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[The z≃0 periodic table with cosmic abundance included]

• In honor of Henk, I will mostly focus on Hydrogen today —

• Helium only complicates the story,

• and I wanted to ignore all other elements (“dust”), but ...
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(1) How I knew Henk van de Hulst was a hard core Theorist:

• Henk did not do table-top ex-
periments on his desk:

• his desk was always immacu-
lately clean!

• I saw him clean his desk once,

put its last pencil away, and

brush its dust under the table.

• So his desk had no light scattering by large particles (pencils);

• and his desk showed no light scattering by small particles (dust).

• Still, as an observer I was not allowed to brush dust under the table ...
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(1) Other lessons learned about Dust from Henk van de Hulst

• At the end of class, one of us
made an irreverent remark once:

“Surely, at long wavelengths
(scattering by) dust must be ir-
relevant”.

• Henk was not pleased, and I think I heard him say: “ Genesis 3:19 ” .

“... for dust thou art, and unto dust shalt thou return.”

[King James Version]

• Important lesson: While dust may be incomprehensible (to an observer),
it is not ever to be treated frivolously.



(2) Henk and Hubble

• Henk was involved with the HST Faint Object Camera from the very
beginning in the mid 1970’s (see also Johan Bleeker’s talk).

• It is due to his steady leadership that the only fully diffraction limited
camera in Hubble has become such a success. The FOC has:

• f/48: 0′′.043 pix and 22′′ FOV (best pixel-size in Hubble today);

• f/96: 0′′.022 pix and 11′′ FOV;

• f/288: 0′′.0072 pix and 3′′.6 FOV.



(2) Henk and Hubble

Henk was most pleased to see the main science results from Hubble’s
(aberration-corrected) full-resolution FOC in January 1994.



(2) Henk and Hubble

• In June 1993, the HST Project doubted
that they could fund future HST instru-
ments (NICMOS, STIS, ACS) after SM1.

• The HST Users Committee was tasked
by Ed Weiler at NASA HQ to review the
HST Project budget for FY94-FY00.

• We asked Henk van de Hulst to sit on
the panel, and go through 1000 (paper)
PPT charts in one week in Jan. 1994.

• Henk sat through the review mostly
silently, but summarized it extremely well
in the end: “Hubble is the best science
project mankind has ever done — it costs
what it cost; one cannot argue with suc-
cess. The rest is history.



(3) Hubble, HI and Dust

Made possible 15 years after Henk’s 1994 HST budget review: HST WFC3’s UV-optical and near-IR SF “pillar” in Carina.



Henk would have really liked this one — light scattering in action:

30 Doradus star-cluster in LMC (150 kly), triggering birth of Sun-like stars.

(3) Hubble, HI and Dust
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(4) The James Webb Space Telescope and Dust

Inspired by Henk: We kept JWST’s mirrors free of dust! (see also M. Meixner’s talk)



(5) First Light, First Dust?

Two Reionization/First Light constraints remain seemingly at odds:

[LEFT 2]: Planck 2018 VI (astro-ph/1807.06209v1): • Cosmic Background
polarization τ≃0.054±0.007 ⇒ zreion≃7.7±0.7 (age 670 Myr).

[RIGHT]: Bowman et al. EDGES result (2018, Nature, 555, 67):

• Possible global 78 MHz HI-signal at z≃17±2 (age 225 Myr).

• How can we reconcile this in context of the First Stars?

• What does this mean for First Dust, and the first (BH) binary stars?



592 hrs in 13 filters: FuvNuvUBViiIzYJWH <
∼31 mag (1 fire-fly from Moon).

One of Hubble’s very best: Panchromatic 13 filter Hubble UltraDeep Field: UV–Blue emphasized.



592 hrs in 13 filters: FuvNuvUBViIzYJWH <
∼31 mag (1 fire-fly from Moon).

o z=7–8, o z=9, O z=10–12. Panchromatic 13 filter Hubble UltraDeep Field: Red–IR emphasized.



Reaches 31 mag (1 fire-fly from Moon); Objects cover 45% of all pixels!

Panchromatic Hubble UltraDeep Field: False-color stack of all 13 filters.



Anticipated cosmic star-formation rate (SFR) at z>∼7:

[LEFT] Observed (e.g., Madau & Dickinson; 2014 ARAA, 52, 415);

[RIGHT] RAMSES models (e.g., Sarmento et al. 2018, ApJ, 854 75).

⇒ Adopt this SFR from z≃17 to z≃7, implying at the lowest masses:

• Metallicity increases from ∼0 at z≃18 to <
∼10−3 solar at z≃7.



(5) First Light, First Dust?

[LEFT] Object-free Spitzer 3.6 µm power-spectrum constrains noise fluc-
tuation models (Cappelluti et al. 2017; Kashlinsky et al. 2012, 2015, 2018):

Explainable by: Primordial black hole or Direct-collapse black hole models.

[RIGHT] Spitzer–Chandra cross-corr spectrum (Mitchell-Wynne et al. 2016):

• Objects at z>∼7 have sky-brightness fainter than 31 mag/arcs2 (one fire-
fly from Moon), plus likely a (stellar mass) black hole X-ray component.
(Kashlinsky+ 2018; Windhorst+ 2018, ApJ, 234, 41).
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Light (Driver+ 16; Windhorst+ 18):

Energy(dust) ≃ 52% &
energy(cosmic SF)≃48%
of EBL ⇒ dust wins!

Diffuse 1–4µm sky <
∼0.1 nW/m2/sr

or SB(K)>∼31 mag/arcsec2:

• 1) possibly from Pop III stars at

z≃7–17, and/or

• 2) their stellar-mass BH accretion

disks (z≃7–8).

This can make Pop III stars or their BH accretion disks temporarily visible
to JWST & ground-based 30 meter telescopes at AB<

∼28–29 mag.

• Requires using the best lensing clusters and monitoring caustic transits.



Need clusters with minimal ICL and microlensing near the critical curves.

HFF A2744: need cluster caustic transits to see Pop III objects.



(5) HST observations of a B-star caustic transit at z≃1.49

Kelley et al. 2018 (Nat. Astr. 2, 334): caustic transit of a B-star at z≃1.49.



First Stars (“Pop III”) HR-diagram: MESA stellar evolution models for zero
metallicity (Windhorst, Timmes, Wyithe et al. 2018, ApJS, 234, 41):

• 30–1000 M⊙ Pop III stars live ∼10× shorter than 2–5 M⊙ Pop III
stars in their Giant Branch stage.

• Hence, 2–5 M⊙ AGB companion stars can feed the LIGO-mass BHs left
over from M>

∼30 M⊙ Pop III stars (assuming binaries in 2nd generation).



Conclusions — The impact of Henk van de Hulst and Hubble

• Henk was essential to get Hubble going and to keep it alive: Without
Henk and the FOC, HST would not have been the miracle that it is today.

• Hubble has traced cosmic star-formation from the first Gyr until today.

• Hubble+Spitzer+Herschel’s EBL: Cosmic Dust outshines Cosmic SF!

• Hubble+Spitzer+Chandra: Diffuse EBL component from BHs at z>∼7?

• HST has seen individual B-stars through cluster caustic transits at z>∼1.5.

• First stars produce first dust ⇒ 2nd generation massive stars in binaries?

• JWST and ground-based 30 m telescopes can detect both Pop III stars
and their stellar-mass BH (M>

∼20 M⊙) accretion disks at AB<
∼28-29 mag

via caustic transits if magnifications µ≃104–105.

• Stellar-mass BH accretion disks may dominate caustic transits at z>∼7.



SPARE CHARTS



(5) Possible caustic transits from Pop III stars and their BH accretion disks.

Windhorst+ (2018, ApJS, 234, 41): JWST and 25–39 m ground-based
telescopes may detect Pop III stars and their stellar-mass BH accretion
disks directly to AB<

∼28–29 mag via caustic transits in the right clusters.
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For source at z=10, critical curves for HFF cluster MACS 1149 at z≃0.54
[LEFT], and main cluster caustics [in the source plane; RIGHT].

• Transverse cluster (sub-component) velocities can be vT
<
∼1000 km/s

(Kelly+ 2018; Nature Astr. 2, 334; Windhorst+ 2018, ApJS, 234, 41).

• Main caustic magnification µ≃10 (dcaustic/”)
−1/2. For Pop III ob-

jects at z>∼7 with 1–30 R⊙, µ can then be >
∼104–105 for <

∼0.4 year.

• Must use clusters with minimal ICL near the critical curves, since ICL
microlensing dilutes the main caustics (Diego+ 2018, ApJ, 857, 25).



Kelley et al. 2018 (Nat. Astr. 2, 334): caustic transit of a B-star at z≃1.49.

Diego+ 2018 (ApJ, 857, 25): caustic transits in the presence of microlensing.
See also Miralda-Escudé (1991), Venumadhav et al. (2017, ApJ, 850, 49).
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Windhorst+ (2018, ApJS, 234, 41):

• Multicolor accretion-disk models for stellar-mass black holes [RIGHT]:
For MBH ≃5–700 M⊙, accretion disks radii and luminosities are similar
to those of Pop III AGB stars, when the BH is fed by a Roche lobe-filling
lower-mass companion star on the AGB (which live >

∼10× longer).

• Assumes 2nd generation O-stars have high enough Fe/H (>∼10−4 Z⊙)
that 2–5 M⊙ AGB companion stars exist and feed these LIGO-mass BHs.

• This may make stellar-mass black hole accretion disks at z>∼7 at least as
likely to be seen via caustic transits as the Pop III stars themselves.



HST

[LEFT] HST UV-vis filters complement the JWST NEP community field:

• HST adds λ’s inaccessible to JWST, or where HST has better PSF.

[RIGHT] Standard 8-band 0.8–5 µm filter set for JWST NIRCam.

• These are what GTO’s will use as standard NIRCam filters.



Mass–Luminosity relation for zero metallicity Pop III MESA models:

For a range of IMF slopes, most Pop III star sky-SB comes from 20–300 M⊙.



Windhorst, Timmes, Wyithe et al. (2018, ApJS, 234, 41):

• 30–1000 M⊙ Pop III stars (Z=0.0 Z⊙) live ∼10× shorter than 2–5
M⊙ Pop III stars in their AGB stage.

• Hence, 2–5 M⊙ AGB companion stars can feed the LIGO-mass BHs left
over from M>

∼30 M⊙ Pop III stars (assuming binaries in 2nd generation).



• If M>
∼30 M⊙ Pop III ZAMS stars have µ>

∼104–105 during caustic
transits, they could be detectable for months to AB<

∼29 mag with JWST.

• Expect <
∼1 caustic transit/yr at z>∼7 when JWST monitors >

∼3 clusters.
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