Strategies to Observe First Light with JWST

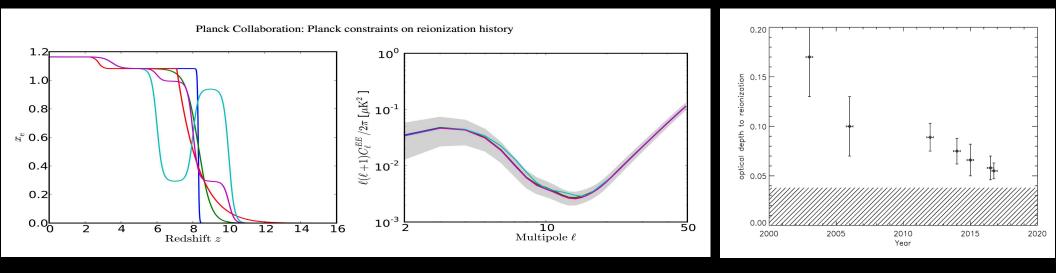
Rogier Windhorst (ASU) — JWST Interdisciplinary Scientist

S. Cohen, R. Jansen (ASU), T. Broadhurst (Spain), B. Frye (UofA), Dan Coe (STScI), C. Conselice (UK), S. Driver, S. Wyithe (OZ), & H. Yan (U-MO) & collaborators.

+ ASU Grads: N. Hathi, H. Kim, M. Mechtley, R. Ryan, M. Rutkowski, B. Smith, & A. Straughn

Outline:

(1) Strategies to Observe First Light with JWST:


• Random medium-deep fields compared to the best lensing targets

(2) Summary and Conclusions.

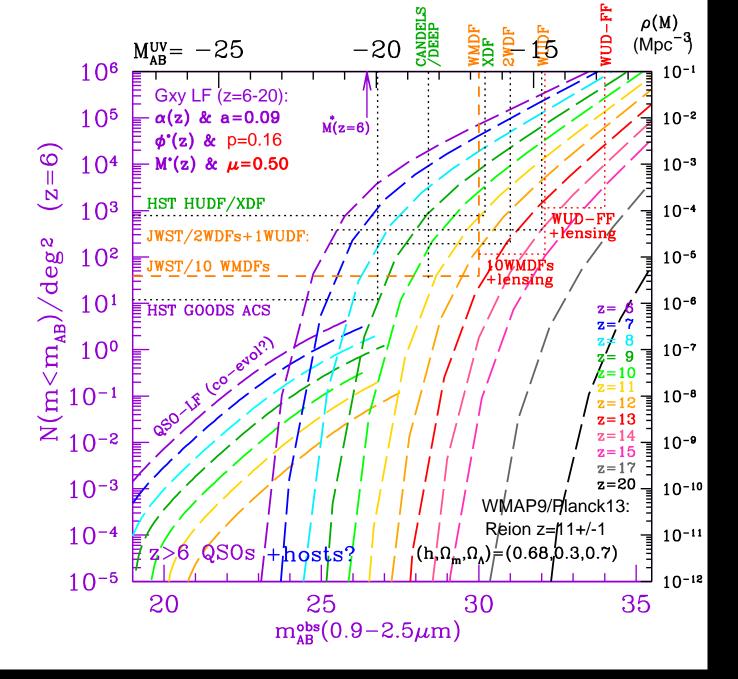
Talk at the JWST GTO Workshop, May 17, 2016; National Research Council, Victoria (BC, Canada).

http://www.asu.edu/clas/hst/www/jwst/jwsttalks/windhorst_firstlight16.pdf

Implications of Planck 2016 results for JWST First Light:

WFC3 $z \gtrsim 7-9 \longleftarrow JWST z \simeq 8-25$

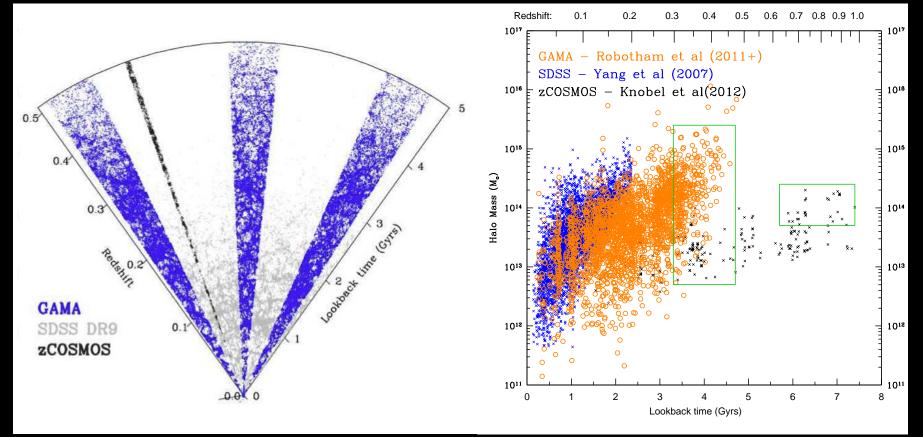
(Courtesy: Dr. Bill Jones).


Planck 2016 data provided better foreground removal (Planck 2016 papers XLVIII & XLVII; astro-ph/1605.02985 & astro-ph/1605.03507):

Reionization appears to have occurred between these extremes:

(1) Instantaneous: $z \sim 8.3 \pm 0.5$ (optical depth $\tau \simeq 0.055 \pm 0.009$; 0.058 ± 0.012)

(2) or Inhomogeneous & drawn out: starting at $z\gtrsim 12$?, peaking at $z\sim 8$, ending at $z\simeq 6-7$. The differences between both are now very small.


• Since Planck 2016's polarization τ has come down considerably ($\tau \simeq 0.055-0.058$), how many reionizers will JWST actually see at $z \simeq 10-15$?

Schechter LF ($z \lesssim 6 \lesssim 20$) with best-fit $\alpha(z)$, $\Phi^*(z)$, $M^*(z)$ & $\mu=0.50$. Area/Sensitivity for: HUDF/XDF, 10 WMDFs, 2 WDFs, & 1 WUDF. • May need lensing targets for JWST to see $z \gtrsim 13$ objects.

HST Frontier Field A2744: JWST needs lensing to see First Light at $z\gtrsim 11-15$.

(3b) Gravitational Lensing to see First Light population at z $\gtrsim\!10$.

Use the best available lenses: Rich clusters and (compact) galaxy groups.

[Left] Redshift surveys: SDSS $z \lesssim 0.25$ (Yang⁺ 2007), GAMA $z \lesssim 0.45$ (Robotham⁺ 2011), and zCOSMOS $z \lesssim 1.0$ (Knobel⁺ 2012).

- GAMA: 22,000 groups $z \lesssim 0.45$; 2400 with N_{spec} $\gtrsim 5$ (Robotham⁺ 11).
- $\lesssim 10\%$ of GAMA groups compact for lensing (Wyithe et al.).
- Large group sample to identify optimal lens-candidates for $z\gtrsim 6$ sources.

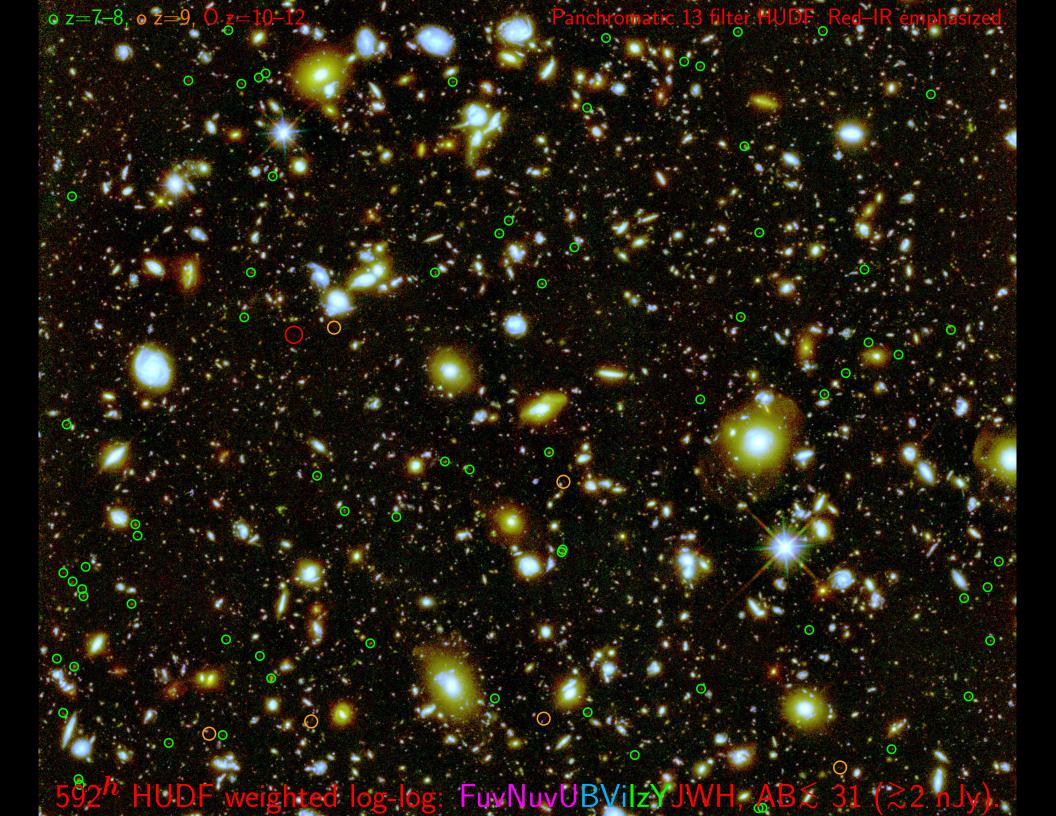
Conclusions re. JWST Medium-Deep Survey for First Light

(1) This IDS GTO team will do a mix of Medium-Deep and Cluster/Group Fields:

• About $\sim 16 \times 4$ -5 hr Webb Medium-Deep Fields to AB $\lesssim 29$ mag.

(2) Determine optimal combination of *random* Webb (Medium) Deep Fields, and fields targeting *the best lensing groups/clusters*.

• Lensing fields need to consider the brightness of — and low-level gradients in — IntraCluster Light (ICL) and low-level out-of-field (rogue-path) straylight, as well as best available cluster/group lensing maps.


SPARE CHARTS

Panchromatic 13 filter HUDF.

of else-color "Balametric" or χ^2 unlige.

6

841 orbits = 592^k HUDF AB 31 mag, Objects affect ~45% of pixelsU

The HST-unique part for JWST:

Panchromatic 13 filter HUDF: UV-Blue emphasized.

592^{*h*} HUDF weighted log-log: FuvNuvUBViIzYJWH, AB \lesssim 28–31 (\gtrsim 2 nJy).