Financial Formulae

Simple Interest:

$$I = Prt$$

$$FV = P(1 + rt) = P + I$$

Compound Interest:

$$FV = P\left(1 + \left(\frac{r}{n}\right)\right)^{(nt)}$$
ann yield = $\left(1 + \left(\frac{r}{n}\right)\right)^n - 1$

Annuity (ordinary):

$$FV = pymt \left[\frac{\left(\left(1 + \left(\frac{r}{n} \right) \right)^{(nt)} - 1 \right)}{\left(\frac{r}{n} \right)} \right]$$

$$\left[\left(\left(1 + \left(\frac{r}{n} \right) \right)^{(nt)} - 1 \right) \right]$$

$$P\left(1 + \left(\frac{r}{n}\right)\right)^{(nt)} = pymt \left[\frac{\left(\left(1 + \left(\frac{r}{n}\right)\right)^{(nt)} - 1\right)}{\left(\frac{r}{n}\right)}\right]$$

Amortized Loan:

$$P\left(1 + \left(\frac{r}{n}\right)\right)^{(nt)} = pymt \left[\frac{\left(\left(1 + \left(\frac{r}{n}\right)\right)^{(nt)} - 1\right)}{\left(\frac{r}{n}\right)}\right]$$

unpaid balance =
$$P\left(1 + \left(\frac{r}{n}\right)\right)^{(nT)} - pymt\left[\frac{\left(\left(1 + \left(\frac{r}{n}\right)\right)^{(nT)} - 1\right)}{\left(\frac{r}{n}\right)}\right]$$

NOTE: There is the number of years that have been paid.