1. Given 13 morks is 1 gloe, 5 gloes is 1 flit, 7 kits is one lonk, and 10 lonks is 1 gall. Convert 90 morks per kit to flits per gall.
2. Given that one ork is equivalent to 5 umphs, convert 2.14 square orks to square umphs.
3. Given a brunk is equivalent to 5 plops, and a plop is equivalent to 4 nerd, convert 20 nerds to brunks.
4. a. Use a calculator to estimate $5 e^{0.2204 * 2}$ with four decimal place accuracy.
b. Use a calculator to estimate $\ln (7)$ with four decimal place accuracy.
5. Match the equations 1 through 4 to the graphs A through D below:
6. $y=a e^{0.25 t}$
7. $y=a e^{0.75 t}$
8. $y=a e^{-0.5 t}$
9. $y=a e^{-3 t}$

A
B
C
D
6. Bacteria X has a relative growth rate of 230% under ideal conditions.

Some bacteria X are accidentally introduced into some potato salad. Two hours after contamination, there were 24000 bacterial X in the potato salad.
a. Find the initial number of bacteria X introduced into the potato salad.
b. Estimate the number of bacteria in the food 3 hours after contamination.
7. Match the equations 1 through 4 to the graphs A through D below:

1. $y=\frac{1}{4} e^{k t}$
2. $y=2 e^{k t}$
3. $y=20 e^{k t}$
4. $y=5 e^{k t}$

5. Write the inverse of the exponential function $n(t)=17800 e^{0.09 t}$.
6. A bacteria culture initially contains 2000 bacteria and doubles every half hour. The formula for the population is $p(t)=2000 e^{k t}$ for some constant k.
a. Find k for this bacteria culture.
b. Find the size of the bacterial population after 20 minutes.
c. Find the size of the bacterial population after 7 hours.
7. The number of bacteria in a culture is given by the function $n(t)=975 e^{0.4 t}$ where t is measured in hours.
a. What is the relative growth rate of this bacterium population?
b. What is the initial population of the culture?
c. How many bacteria will the culture contain at time $t=5$?
8. At the beginning of an experiment, a scientist has 148 grams of radioactive goo. After 150 minutes, her sample has decayed to 4.625 grams.
a. What is the half-life of goo in minutes?
b. Find a formula for $G(t)$, the amount of goo remaining at time t.
c. How many grams of goo will remain after 62 minutes?
