Geometry Formulas

Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$ Conversion factors: $1 \mathrm{yd}=3 \mathrm{ft}=36$ inches $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ $1 \mathrm{~km}=1000 \mathrm{~m}$	$\begin{aligned} & \sin A=\frac{\text { opposite }}{\text { hypotenuse }} \\ & \cos A=\frac{\text { adjacent }}{\text { hypotenuse }} \\ & \tan A=\frac{\text { opposite }}{\text { adjacent }} \end{aligned}$
$\begin{gathered} A=\text { area; } b=\text { base; } C=\text { circumference } ; h=\text { height; } \\ l=\text { length; } r=\text { radius; } S A=\text { surface area; } V=\text { volume } \end{gathered}$	
Circle: $C=2 \pi r ; A=\pi r^{2}$	Rectangle: $P=2 b+2 h ; A=b h$
Triangle Area Formulas: $A=\frac{1}{2} b h$ Heron's Formula: $\begin{aligned} & A=\sqrt{s(s-a)(s-b)(s-c)} \\ & \text { where } s=\frac{1}{2}(a+b+c) \end{aligned}$	Trapezoid: $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Surface Area $=$ the sum of the areas of each exterior surface of the 3-dimensional figure	
Cylinder: $V=\pi r^{2} h ; \quad S A=2 \pi r(r+h)$	Sphere: $V=\frac{4}{3} \pi r^{3} ; S A=4 \pi r^{2}$
Solid with matching base and top (equal cross sections):$V=(\text { area of base }) * h$	
Cone Volume: $V=\frac{1}{3} \pi r^{2} h$	Pyramid Volume: $V=\frac{1}{3}(\text { area of base })^{*} h$

