PRINTED
PRINTED
LAST NAME \qquad ASU ID or Posting ID \qquad

Question 1 (25 pts). For each of the following 2 pairs of alcohols A and B :

1) Indicate the stronger Bronsted acid AND which would have the stronger conjugate base
2) Explain your reasoning using drawings of all of the conjugate base anions, and include ALL relevant resonance contributors as appropriate.
a)

b)
A

B
\qquad
Question 2 (35 pts.) Provide the missing major organic products, ignore sterochemistry
a)

1. $\mathrm{NaBH}_{4} / \mathrm{EtOH}$
2. PBr_{3}
b)

$\xrightarrow{\text { Excess } \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}}$
c)

3. 1 Equiv. HBr
d)

$\xrightarrow[\text { 2. } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1. Excess } \mathrm{LiAlH}_{4}}$
e)

$\xrightarrow{\mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}}$

Question 3 (12 pts.) Give the IUPAC name for the following compound. Be sure to use cis/trans, E/Z or R/S where appropriate.

5 pts Extra Credit. Which functional group can be polymerized to form an organic metal?
\qquad
Question 4 (27 pts.) For each structure:

1. Decide which of the indicated bonds A and B is possible, or is preferred one, to make.
2. In the provided boxes, give the reactant/reagents/conditions you would use to make that bond (step 2 is for acid or water workup steps if they are necessary, if not, leave step 2 blank).
3. Briefly state why the other bond can not be made, or is not the preferred bond to make.

The problem with making bond \qquad is:

The problem with making bond \qquad is:

The problem with making bond \qquad is:
\qquad
Question 5 (40 pts.) Show how you would synthesize the target componds on the right from the starting compounds on the left. Show reagents and conditions, and the structures of important intermediate compounds. Do not show any (arrow pushing) mechanisms.
a)

b)

CHEMISTRY 234, Spring 2010 MIDTERM \#1 \qquad
Question 6 (36 pts). READ THIS QUESTION CAREFULLY!
For EACH reaction, give a complete arrow pushing mechanism, and...

1) Show ALL important resonance contributors for all intermediates.
2) Add non-bonding electrons and C-H bonds to the line-angle structures as required.
3) Indicate the Lewis acid/Lewis base (LA, LB) at each step as appropriate, and whether they are also Brønsted acids/bases (LA/BA, LB,BB).
a)

b)

