```
                                KEY
``` LAST NAME \(\qquad\)
ASU ID or Posting ID \(\qquad\)

Question 1 (25 pts). For each of the following 2 pairs of alcohols \(A\) and \(B\) :
1) Indicate the stronger Bronsted acid AND which would have the stronger conjugate base
2) Explain your reasoning using drawings of all of the conjugate base anions, and include ALL relevant resonance contributors as appropriate.
a)

grading
10 pts for this question
-1 ot if no mention of inductive effect
-4 pts if resonance structures shown

-4 pts if explanation and no structures
-4 pts of structures only

\(B\) is the stronger acid, \(A\) - is the stronger base, the non-bonding electrons in the anions are more stabilized(lowered in energy) by the stronger inductive effect of the the more electronegative \(F\) in the conjugate base of B , lower energy electrons \(=\) weaker base \(=\) stronger conjugate acid

\section*{b)}
b) A

grading: 15 pts
too many options to summarize half correct, half points etc.

B

B

the substituent is electron withdrawing as a result mainly of the resonance effect and also somewhat due to the inductive effect of the oxygen, in A the non-bonding electrons of the conjugate base anion are directly stabilized by resonance (the anion from A has 1 extra resonance contributor), in \(B\) the anion is never directly stabilized by the substituent, the conjugate base anion from \(A\) is the weaker base, thus \(A\) is the stronger Bronsted acid, the conjugate base from \(B\) is the stronger base, thus \(B\) is the weaker Bronsted acid
\(\qquad\)
Question 2 (35 pts.) Provide the missing major organic products, ignore sterochemistry grading: 7 points each, too many grading options to list
a)

b)

\(\xrightarrow{\text { Excess } \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}}\)

c)

d)

e)

Question 3 (12 pts.) Give the IUPAC name for the following compound. Be sure to use cis/trans, E/Z or R/S where appropriate.

grading- subtract 2 points each error, do not propogate errors

5 pts Extra Credit. Which functional group can be polymerized to form an organic metal? alcohol alkene alkyne epoxide grading- 5 pts or zero from "O-Chem in Real Life" page : organic metals, week \#5
\(\qquad\)
Question 4 (27 pts.) For each structure:
1. Decide which of the indicated bonds \(A\) and \(B\) is possible, or is preferred one, to make.
2. In the provided boxes, give the reactant/reagents/conditions you would use to make that bond (step 2 is for acid or water workup steps if they are necessary, if not, leave step 2 blank).
3. Briefly state why the other bond can not be made, or is not the preferred bond to make.
this structure \(+\quad\) these reagents/conditions

The problem with making bond
B is: the acetylide anion would react with the - OH group grading: 2pts

\begin{tabular}{|c|c|}
\multicolumn{1}{l}{ this structure } & + these reagents/conditions \\
\hline grading: 7 pts & \\
\hline 2. & \\
\hline
\end{tabular}

\footnotetext{
The problem with making bond \(\qquad\) is: the Grignard would have to attack the most substituted side of an epoxide grading: 2pts
}
\(\qquad\)
Question 5 (40 pts.) Show how you would synthesize the target componds on the right from the starting compounds on the left. Show reagents and conditions, and the structures of important intermediate compounds. Do not show any (arrow pushing) mechanisms.

grading: 20 pts each question
b)

too many options, use common sense, half correct half points etc

-3 pts for using wrong structure here with correct \# of carbons -4 pts for using wrong structure here with INCORRECT \# of carbons
\(\qquad\)
Question 6 (36 pts). READ THIS QUESTION CAREFULLY!
For EACH reaction, give a complete arrow pushing mechanism, and...
1) Show ALL important resonance contributors for all intermediates.
2) Add non-bonding electrons and C-H bonds to the line-angle structures as required.
3) Indicate the Lewis acid/Lewis base (LA, LB) at each step as appropriate, and whether they are also Brønsted acids/bases (LA/BA, LB,BB).
a)

grading 18 pts, too many options to list, half correct half points etc.

LB/BB
b)

LA/BA

LB/BB
grading 18 pts, too many options to list, half correct half points etc.```

