Financial Formulae

Simple Interest:

$$
\begin{gathered}
I=P r t \\
F V=P(1+r t)=P+I
\end{gathered}
$$

Compound Interest:

$$
\begin{gathered}
F V=P\left(1+\left(\frac{r}{n}\right)\right)^{(n t)} \\
\text { ann yield }=\left(1+\left(\frac{r}{n}\right)\right)^{n}-1
\end{gathered}
$$

Annuity (ordinary):

$$
\begin{gathered}
F V=\text { pymt }\left[\frac{\left(\left(1+\left(\frac{r}{n}\right)\right)^{(n t)}-1\right)}{\left(\frac{r}{n}\right)}\right] \\
P\left(1+\left(\frac{r}{n}\right)\right)^{(n t)}=\text { pymt }\left[\frac{\left(\left(1+\left(\frac{r}{n}\right)\right)^{(n t)}-1\right)}{\left(\frac{r}{n}\right)}\right]
\end{gathered}
$$

Amortized Loan:

$$
P\left(1+\left(\frac{r}{n}\right)\right)^{(n t)}=\text { pymt }\left[\frac{\left(\left(1+\left(\frac{r}{n}\right)\right)^{(n t)}-1\right)}{\left(\frac{r}{n}\right)}\right]
$$

unpaid balance $=P\left(1+\left(\frac{r}{n}\right)\right)^{(n T)}-$ pymt $\left[\frac{\left(\left(1+\left(\frac{r}{n}\right)\right)^{(n T)}-1\right)}{\left(\frac{r}{n}\right)}\right]$
NOTE : T here is the number of years that have been paid.

