ASU ID or Posting ID \qquad

Interaction			
Energies, $\mathrm{kcal} / \mathrm{mol}$			
H/H	~ 1.0	$\mathrm{Me} / \mathrm{Me}$	~ 0.9
H / Me	~ 1.4	$\mathrm{Et} / \mathrm{Me}$	~ 0.95
$\mathrm{Me} / \mathrm{Me}$	~ 2.6	$\mathrm{i}-\mathrm{Pr} / \mathrm{Me}$	~ 1.1
$\mathrm{Me} / \mathrm{Et}$	~ 2.9	$\mathrm{t}-\mathrm{Bu} / \mathrm{Me}$	~ 2.7

\qquad
Question 1 (10 pts.) Give the IUPAC name for the following compound. Be sure to use cis/trans, E/Z or R/S where appropriate.

(2S)-ethoxyhept-(4E)-en-(3R)-ol grading -2pts each error

Question 2 (20 pts) Glve a curved-arrow pushing mechanism for the following reaction. Be sure to indicate the Lewis acids/bases (LA/LB) and Bronsted acids/bases (BA/BB) as appropriate

grading: mainly half right = half points etc
1 pts if SN1 first then SN2 second
18 pts if SN2 in second step
18 pts if SN1 in first step no LA/BA and LB/BB then -5 pts only LA/BA and LB/BB 4 pts

CHEMISTRY 234, Spring 2010 MIDTERM \#2 - 3-
NAME
Question 3 (16 pts) Give the missing products or reactants in the following Diels-Alder reactions. In the missing product, indicate both the relative and the absolute stereochemistry.

Question 4 (16 pts.) For the following reactions, provide the missing MAJOR REACTION PRODUCT. Indicate stereochemistry where appropriate.
grading = 8pts each

b)

2. $\mathrm{EtOH} / \mathrm{HCl}$ (cat.)

some partial credit examples

NAME \qquad
Question 5 (34 pts.) For the following reaction, give a full curved-arrow pushing mechanism for formation of BOTH products and indicate the Lewis acid and base at each step (LA or LB) and whether they are also Bronsted acids and bases (BA or BB).
Include all reasonable resonance contributors for any intermediates AND INDICATE THE MAJOR RESONANCE CONTRIBUTOR IF APPROPRIATE!!

b) Indicate which product, A or B, would be formed under thermodynamically controlled conditions and which would be formed under kinetically controlled conditions and give a BRIEF explanation of the role of temperature in determining kinetic and thermodynamic control kinetic $=A$, thermodynamic $=B, B$ is more likely to be formed at HIGH temperature since higher temperature enables REVERSIBLE reactions and allows the reaction to explore the entire reaction energy surface and find the lowest energy product, at low temperatures the reactions are irreversible and the fastest formed product is the major product
grading 10 pts, key words highlighted in blue
c) Draw an energy diagram for formation of both A and B ON THE SAME DIAGRAM, clearly indicate which curve refers to formation of A and which to formation of B

Extra Credit Question (5 pts.) Which kind of structures were discussed as being carconogenic
poly-aromatics THF Ethers Dienes
\qquad
Question 6 (25 pts.) Show how you would make the target compond on the right from the starting compound on the left. Show reagents and conditions where appropriate, and the structures of important intermediate compounds. Do not show any (arrow pushing) mechanisms.

Question 7 (18 pts)
The product of ONE of the following two reactions A or B is allowed and the other is forbidden a) draw the curved arrow-pushing that describes the bond making/breaking for both reactions

b) draw a picture of the F.M.O. relevant to these reactions on top of each structure below

c) Using F.M.O. theory, briefly explain which reaction has the allowed product, A or B, include the terms disrotatory and/or conrotatory as appropriate
both reactions are disrotatory ring closure reactions, disrotatory ring closure in A leads to a bonding situation for the new sigma-bond, disrotatory ring closing in B results in an antibonding situation for the new sigma-bond, reaction A is allowed

8pts

Question 8 (18 pts) Shown below is the product of a cycloaddition reaction between two reactants A and B. In this question you are eventually going to determine whether THIS product is allowed or forbidden.
FIRST, some questions about the product that is provided.... Me

a) Do the curved arrow-pushing that describes bond making and breaking
b) Give the number of electrons that are involved in this reaction \qquad 2pts
c) For the product SHOWN (which may or may not be allowed, remember), was the reaction suprafacial or antarafacial as far as the reactant A was concerned? _suprafacial 2pts
d) For the product SHOWN (which may or may not be allowed, remember), was the reaction suprafacial or antarafacial as far as the reactant B was concerned? \qquad 2pts
NOW, some questions about the ALLOWED reaction for these reactants
e) Would an ALLOWED reaction between reactants A and B proceed via a Huckel or a Mobius transition state. Give a BRIEF explanation
this is a 6-electron reaction, the lowest energy transition state is a cyclic Huckel loop since this is aromatic and relatively stable
$6 p t s$, key words highlighted in blue
f) Is the product shown above allowed or forbidden? allowed $\quad 2 p t s$

Question 9 (18 pts)
a) Give the curved arrow-pushing and the allowed product for the following cycloaddition reaction. Pay attention to stereochemistry

b) ON TOP of the structures as indicated, draw the requested F.M.O.s and give the total number of π-molecular orbitals and electrons associated with the π-system for each structure.

total \# of $\pi-M . O . s$
for this structure =
total \# of electrons in the π system for this structure $=$
draw the HOMO 31 pt
total \# of π-M.O.s for this structure = total \# of electrons in the π system for this structure $=$

draw the LUMO

