.20 (1 +

Since we are talking about an amount of money, we must have only dollars and cents
(two places to the right of the decimal). In this class we will round using standard
rounding. This will make the future value $30957.81. Now we need to take the future
value and subtract the principal to find the amount of interest earned. This will give
us

I =30957.81 — 30799.20 = 158.61.

The interest that Jacob gets each month will be $158.61.

Example 6. David wants to have a retirement account that will be worth $150,000 when
he retires at age sixty-five.

(1) How much must he deposit at age twenty-six at 62% compounded daily?
(2) If, at age sixty-five, he arranges for the monthly interest to be sent to him, how much
will he receive each 30-day month?

Solution:

(1) For this example, we need to find out how much to put into the account now (present
value) to get a future value of $150000 in a prescribed number of years. We will use

the future value compound interest formula for this. In this problem, we have a F'V
3

6
of 150000; r is 0.06375 (calculated by 1308 >; n is 365; and t is 39 (65-29). We will

now be looking for P.

0.06375 #6739
365 )
150000 = P(12.01352266)
150000
12.01352266
P = 12485.92975

For this problem, it is important that instead of using standard rounding, we round
up to the next cent. If we rounded down, we would not quite get to $150000. This
will mean that David will need to deposit $12,485.93 now.

150000 = P (1 +
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(2) For this part of this problem, we are once again being asked to find how much interest
is earned in 30 days. Just like in the previous example, we will need to find the future
value of David’s investment after 30 days once he turns 65. For this problem, our
principal (the value when David turns 65) is given in the problem at 150000. 7 is
0.06372; and n is 365. Once again in this problem there is not even one year of
compounding periods. Since we are asked about a 30-day month, there will only be
30 periods. Thus nt will be 30 for this part of the problem. When we plug this into
the formula, we get

0.06375
365

30
FV = 150000 (1 + ) = 150787.9526.
Since we are talking about an amount of money, we must have only dollars and cents
(two places to the right of the decimal). In this class we will round using standard
rounding. This will make the future value $150787.95.

Now we need to take the future value and subtract the principal to find the amount
of interest earned. This will give us

I =150787.95 — 150000 = 787.95

The interest that David gets each month will be $787.95.

Our final concept using compound interest is called the annual yield. The annual yield is
the simple interest rate that will result in the same amount of interest in one year.

Annual Yield Formula:
ann yield = (1 + %)n —1

where r is the rate and n is the number of compounding periods per year

Example 7. Charleston Bank has a CD (certificate of deposit) that offers 5.62% annual
interest compounded quarterly. Richardson Credit Union has a CD that offers 5.6% annual
interest compounded weekly. Which CD is the better choice?

Solution: Since the interest rates and compounding periods are different, we will use the
annual yield for each CD to compare them. For Charleston Bank we are given r = 0.056
and n = 4.

0.0562

4
ann yield = (1 + ) —120.0574, or 5.74%

For Richardson Credit Union r = 0.054 and n = 52.

0.054
ann yield = (1 + 5—2) —1~0.0576, or 5.76%

Since the credit union has a higher annual yield, it is the better investment choice.
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3. ANNUITY

An annuity is defined by merriam-webster.com as a sum of money payable yearly or at
other regular intervals. Wikipedia defines an annuity as any recurring periodic series of
payment. Some examples of annuities are regular payments into a savings account, monthly
mortgage payments (to be dealt with seperately), regular insurance payments, etc. Annuities
can be classified by when the payments are made. Annuities whose payments are made at
the end of the period are called ordinary annuities. Annuities whose payments are made
at the beginning of the period are called annuity-due. In this class we will only work with
ordinary annuities.

We will need to be able to calculate the future value of our annuities. In order to do this
we will need a formula to calculate future value if we know the amount of the payment, the
interest rate, compounding period and time the annuity will be active.

Ordinary Annuity Formula:

1+2)") g
FV = pymt [((?+))]

where F'V is the future value, pymt is the payment, r is the rate, ¢ is the time in years
and n is the number of compounding periods per year.

NOTE: The payment period and the compounding period will always match in our prob-
lems. Annuities which have the same payment and compounding period are called stmple
annuities.

Example 8. Find the future value of an ordinary annuity with $150 monthly payments at
67% annual interest for 12 years.

Solution: For this problem we are given payment amount ($150), the interest rate (0.0625
in decimal form), the compounding period (monthly or 12 periods per year), and finally the
time (12 years). We plug each of these into the appropriate spot in the formula

((1 + %)(nt) _ 1) <<1 + 0.016225)(12'12) . 1)
(z) = 150 (0.0625)
n 12
Since this is a monetary amount, we use two decimal places; using standard rounding the
future value is $32051.05.

= 32051.04651.

FV = pymt

A Christmas club account is a short-term special savings account usually set up at a
bank or credit union in which a person can deposit regular payments for the purposes of
saving money for Christmas purchases. Since there are regular payments, this is an ordinary
annuity.

Example 9. On March 9, Mike joined a Christmas club. His bank will automatically
deduct $210 from his checking account at the end of each month, and deposit it into his
Christmas club account, where it will earn 5%% annual interest. The account comes to term
on December 1. Find the following:
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(1) the future value of Mike’s Christmas club account;
(2) Mike’s total contribution to the account;
(3) the total interest earned on the account.

Solution:

(1) For this part we will use the future value formula for an ordinary annuity. The
payment amount is 210. The interest rate in decimal form is 0.0525. The number
of compounding period in one year is 12 (monthly payments). The amount of time
in years (t) is 5. We will be making payments for 9 months (end of March, end of
April, end of May, end of June, end of July, end of August, end of September, end

of October, and finally end of November). This will give us

(<1 4 ooy (124) _ 1)

(*52)

FV =210 = 1923.414866.

Mike’s account will be worth $1923.41 at maturity.

(2) To find the total amount of Mikes contribution, we only need to take the amount of
each monthly payment and multiply by the number of payments per year and finally
multiply by the number of years. This will give us 210-12- 1% = 1890. Thus the total
contribution made by Mike is $1890.

(3) To find the interest earned by Mike, we need to subtract his contribution from the
future value. Hence 1923.41 — 1890 = 33.41. Hence, Mike earned $33.41 in interest
on this account.

A tax-deferred annuity (TDA) is an annuity in which you do not pay taxes on the
money deposited or on the interest earned until you start to withdraw the money from the
annuity account.

Example 10. John Jones recently set up a tax-deferred annuity to save for his retirement.
He arranged to have $50 taken out of each of his biweekly checks; it will earn 8%% annual
interest. He just had his thirty-fifth birthday, and his ordinary annuity comes to term when
he is sixty-five. Find the following:

(1) the future value of Johns annuity;
(2) Johns total contribution to the annuity;
(3) the total interest earned on the annuity.

Solution:

(1) For this part we will use the future value formula for an ordinary annuity. The
payment amount is 50. The interest rate in decimal form is 0.08375. The number of
compounding period in one year is 26 (bi-weekly payments every two weeks) . The
amount of time in years (t) is calculated by taking the age at which Johns annuity
comes to term and subtracting Johns current age (65-35 = 30). This will give us

2630
1.4 oo 0 _y)

FV =50 <( T = 175186.9942.
(*267)
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This will make the future value $175,186.99.

(2) To find the total amount of Johns contribution, we only need to take the amount of
each monthly payment and multiply by the number of payments per year and finally
multiply by the number of years. This will give us 50 - 26 - 30 = 39000. Thus the
total contribution made by John is $39,000.

(3) To find the interest earned by John, we need to subtract his contribution from the
future value. We get 175185.99 — 39000 = 136185.99. Thus John earns $136,185.99

in interest on this account.

Example 11. Bill and Nancy want to set up a TDA that will generate sufficient interest at
maturity to meet their living expenses, which they project to be $1,500 per month.

(1) Find the amount needed at maturity to generate $1500 per month interest if they
can get 6%% annual interest compounded monthly.

(2) Find the monthly payment they would have to put into an ordinary annuity to obtain
the future value found in part a if their money earns 9%% annual interest and the
term is 30 years.

Solution:

(1) This first question is not an annuity problem at all. It is a basic simple interest
problem, where we do not know the principal or the future value, but we do know
the relationship between the two. We know that the amount of interest that needs
to be earned in one month is 1500. This means that the future value will need to be
the principal plus 1500 (F'V = P + 1500). We are given r to be 0.06375, and ¢ will
be 1—12 since this is only one month. The simple interest formula gives us

1
1500 = P - 0.06375 - ( —
(»)

1500 = P(0.0053125)
1500

0.0053125
P = 282352.9412

This makes the needed principal (future value for out TDA) is $282352.94 in order
to obtain $1500 in interest per month.

(2) For this part of the problem, we are being asked to find the monthly payments needed
to end up with the future value of $282,352.94 (see part (1)) in our annuity. We will
use the future value of an ordinary annuity formula. We are given the future value of
282352.94. We have an interest rate for this annuity of 0.095 (different from part a),
n is 12 (monthly payments and monthly compounding since it is a simple annuity),
and ¢ is given as 30 years. We need to solve for the payments. When we plug all this
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into the formula we get

((1+ o) 1)
(%)
282352.94 = pymt(2033.035174)

282352.94
= pymt

2033.035174
pymt = 138.8824667.

282352.94 = pymt

Normally in this class we use standard rounding, but in this case, we will want to
round up to ensure that we end up with the desired future value in 30 years. Thus
the monthly payments will need to be $138.89.

4. AMORTIZED LOAN

A simple interest amortized loan is a loan whose principal is repaid over the life of the
loan usually through equal payments. We usually refer to this simply as an amortized loan.
Meriam-webster.com give the following definition of amortizing: to pay off (as a mortgage)
gradually usually by periodic payments of principal and interest.

Some examples of simple interest amortized loans are home loans (mortgages), car loans,
and business loans

What we will be calculating with our loans will be the payment amount and total interest
paid. In order to do these calculations will need the amount of the loan (principal), the
interest rate, and the length of the loan. As with our simple annuities, the payment period
and the compounding period will always be the same.

Amortized Loan Formula:

( ><’”’—1)]

P14 5)™ = gy [(

— 33
3=
S—]

where P is the principal or loan amount, F'V is the future value, pymt is the payment,
r is the rate, ¢ is the time in years and n is the number of compounding periods per year.

Example 12. Find the monthly payment and total interest paid for a simple interest amor-
tized loan of $15,000 at an annual interest rate of 6%% for 8 years.

Solution: For this problem we are given the laon amount (15000), the interest rate (0.06375
in decimal form), the compounding period (monthly or 12 periods per year), and finally the
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time (8 years). We plug each of these into the appropriate spot in the formula

0.06375) (12:8) ((1 | 00675) (128) _ 1)
= pymt

15000 (1 +
12 (0.0162375)

24945.67081 = pymt(124.808418)
24945.67081

nliidethe "
124.808418 9™
pymt = 199.8717011.

This will make the payment amount $199.87.

Now we need to find the total interest paid. In this case the total amount paid will be
more than the amount of the loan. From the first part we have the payment amount. So,
we need to find the total amount paid and subtract the loan amount. As before, the total
amount paid is the payment times the number of payments per year times the number of
years. We get 199.87 - 12 -8 = 19187.52 for the total amount paid. Thus the interest paid is
19187.52 — 15000 = 4187.52. The total interest paid on this loan is $41878.52.

Example 13. Gloria bought a house for $267,000. She put 20% down and obtained a simple
interest amortized loan for the balance at 4%% annual interest for 30 years.

(1) Find the amount of Glorias monthly payment.

(2) Find the total interest paid by Gloria.

(3) Most lenders will approve a home loan only if the total of all the borrowers monthly
payments, including the home loan payment, is no more than 38% of the borrowers
monthly income. How much must Gloria make in order to qualify for the loan?

Solution:

(1) Our first step here is to find the down payment on the house. To calculate the down
payment we need to multiply the price of the house by 20%.

down payment = 267000 - 0.20 = 53400

This means that Gloria will be paying $53,400 in cash for the house and financing
the rest with an amortized loan.

Now we need to find the amount of the loan. This will be the difference between
the price of the house and the down payment.

267000 — 53400 = 213600

Now we are ready to use the amortized loan formula with the loan amount (P =
213600), the annual interest rate (r = 0.04875), and the number of years of the loan
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(2)

(3)

(n = 30). This will give us

0.04875) (12:80) <(1 + 004875 (1230) _ 1)
= pymt

12 ( 0.0142875 )

213600 (1 +

919327.5006 = pymt(813.2843568)
919327.5006
= pymt

813.2843568
pymt = 1130.388766

This will make the monthly payment amount $1130.39.

To find the total interest paid by Gloria, we will use the same method as in example
12 with Glorias loan amount and the monthly payment that we just calculated. This
will give us I = $1130.39 - 12 - 30 — $213600 = $193340.40.

To answer this question, we have to make some assumptions. The biggest assumption
that we need to make is that Gloria has no other monthly expenses other than the
monthly mortgage payment. We need the mortgage payment to be no more than
38% of Glorias monthly income. We can write this as an equation that looks like

pymt = (monthly income) - 0.38.

We can solve this equation for monthly income to find out the minimum monthly
income allowed for the payment.
1130.39 = (monthly income) - 0.38
1130.39
0.38
monthly income = 2974.710526.

In this class we would normally use standard rounding, however, in order to ensure
that the payment is no more than the monthly income, we will round up. Hence her
monthly income should be at least $2974.72.

= monthly income

You will find much more information on home loans and their cost by reading through the
Home Loan Example. This also includes an amortization schedule. It is strongly recom-
mended that you read through that entire example.
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