PRINTED
FIRST NAME
\qquad

PRINTED
LAST NAME
\qquad
ASU ID or Posting ID \qquad

Person on your LEFT (or Aisle)	1	Person on your RIGHT (or Aisle)		
- PRINT YOUR NAME ON EACH PAGE! - READ THE DIRECTIONS CAREFULLY! - USE BLANK PAGES AS SCRATCH PAPER work on blank pages will not be graded... -WRITE CLEARLY! - MOLECULAR MODELS ARE ALLOWED - DO NOT USE RED INK		/16 9	/18
	2	/10. 10	
	3	/1		
	4	/1	.. 12	
		 13	
		 14	
			
	8			

- DON'T CHEAT, USE COMMON SENSE!

8

Extra Credit

/5
Total (incl Extra)
/375+5

Interaction		Energies, kcal/mol	
Eclipsing	Gauche		
H/H $\quad \sim 1.0$	Me/Me	~ 0.9	
H/Me ~ 1.4	Et/Me	~ 0.95	
Me/Me ~ 2.6	i-Pr/Me	~ 1.1	
Me/Et	~ 2.9	$t-B u / M e$	~ 2.7

Question 1 (16 pts.) Provide IUPAC names for the following structures, do not forget to use E / Z and R/S as appropriate.
a)

b)

Question 2 (10 pts.) Rank the energies of an electron in each of the following π-molecular orbitals. Give a BRIEF explanation for your choice.

D -8
B
C

lowest energy
$<$ \qquad
\qquad highest energy

Question 3 (14 pts.) On each side of the following equilibrium, identify the stronger and weaker acid and base, identify which acid would have the LOWER pKa, indicate on which side the equilibrium would lie, and give a brief explanation for your choices.

Question 4 (14 pts.) Which is the stronger acid, A or B? Give a BRIEF explanation, including the drawings of all relevant structures and ALL resonance contributors as appropriate.
A

Question 5 (14 pts.) Rank in order of increasing rate of reaction with a Grignard reagent, give a BRIEF explanation.

Extra Credit Question (5 pts). Which kind of molecule was used in the new Two-Electron Sensitization Process for Photography that Dr. Gould worked on when at Kodak?
amine ester amide aldehyde

NAME
Question 6 (14 pts.) Rank in order of increasing rate of electrophilic aromatic substitution, e.g. $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$.

Question 7 (24 pts.) For the following reaction, give a curved arrow-pushing mechanism

- Draw all of the resonance contributors for important intermediates.
- Do NOT use $+\mathrm{H}^{+} /-\mathrm{H}^{+}$notation, show exactly where each proton goes to and comes from
- Indicate the Lewis acid and base at each step as appropriate and if they are also Bronsted acids/bases

b) Draw a properly labelled reaction energy diagram, indicated the positions of the reactants, intermediates, transition states and products, but you do not draw the structures of any of these on the diagram.

Question 8 (72 pts)
Provide the missing products, reagents/conditions or reactants, as required. Do not forget to include absolute and relative stereochemistry as appropriate.
a)

$\xrightarrow[\text { 2. } \mathrm{Ag}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}]{\text { 1. excess } \mathrm{CH}_{3} \mathrm{I}}$
3. heat
b)

c)

d)

e)

f)

CHM 234, Spring 2010 FINAL EXAM
Question 8, Contd...
Provide the missing products, reagents/conditions or reactants, as required. Do not forget to include stereochemistry as appropriate.
g)

h)

i)

Question 9 (18 pts)
a) Give the reactants AND reagents/conditions that would allow you to synthesize the provided structure in a Claisen reaction

b) Give the reactants AND reagents/conditions that would allow you to synthesize the following structure in an Aldol condensation.

\qquad
Question 10 (16 pts) For the following cycloaddition reaction:
a) Give the curved arrow-pushing describing product formation

b) On TOP OF THE structures below, draw the HOMO for reactant A and the LUMO for reactant B

A

B
c) USING F.M.O. theory, explain whether the provided product is allowed or forbidden, include the terms suprafacial and/or antarafacial in your explanation

Question 11 (20 pts) Give the mechanism for the following reaction

- AS APROPRIATE, SHOW WHERE ALL PROTONS COMES FROM AND GO TO (no + $\mathrm{H}^{+} /-\mathrm{H}^{+}$)
- DRAW ALL RESONANCE CONTRIBUTORS for the intermediates as approriate
- At each INTERMOLECULAR step, INDICATE THE Lewis acid and base (LA or LB) and whether they are also Bronsted acids and bases (BA or BB) as appropriate

Question 12 (20 pts.) Give a curved arrow-pushing mechanism for the following reaction

- You can give an "abbreviated mechanism, i.e. you may use + H^{+}and $-\mathrm{H}^{+}$
- IT IS NOT NECESSARY TO INDICATE THE LEWIS/BRONSTED ACID/BASE AT EACH STEP
- BUT, draw all resonance structures for the intermediates
- Add non-bonding electrons and C-H bonds as necessary

1. $\mathrm{Na}^{+-\mathrm{OEt} / \mathrm{EtOH}}$
2. $\mathrm{H}_{3} \mathrm{O}^{+}$

\qquad
Question 13 (25pts) Provided are spectra for a compound with molecular formula $\mathbf{C}_{6} \mathbf{H}_{12} \mathbf{O}_{2}$
a) Give the degrees of unsaturation
b) On the infrared spectrum, indicate the peaks that identify the functional groups in the molecule (including $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$). Indicate BOTH the functional group, and where appropriate, the specific BOND in the functional group that corresponds to the peak.

c) draw the structure and clearly indicate which hydrogens correspond to which signals in the proton nmr spectrum (only)

NAME
Question 14 (20 pts.) Show how you would make the target componds on the right from the starting compounds on the left. Show reagents and conditions where appropriate, and the structures of important intermediate compounds. Do not show any (arrow pushing) mechanisms. If necessary, you must indicate steps that require separation of isomers

Question 15 (40 pts) Show how you would make the target componds on the right from the starting compounds on the left. Show reagents and conditions where appropriate, and the structures of important intermediate compounds. Do not show any (arrow pushing) mechanisms. These 2 questions use only reactions from the basic sets that were provided on the class website
a)

b)

CHM 234, Spring 2010 FINAL EXAM
Question 16 (40 pts.) In each case, synthesize the (target) molecules on the right from the
starting molecules the left. this can not be done in one reaction. Give reagents and
conditions and the intermediate molecules at each step. Do not show any mechanisms or
transient intermediates.

