

- In some cases, fluid forces have little effect on an object's motion (e.g., shotput)
- In other cases, fluid forces are significant
 badminton, baseball, swimming, cycling, etc.
- Three major fluid forces of interest:
 - Buoyancy
 - Drag
 - Lift

Drag

- Resistive force acting on a body moving through a fluid (air or water). Two types:
 - Surface drag: depends mainly on smoothness of surface of the object moving through the fluid.
 - shaving the body in swimming; wearing racing suits in skiing and speedskating.
 - Form drag: depends mainly on the cross-sectional area of the body presented to the fluid
 - bicyclist in upright v. crouched position
 - swimmer: related to buoyancy and how high the body sits in the water.
 - When would you want to *increase* drag?

Lift

- Represents a net force that acts perpendicular to the direction of the relative motion of the fluid;
- Created by different pressures on opposite sides of an object due to fluid flow past the object
 - example: Airplane wing (hydrofoil)
- Bernoulli's principle: velocity is inversely proportional to pressure.
 - − Fast relative velocity ⇒ lower pressure
 - − Slow relative velocity → higher pressure

Explaining lift and drag

- The drag force acts in a direction that is opposite of the relative flow velocity (i.e., it opposes the relative flow)
 - Affected by surface area (form drag)
 - Affected by surface smoothness (surface drag)
- The lift force acts in a direction that is perpendicular to the relative flow.
 - The lift force is not necessarily vertical.

Example: Underwater weighing

- Body composition assessment using the underwater weighing technique is common application of Archimede's principle.
 - Human body is composed of varying amounts of muscle, bone, and fat.
 - Densities of:
 - Fat: 0.95 g/cm³
 - Muscle: 1.05-1.10 g/cm³
 - Bone: 1.4-1.9 g/cm³
 - Underwater weighing provides a direct estimate of average body density. Prediction equations then allow for estimation of %fat and %lean body mass.

