
CHEM 234, Spring 2011	Seco	ond Midte	rm			lan R	. Gould	
	PRINTED ST NAME				ID or ing ID -			
Person on your LEFT (or Aisle)			Person on your RIGHT (or Aisle)					
 PRINT YOUR NAME ON EACH PAGE! READ THE DIRECTIONS CAREFULLY! USE BLANK PAGES AS SCRATCH PAPER work on blank pages will not be graded WRITE CLEARLY! MOLECULAR MODELS ARE ALLOWED DO NOT USE RED INK DON'T CHEAT, USE COMMON SENSE! 	1 2 3 4 5 6 7 8 Extra C	/20 /16 /23 /40 . /24 /18 /24			nci Exti	ra)/1`	75+5	
н						Energies, kc		
Li Be	вс	C N O	Fl		ipsing	Gauch		
Na Mg	Al S	Si P S	Cl #	Ar H/H	~1.0	Me/Me	~0.9	
K Ca Sc Ti V Cr Mn Fe Co Ni	Cu Zn Ga G	Ge As Se	Br H	Kr H/Me	~1.4	Et/Me	~0.95	
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd	Ag Cd In §	Sn Sb Te	2 I 3	Ke Me/Me	~2.6	i-Pr/Me	~1.1	
Cs Ba Lu Hf Ta W Re Os Ir Pt	Au Hg Tl F	Pb Bi Po	At H	Rn Me/Et	~2.9	t-Bu/Me	~2.7	
	Inf Inf Inf Inf Inf Inf Inf Inf	ECH	elation C C =C H 0 ■ C T 173			Approximate Co Constants, J (H: $^{1}H NMR SpectH H^{-}C^{-}C^{-}^{-}H^{-}C^{-}C^{-}^{-}H^{-}C^{-}C^{-}^{-}H^{-}C^{-}C^{-}^{-}H^{-}C^{-}C^{-}^{-}C^{-}C^{-}^{-}H^{-}C^{-}C^{-}C^{-}^{-}C^{-}C^{-}C^{-}^{-}C^{-}C^{-}C^{-}^{-}C^{-}C^{-}C^{-}C^{-}^{-}C^{-}C^{-}C^{-}C^{-}C^{-}C^{-}C^{-}C$	z), for	
amine $R - NH_2$ variable and condition alcohol $R - OH$ dependent, ca. 2 - 6 δ	NMR Correlat	tion Charts		–OCH ₂ – –H ₂ C-X	"-c "	H ₃		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{6}{120}$ $R-C=$ $C=CR_{2}$	5 100 ■ T T	$\begin{array}{c} \begin{array}{c} \\ C = CH_2 \\ \hline 4 \\ \hline 80 \\ \hline \\ \hline \\ RC \equiv CR \\ \hline \\ \end{array}$	$\begin{array}{c} -H_2C-N\\ -H_2C-N\\ 3\\ 60\\ 0CH_2-\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	$\begin{array}{c c} VR_2 & Alkyl \\ & 3^Y > 2^Y > 1 \\ \hline 2 & 1 \\ \hline 40 & 20 \\ \hline \hline \\ Alkyl & 3^Y > 2 \\ \hline C - X & 1 \\ \hline \\ VR_2 & 1 \\ \hline \end{array}$	$\frac{Y}{-1} = \frac{0}{0}$ $\frac{2^{Y} > 1^{Y}}{-1}$	

Question 1 (10 pts.) Give the IUPAC name for the following compound. Be sure to use cis/trans, E/Z or R/S where appropriate.

- 2 -

Question 2 (20 pts) In this question you will be determining whether the provided reaction is allowed or forbidden

a) give the curved arrow-pushing that describes the bond-making and bond breaking

b) does the REACTION SHOWN, proceed via a conrotatory or disrotatory ring-opening? answer _____

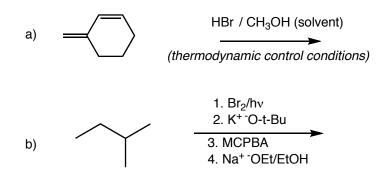
c) how many electrons are involved in the transition state for the provided reaction? answer _____

d) Give a justification for whether the REACTION SHOWN is allowed or forbidden. Your answer must include the following terms: Huckel and/or Mobius, conrotatory and/or disrotatory, aromatic, low energy and high energy transition state

Extra Credit Question (5 pts.) Which important type of biological molecule has this cis-enediyne been shown to damage?

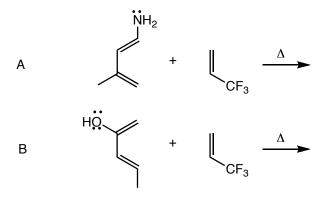
DNA

proteins


lipids

carbohydrates

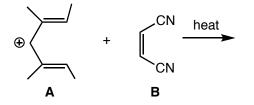
Question 3 (16 pts) Give the major organic products of the following reactions, indicate both the **relative** and the **absolute** stereochemistry.


- 3 -

NAME

Question 4 (23 pts)

a) Give the products of the following two Diels-Alder reactions (be sure to specify both absolute and relative stereochemistry as appropriate).

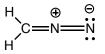


b) Draw a reation energy diagram for these two reactions, clearly indicating which diagram refers to reaction A and which to reaction B. Clealy indicate the activation energy for the reactions A and B. Assume both reactions have similar exothermicities, indicate the exothermicity.

NAME

Question 6 (24 pts). Give the ALLOWED product of the following cycloaddition reaction

- 5 -


a) Give the curved arrow-pushing that describes the bond-making and breaking.

b) Redraw the cation **A** and give a pictorial representation of the wavefunction of the HOMO ON TOP OF THE STRUCTURE

c) Redraw the dicyanoethylene **B** and give a pictorial representation of the wavefunction of the LUMO ON TOP OF THE STRUCTURE

d) Give a brief justification for the structures of your allowed product, you must include the following terms in your justification: suprafacial and/or antarafacial, HOMO, LUMO, bonding and/or anti-bonding

Question 7 (18 pts). For the provided structure: a) Give all reasonable resonance contributors and indicate the hybridization of the carbon and BOTH nitrogen atoms

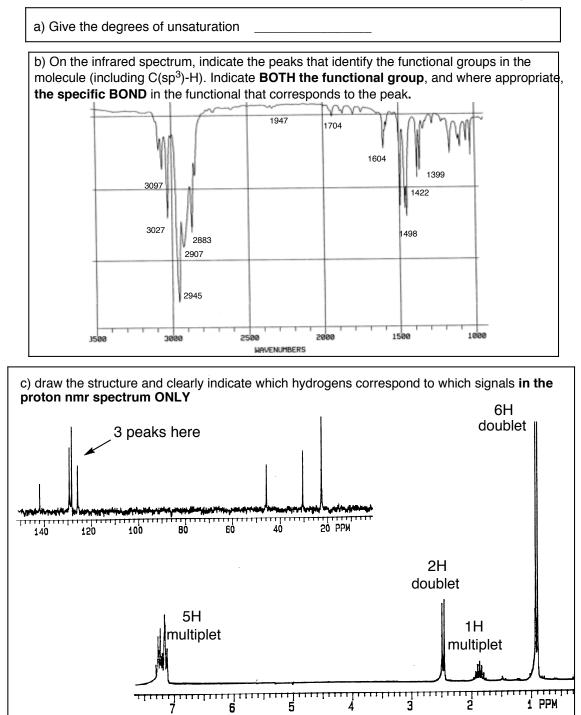
b) Redraw the structure and draw a schematic representation of the wavefunction of the LUMO on TOP of your re-drawing of the structure

NAME

Question 5 (40 pts.) Show how you would make the target componds on the right from the starting compounds on the left. Show reagents and conditions where appropriate, and the structures of important intermediate compounds. Do not show any (arrow pushing) mechanisms.

- 4 -

/ a)


PhO² нó

∖ CO₂CH₃

CHM 234, Spring 2011, MIDTERM #2 - 6 - NAME

Question 8 (24 pts.) Provided are spectra for a compound with molecular formula C10H14

