How Extended High-Frequency Amplification Affects Word Learning in Children

Andrea Pittman, Ph.D.
Arizona State University

Dawna Lewis, M.S.
Brenda Hoover, M.S.
Pat Stelmachowicz, Ph.D.
Boystown National Research Hospital

Funded by grants from NIH-NIDCD
Background

- Combination of two previous studies
 - Bandwidth and perception
 - Word learning and hearing loss

Purpose

- To determine the affect of bandwidth on word learning in normal-hearing and hearing-impaired children
 - Standard bandwidth - 4 kHz
 - Extended bandwidth - 9 kHz
Novel-Word Construction

<table>
<thead>
<tr>
<th>Manner</th>
<th>Bilabial</th>
<th>Labiodental</th>
<th>Dental</th>
<th>Alveola</th>
<th>Post Alveola</th>
<th>Palatal</th>
<th>Velar</th>
<th>Glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosive</td>
<td>p b</td>
<td></td>
<td>t d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k g</td>
</tr>
<tr>
<td>Nasal</td>
<td>m</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>η</td>
</tr>
<tr>
<td>Fricative</td>
<td></td>
<td>f v</td>
<td>θ ō</td>
<td>s z</td>
<td>j ʒ j</td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>Approximate</td>
<td></td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Approximate</td>
<td>w</td>
<td></td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Novel-Word Construction

\[
\begin{align*}
pb & \quad td & \quad kg \\
m & \quad n & \quad \eta \\
f & \quad \Theta \delta & \quad sz & \quad \int & \quad \varsigma & \quad j & \quad h \\
r & \quad j \\
w & \quad l
\end{align*}
\]
Novel-Word Construction

bairil
juæp
dim
θogif
voin
zikin
taiou
huçif
Novel-Word Construction

<table>
<thead>
<tr>
<th>bayrill</th>
<th>vojing</th>
</tr>
</thead>
<tbody>
<tr>
<td>youzzap</td>
<td>zeekin</td>
</tr>
<tr>
<td>deewim</td>
<td>tathus</td>
</tr>
<tr>
<td>thogish</td>
<td>hoochiff</td>
</tr>
<tr>
<td>bayrill</td>
<td>vojing</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>youzzap</td>
<td>zeekin</td>
</tr>
<tr>
<td>deewim</td>
<td>tathus</td>
</tr>
<tr>
<td>thogish</td>
<td>hoochiff</td>
</tr>
</tbody>
</table>
Story Construction
Filtering

- Low-pass filtered the words at 4 & 9 kHz

<table>
<thead>
<tr>
<th>4 kHz</th>
<th>9 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>bayrill</td>
<td>vojing</td>
</tr>
<tr>
<td>youzzap</td>
<td>zeekin</td>
</tr>
<tr>
<td>deewim</td>
<td>tathus</td>
</tr>
<tr>
<td>thogish</td>
<td>hoochiff</td>
</tr>
</tbody>
</table>
Filtering

- Low-pass filtered the words at 4 & 9 kHz
- Created two stories

<table>
<thead>
<tr>
<th>4 kHz</th>
<th>9 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>bayrill</td>
<td>vojing</td>
</tr>
<tr>
<td>youzzap</td>
<td>zeekin</td>
</tr>
<tr>
<td>deewim</td>
<td>tathus</td>
</tr>
<tr>
<td>thogish</td>
<td>hoochiff</td>
</tr>
</tbody>
</table>
Filtering

- Low-pass filtered the words at 4 & 9 kHz
 - Created two stories
 - Presented to separate groups of children

<table>
<thead>
<tr>
<th></th>
<th>4 kHz</th>
<th>9 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story 1</td>
<td>bayrill</td>
<td>vojing</td>
</tr>
<tr>
<td></td>
<td>youzzap</td>
<td>zeekin</td>
</tr>
<tr>
<td></td>
<td>deewim</td>
<td>tathus</td>
</tr>
<tr>
<td></td>
<td>thogish</td>
<td>hoochiff</td>
</tr>
</tbody>
</table>

Group 1: Story 1

Group 2: Story 2
Story Presentation

- Low-pass filtered half the words at 4-kHz and half at 9-kHz
- Each word was presented 3 times
- The 4-minute story was presented twice before testing

Word-learning parameters
- 8 words
- 6 presentations each
- 8 minute period
Participants

- 97 Children between 5- and 14-years-old
 - 60 Normal Hearing (mean age: 9yrs, SD: 2yrs)
 - 37 Hearing Impaired (mean age: 9yrs, SD: 2yrs)
- Estimated receptive vocabulary (PPVT III)
Results

Receptive Vocabulary (PPVT) vs. Age (years) for NH (red) and HI (blue) groups.
Results

The image shows a scatter plot that illustrates the relationship between age (in years) and word learning (% correct) for two groups: NH and HI. The plot uses red dots for NH and blue dots for HI, with fitted lines indicating the trend in word learning across different ages.
Results

Word Learning (% correct)

<table>
<thead>
<tr>
<th>Group</th>
<th>NH</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 kHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word Learning (% correct)

NH | HI

4 kHz | 9 kHz
Results

Normal-Hearing Children

![Graph showing performance of normal-hearing children for 4 kHz and 9 kHz frequencies. The graph displays the percentage of correct word learning for different children grouped by NH and HI.](image)

- VOJING: 4 kHz, 50%; 9 kHz, 60%
- TATHUS: 4 kHz, 30%; 9 kHz, 40%
- DEEWIM: 4 kHz, 40%; 9 kHz, 50%
- HOOCHIFF: 4 kHz, 50%; 9 kHz, 60%
- THOGISH: 4 kHz, 40%; 9 kHz, 50%
- ZEIKIN: 4 kHz, 50%; 9 kHz, 60%
- YOUZAP: 4 kHz, 50%; 9 kHz, 60%
- BAYRILL: 4 kHz, 50%; 9 kHz, 60%
Results

Hearing-Impaired Children

- Word Learning (% correct)

- Performance (% correct)

- Group

- Group:
 - DEEWIM
 - VOJNG
 - HOOCHIFF
 - TATHUS
 - ZEEKIN
 - BAYRILL
 - THOGISH
 - YOUZZAP

- 4 kHz
- 9 kHz

- NH
- HI
Conclusions

- On average, performance improved slightly in the extended bandwidth condition for both groups.

- Both groups demonstrated more consistent word learning in the extended bandwidth condition.

- Consistent word learning was more apparent for the children with hearing loss.
Amplification

- Frequency shaping was calculated for each child using DSL
- Sensation levels were confirmed for each bandwidth condition
Results

![Graph showing the relationship between age (years) and receptive vocabulary (PPVT) for NH and HI participants.]
Background

The effect of stimulus bandwidth on the perception of /s/ in normal- and hearing-impaired children and adults

(Stelmachowicz, Pittman, Hoover, & Lewis 2001)
Background

Novel-word learning in normal-hearing and hearing-impaired children
(Stelmachowicz, Pittman, Lewis, Hoover 2004)