Modeling Impacts of Landuse Practices on Mediterranean Landscapes

Michael Barton & Isaac Ullah

Arizona State University
School of Human Evolution & Social Change
MEDITERRANEAN LANDSCAPE DYNAMICS PROJECT

- NSF ERE Biocomplexity in the Environment Program, grant BCS-0410269
- Develop a modeling laboratory for the long-term recursive dynamics of agropastoral landuse and landscape change

Map of the Mediterranean region & high resolution study area.
Modeling Laboratory

- 3 interlinked modeling environments
 - Potential landscape model
 - Reference landscape chronosequence
 - Agropastoral socioecology model

- Initial state
- Initial state & validation at various stages

- Climate model
- Terrain modeling: multi-yr. steps
- Vegetation modeling: multi-yr. steps
- Potential landscape model
- Reference landscape chronoseq.

- Paleo-vegetation
- Paleo-terrains (DEM's)
- Reference landscape model

- Modern DEM
- Geological data
- Archeological data
- Vegetation edaphic parameters

- Paleo-botanical data
- Agent Modeling
- Settlement & landuse modeling
- Climate model
- Settlement & landuse modeling
- Terrain modeling: multi-yr. steps
- Vegetation modeling: multi-yr. steps
- Agropastoral socioecology model

- Archeological data
- Geological data
- Modern DEM
- Paleo-botanical data
- Agent Modeling
- Settlement & landuse modeling
- Climate model
- Settlement & landuse modeling
- Terrain modeling: multi-yr. steps
- Vegetation modeling: multi-yr. steps
- Agropastoral socioecology model
Surface Process Dynamics

- Landcover
- Topography
- Soils
- Climate
- Landuse
Modeling Overview

- Modeling environment built in GRASS
 - Geographic Resource Analysis Support System
- USPED
 - Unit Stream Power Erosion/Deposition
 - \(ED = \frac{d(T \times \cos a)}{dx} + \frac{d(T \times \sin a)}{dy} \)
 - \(ED \) is net erosion or deposition of sediment
 - \(a \) is topographic aspect
 - \(T \) (sediment transport) is RUSLE value
 - \(T = R \times K \times LS \times C \times P \)
 - where ...
 - \(R \) is the rainfall intensity factor,
 - \(K \) is the soil factor,
 - \(LS \) is the topographic (length-slope) factor,
 - \(C \) is the vegetation/landcover factor
 - \(P \) is the prevention practices factor.
Modeling Inputs

- Human landuse
- Topography
- Rainfall intensity (R-Factor)
- Landcover and erodability (C-Factor)
- Soil and erodability (K-Factor)
Landuse Modeling

✧ Model components
 ✧ Growing agricultural catchments
 ✧ Shifting and non-shifting cultivation
 ✧ Grazing catchment
 ✧ USPED calculation
 ✧ Iterated to simulate cumulative change

✧ Multi-agent simulation (near future)
Landuse Modeling
Topography

- Terra ASTER DEM
- Re-interpolated to 15m resolution
- Ultra-high resolution topography from aerial photograph stereo pairs (near future)
- Study areas defined as watersheds using hydrologic modeling
Rainfall Intensity

- Weather station data retrodicted for 14ky at 200 yr intervals to produce sequences for annual and monthly precipitation, temperature (mean, days >40°, days <0°), and storms.
- Monthly and annual climate sequence models interpolated to create paleoprecipitation surfaces using multiple regression (topography, distance from sea, latitude, etc).
- Transformation to R-Factor surface

![Graph showing annual precipitation over time with station data points.]
Landcover

- Simple estimate of paleovegetation
- Community models based on climate and topography (near future)
- Patch models incorporating successional dynamics (eventually)
- Using NDVI regression to scale vegetation to C-Factor
Soil

- Simple constant currently
- Using remote sensing to calculate K-Factor (near future)
- Dynamically modeling changing soil thickness and erodability (near future)
Surface Process Models

- Intensive horiculture (red cultivated)
- Site-tethered grazing
- Extensive forest grazing

 대하여 Intensive horiculture (red cultivated)
Surface Process Models

- Shifting cultivation (red cultivated, brown fallowed, green forest)
- Site-tethered grazing
- Extensive forest grazing

✧ Shifting cultivation (red cultivated, brown fallowed, green forest)