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Outline

• (1) Brief Update on the James Webb Space Telescope (JWST), 2014.

• (2) What HST WFC3 has done: Measuring Galaxy Assembly and Su-
permassive Black-Hole Growth, including z≃6 QSO Host System Detection

• (3) How can JWST measure the Epochs of First Light & Galaxy As-
sembly, and Supermassive Black-Hole Growth?

• (4) Summary and Conclusions.

Sponsored by NASA/HST & JWST

Thank you, Europe & ESA, for your very significant work on JWST!

Talk is on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/paris14hstjwst.pdf

 http://www.asu.edu/clas/hst/www/jwst/jwsttalks/paris14hstjwst.pdf 


Edwin P. Hubble (1889–1953) — Carnegie astronomer James E. Webb (1906–1992) — Second NASA Administrator

Hubble: Concept in 1970’s; Made in 1980’s; Operational 1990–>
∼2014.

JWST: The infrared sequel to Hubble from 2018–2023 (–2029?).



JWST ≃2.5× larger than Hubble, so at ∼2.5× larger wavelengths:

JWST has the same resolution in the near-IR as Hubble in the optical.



JWST is the perfect near–mid-IR sequel to HST and Spitzer:

• Vastly larger A(×Ω) than HST in UV-optical and Spitzer in mid-IR.



(1) Brief Update of the James Webb Space Telescope (JWST).

To be used by students & scientists after 2018 ... It’ll be worth it.

(RIGHT) Life-size JWST prototype on the Capitol Mall, May 2007.



(1) Brief Update of the James Webb Space Telescope

• A fully deployable 6.5 meter (25 m2) segmented IR telescope for imaging
and spectroscopy at 0.6–28 µm wavelength, to be launched in Fall 2018.

• Nested array of sun-shields to keep its ambient temperature at 40 K,
allowing faint imaging (AB=31.5 mag) and spectroscopy.



• The JWST launch weight will be <
∼6500 kg, and it will be launched to

L2 with an ESA Ariane-V launch vehicle from Kourou in French Guiana.



(1a) How will JWST travel to its L2 orbit?

• After launch in (Oct.) 2018 with an ESA Ariane-V, JWST will orbit
around the Earth–Sun Lagrange point L2, 1.5 million km from Earth.

• JWST can cover the whole sky in segments that move along with the
Earth, observe >

∼70% of the time, and send data back to Earth every day.



• (1b) How will JWST be automatically deployed?

• During its two month journey to L2, JWST will be automatically de-
ployed, its instruments will be cooled, and be inserted into an L2 orbit.

• The entire JWST deployment sequence is being tested several times on
the ground — but only in 1-G: component and system tests in 2014–2016
at GSFC (MD), Northrop (CA), and JSC (Houston).

• Component fabrication, testing, & system integration is on schedule: 18
out of 18 flight mirrors completely done, and meet the 40K specifications.



Active mirror segment support through “hexapods”, similar to Keck.

Redundant & doubly-redundant mechanisms, quite forgiving against failures.



July 2014: >
∼97.4% of launch mass designed and built (>

∼60% weighed).









Spring 2014: All 18 flight mirrors now delivered to NASA GSFC (MD).



July 2014: Secondary Mirror Support deployment successfully tested.



‹#›

Sunshield Deployment

July 2014: Engineering sunshield successfully deployed at Northrop (CA).



(1c) JWST instrument update: US (UofA, JPL), ESA, & CSA.

All delivered: MIRI 05/12; FGS 07/12; NIRCam 07/13, NIRSpec 9/13.



• JWST hardware made in 27 US States: >
∼97.4% of launch-mass finished.

• Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.

• JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.

• JWST NIRCam made by UofA and Lockheed.

Thank you, Europe & ESA, for your very significant work on JWST!



JWST’s short-wavelength (0.6–5.0µm) imagers:

• NIRCam — built by UofA (AZ) and Lockheed (CA).

• Fine Guidance Sensor (& 1–5 µm grisms) — built by CSA (Montreal).

• FGS includes very powerful low-res Near-IR grism spectrograph (NIRISS).

• FGS delivered to GSFC 07/12; NIRCam delivered July 28, 2013.



JWST’s short-wavelength (0.6–5.0µm) spectrograph:

• NIRSpec — built by ESA/ESTEC and Astrium (Munich).

• Flight build completed and tested with First Light in Spring 2011.

NIRSpec delivered to NASA/GSFC in Sept. 2013.





JWST’s mid-infrared (5–29µm) camera and spectrograph:

• MIRI — built by ESA consortium of 10 ESA countries & NASA JPL.

• Flight build completed and tested with First Light in July 2011.

MIRI delivered to NASA/GSFC in May 2012.



June 2014: Actual Flight ISIM (with all 4 instruments) lowered into OSIM.



2014–2016: Complete system integration at GSFC and Northrop.



‹#›

Space Vehicle Thermal Simulator  
(SVTS) 

and Sunshield Simulator 
Passed design review and started  

Procurements and fab subcontratcs 

OTIS Test GSE Architecture and Subsystems

Center of Curvature Optical Assembly (COCOA)  
• Multiwavelength interferometer (MWIF), null, calibration 

equipment, coarse/fine PM phasing tools, Displacement 
Measuring Interferometer – COCOA was exercised at 
MSFC in December 

3 Auto collimating Flat Mirrors (ACFs) 
1.5 M  Plano for Pass and Half Testing 

Cryo testing underway, ACF 1 complete, ACF 4 in 
Cryo test complete , ACF 5 ready for Cryo. 

Cryo Position Metrology (CPM) 
Photogrammetry System 

Integration Complete


 Chamber Isolator  Units 
Dynamically isolates OTIS Optical Test 

– Integration 6 units complete

AOS Source Plate 
Sources for Pass and Half Test 
72 optical fiber support cont. 

Deep Space Edge Radiation Sink  (DSERS) 

Thermal modeling of payload and DSERS  

started

MSFC-XRCF

ADM - new Leica 
delivered and under 
test

Mag Damper Cryo 
Test 

 Article  
Fabrication started

USF Structural Frame – supports Metrology  
 ready for chamber integration and Cryo Load tests

HOSS – OTIS support structure 
HOSS – will be in the chamber for Bake out  in June

World’s largest TV chamber OTIS: will test whole JWST in 2016–2017.



(2) How can JWST measure Galaxy Assembly and SMBH/AGN Growth?

10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10-σ)
over 40 arcmin2 at 0.07–0.15” FWHM from 0.2–1.7µm (UVUBVizYJH).

JWST adds 0.05–0.2” FWHM imaging to AB≃31.5 mag (1 nJy) at 1–
5µm, and 0.2–1.2” FWHM at 5–29µm, tracing young+old SEDs & dust.



(2a) WFC3: Hubble’s new Panchromatic High-Throughput Camera

HST WFC3 and its IR channel: a critical pathfinder for JWST science.



WFC3/UVIS channel unprecedented UV–blue throughput & areal coverage:

• QE>
∼70%, 4k×4k array of 0′′.04 pixel, FOV ≃ 2′.67 × 2′.67.

WFC3/IR channel unprecedented near–IR throughput & areal coverage:

• QE>
∼70%, 1k×1k array of 0′′.13 pixel, FOV ≃ 2′.25 ×2′.25.

⇒ WFC3 opened major new parameter space for astrophysics in 2009:

WFC3 filters designed for star-formation and galaxy assembly at z≃1–8.

• HST WFC3 and its IR channel a critical pathfinder for JWST science.





[Left] CSIRO/ATNF 1.4 GHz image of Cen A (Feain+ 2009).

Fermi GeV source (Yang+ 12); & Auger UHE Cosmic Rays (Abreu+ 2010).

[Middle] SF in Cent A jet’s wake (Crockett+ 2012, MNRAS, 421, 1602).

[Right] Well determined ages for young (∼2 Myr) stars near Cen A’s jet.

• JWST will trace older stellar pops and SF in much dustier environments.

• We must do all we can with HST in the UV–blue before JWST flies.



In what follows,
remember that objects
emitting two-sided
and equally bright
relativistic jets
may look different,

depending, e.g. on
viewing angle, dust,
and scattering proper-
ties of the medium.

(See also Peter
Biermann’s talk).



(2b) HST WFC3 observations of QSO host systems at z≃6 (age<
∼1 Gyr)

• Careful contemporaneous orbital PSF-star subtraction: Removes most of
“OTA spacecraft breathing” effects (Mechtley ea 2012, ApJL, 756, L38).

• PSF-star (AB≃15 mag) subtracts z=6.42 QSO (AB≃18.5) nearly to the
noise limit: NO host galaxy detected 100×fainter (AB>

∼23.5 at r>
∼0′′.3).



(2b) WFC3: Detection of one QSO Host System at z≃6 (Giant merger?)

• Monte Carlo Markov-Chain of observed PSF-star + Sersic ML light-
profile. Gemini AO images to pre-select PSF stars (Mechtley+ 2014).

• First detection out of four z≃6 QSOs [2 more to be observed].

• One z≃6 QSO host galaxy: Giant merger morphology + tidal structure??

• Same J+H structure! Blue UV-SED colors: (J–H)≃0.19, constrains dust.

• IRAS starburst-like SED from rest-frame UV–far-IR, AFUV∼1 mag.

• Mhost
AB (z≃6)<

∼–23.0 mag, i.e., ∼2 mag brighter than L∗(z≃6)!

⇒ z≃6 QSO duty cycle <
∼10−2 (<

∼10 Myrs); 1/4 QSO’s close to Magorrian.



(2b) HST WFC3 observations of dusty QSO host galaxies at z≃6
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• Blue dots: z≃6 QSO SED, Grey: Average radio-quiet SDSS QSO spec-
trum at z>

∼1 (normalized at 0.5µ). Red: z≃6 host galaxy (WFC3+submm).

• Nearby fiducial galaxies (starburst ages<
∼1 Gyr) normalized at 100µm:

[LEFT] Rules out z=6.42 spiral or bluer host galaxy SEDs for 1148+5251.

(U)LIRGs & Arp 220s permitted (Mechtley et al. 2012, ApJL, 756, L38).

[RIGHT] Detected QSO host has IRAS starburst-like SED from rest-frame
UV–far-IR, AFUV (host)∼1 mag (Mechtley 2013 PhD; et al. 2014).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



(2b) WFC3 observations of QSO host galaxies at z≃2 (evidence for mergers?)
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• Monte Carlo Markov-Chain runs of observed PSF-star + Sersic ML
light-profile models: merging neighbors (some with tidal tails?; Mechtley,
Jahnke, MPI, Koekemoer, Windhorst et al. 2014).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



WFC3 ERS 10-band redshift estimates accurate to <
∼4% with small sys-

tematic errors (Hathi et al. 2010, 2013), resulting in a reliable N(z).

• Measure masses of faint galaxies to AB=26.5 mag, tracing the process
of galaxy assembly: downsizing, merging, (& weak AGN growth?).

⇒ Median redshift in (medium-)deep fields is zmed ≃1.5–2.

For WFC3’s panchromatic capabilities at z≃0–7, see Chris Conselice’s talk.

• HUDF shows WFC3 z≃7–9 capabilities (Bouwens+ 2010; Yan+ 2010).

• JWST will trace mass assembly and dust content <
∼5 mag deeper from

z≃1–12, with nanoJy sensitivity from 0.7–5µm.



(3) How will JWST Observe First Light and Reionization?

• Detailed Hydrody-
namical models (e.g., V.
Bromm) suggest that
massive Pop III stars may
have reionized universe at
redshifts z<

∼10–30 (First
Light).

• A this should be visi-
ble to JWST as the first
Pop III stars and surround-
ing (Pop II.5) star clus-
ters, and perhaps their ex-
tremely luminous super-
novae at z≃10→30.

We must make sure we theoretically understand the likely Pop III mass-
range, their IMF, their duplicity and clustering properties, their SN-rates,
etc., with accurate predictions before JWST flies [See F. Mirabel’s talk].



Implications of the WMAP year-9 & Planck13 results for JWST science:

HST/WFC3 z<
∼7–9←− −→ JWST z≃8–25

The year-9 WMAP data provided better foreground removal (Komatsu+

2011; Hinshaw+ 2012; Planck XVI 2013; see also A. Lasenby’s talk):

=⇒ First Light & Reionization occurred between these extremes:

• (1) Instantaneous at z≃11.1±1.1 (τ=0.089±0.013), or:

• (2) Inhomogeneous & drawn out: starting at z>
∼20, peaking at z<

∼11,
ending at z≃7. The implications for HST and JWST are:

• HST/ACS has covered z<
∼6, and WFC3 is covering z<

∼7–9.

• For First Light & Reionization, JWST will survey z≃8 to z≃15–20.

Question: If Planck-τ ↓ <
∼0.08 (TBD, Planck14), then how many reionizers

will JWST see at z≃10–20?



3) How will Webb measure First Light: What to expect in (Ultra)Deep Fields?

• Can’t beat redshift: to see First Light, must observe near–mid IR.

⇒ This is why JWST needs NIRCam at 0.8–5 µm and MIRI at 5–28 µm.



841 orbits = 592h HUDF: AB<
∼31 mag; Objects affect ∼45% of pixels!!

Panchromatic 13 filter HUDF: False-color “Bolometric” or χ2 image.



592h HUDF weighted log-log: FuvNuvUBViIzYJWH, AB<
∼ 31 (>

∼2 nJy).

o z=7–8, o z=9, O z=10–12. Panchromatic 13 filter HUDF: Red–IR emphasized.



592h HUDF weighted log-log: FuvNuvUBViIzYJWH, AB<
∼28–31 (>

∼2 nJy).

The HST-unique part for JWST: Panchromatic 13 filter HUDF: UV–Blue emphasized.



HUDF WFC3 IR Galaxy Counts: What to expect in its (Ultra)Deep Fields?

?

1.6µm counts (Windhorst+2011). [F150W, F225W, F275W, F336W, F435W, F606W, F775W, F850LP, F105W, F125W, F140W not shown].

• Faint-end near-IR count-slope≃0.12±0.02 dex/mag⇐⇒

Faint-end LF-slope(zmed ≃1.6) α≃–1.4⇒ reach MAB≃–14 mag.

• WUDF (- - -) can see AB<
∼32 objects: MAB ≃–15 (LMCs) at z≃11.

• Lensing will change the landscape for JWST observing strategies (WUDFF).
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Evolution of Schechter UV-LF: faint-end LF-slope α(z), Φ∗ (z) & M∗ (z):

• For JWST z>
∼8, expect α<

∼–2.0; Φ∗ <
∼10−3 (Mpc−3) (Oesch+ 11).

• HUDF: Characteristic M∗ may drop below –18 or –17.5 mag at z>
∼10.

⇒ Will have significant consequences for JWST survey strategy.



WMAP9/Planck13:
Reion z=11+/-1

Gxy LF (z=6-20): 

(Mpc   )

Schechter LF (z<
∼6<
∼20) with α(z), Φ∗ (z), M∗ (z) above & µ=0.70.

Area/Sensitivity for: HUDF/XDF, 10 WMDFs, 2 WDFs, & 1 WUDF.

• Will need lensing targets for WMDF–WUDFF to see z≃14–16 objects.



WMAP9/Planck13:
Reion z=11+/-1

Gxy LF (z=6-20): 

(Mpc   )

Same as before, but pessimistic M∗ (z) evolution parameter: µ=1.0.

• If so, JWST surveys would need lensing to see most >
∼11 objects.

• Add z≃6 QSO host galaxy limits (or fluxes) by Mechtley+ (2012, 2013).



HST Frontier Field A2744: JWST needs lensing to see First Light at z>
∼11–15.



0 1 2 3 4 5 6 7 8

Lookback time (Gyrs)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Redshift:

What are the best lenses in 2018: Rich clusters or (compact) galaxy groups?

[Left] Redshift surveys: SDSS z<
∼0.25 (Yang+ 2007), GAMA z<

∼0.45

(Robotham+ 2011), and zCOSMOS z<
∼1.0 (Knobel+ 2012).

• GAMA: 22,000 groups z<
∼0.45; 2400 with Nspec

>
∼5 (Robotham+ 11).

• <
∼10% of GAMA groups compact for lensing (Konstantopoulos+ 13).

• Large group sample to identify optimal lens-candidates for z>
∼6 sources.

(3b) Gravitational Lensing to see First Light population at z>
∼10.



GAMA group mass versus concentration assuming NFW DM halo profiles.

Contours = Nr of expected lensed sources (∆z=1; Barone-Nugent+ 13).

• 10 WMDFs on best GAMA groups add∼50–100 z≃6–15 sources (AB<
∼30).

• Also get >
∼10× more (>

∼500) lensed sources at ≃2–15.

WUDFF if pointed at clusters adds ∼6×more (>
∼3000) sources at 6<

∼z<
∼15.



Two fundamental limitations may determine ultimate JWST image depth:

(1) Cannot-see-the-forest-for-the-trees effect [Natural Confusion limit]:

Background objects blend into foreground because of their own diameter
⇒ Need multi-λ deblending algorithms.

(2) House-of-mirrors effect [“Gravitational Confusion”]: Most First Light
objects at z>

∼12–14 may need to be found by cluster or group lensing.

⇒ Need multi-λ object-finder that works on sloped backgrounds.

⇒ If M∗(z>
∼10)>

∼–18, need to use & model gravitational foreground.



(4) Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

• Most z≃6 QSO host galaxies faint (dusty?), with 1 exception: L>>L∗.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

Management replan in 2010-2011. No technical showstoppers thus far:

• More than 97% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail. JWST will determine:

• Formation and evolution of the first star-clusters after 0.2 Gyr.

• How dwarf galaxies formed and reionized the Universe after 1 Gyr.

(4) JWST will have a major impact on astrophysics this decade:

• IR sequel to HST after 2018: Training the next generation researchers.

• JWST will define the next frontier to explore: the Dark Ages at z>
∼20.



SPARE CHARTS



• References and other sources of material shown:

http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool]

http://www.asu.edu/clas/hst/www/ahah/ [Hubble at Hyperspeed Java–tool]

http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/ [Clickable HUDF map]

http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/

http://ircamera.as.arizona.edu/nircam/

http://ircamera.as.arizona.edu/MIRI/

http://www.stsci.edu/jwst/instruments/nirspec/

http://www.stsci.edu/jwst/instruments/fgs

Gardner, J. P., et al. 2006, Space Science Reviews, 123, 485–606

Mather, J., & Stockman, H. 2000, Proc. SPIE Vol. 4013, 2

Windhorst, R., et al. 2008, Advances in Space Research, 41, 1965

Windhorst, R., et al., 2011, ApJS, 193, 27 (astro-ph/1005.2776).

http://www.asu.edu/clas/hst/www/jwst/
http://www.asu.edu/clas/hst/www/ahah/
http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/
http://www.jwst.nasa.gov/
http://www.stsci.edu/jwst/
http://ircamera.as.arizona.edu/nircam/
http://ircamera.as.arizona.edu/MIRI/
http://www.stsci.edu/jwst/instruments/nirspec/
http://www.stsci.edu/jwst/instruments/fgs


Any (space) mission is a balance between what science demands, what
technology can do, and what budget & schedule allows ... (courtesy Prof. R. Ellis).





JWST underwent several significant replans and risk-reduction schemes:

• <
∼2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.

• 2005: Eliminate costly 0.7-1.0 µm performance specs (kept 2.0 µm).

• 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.

• 2006: All critical technology at Technical Readiness Level 6 (TRL-6).

• 2007: Further simplification of sun-shield and end-to-end testing.

• 2008: Passes Mission Preliminary Design & Non-advocate Reviews.

• 2010, 2011: Passes Mission Critical Design Review: Replan Int. & Testing.



Milestones: How the Project reports its progress monthly to Congress.



7 out of 10 FY14 milestones late by 1 month due to Government shutdown.

None of these are on the critical path, so caused no launch delay.



2014: Flight back-plane ready to receive mirrors starting in Aug. 2014.



Flight sunshield to be completed & tested by 2015 at Northrop (CA).





Hubble’s WFPC2 returned to Smithsonian in 2009: Results from 16 years
of micro-meteorite hits ... (holes drilled in shield for sample analysis).



Summary of 21 years of HST WFPC2, ACS and WFC3 Zodi measurements:

• Ecliptic distribution of 43,571 ACS/WFC and WFC3/UVIS+IR targets
as of Spring 2014: Use to measure Zodi sky SB(lEcl , bEcl ).

• WFPC2 Zodi measurements on next pages (Jansen et al. 2014).

This analysis will help address micro-meteorite hit-rate for JWST in L2,
which could be substantial (see Gerry Gilmore’s GAIA talk).



Measuring the Zodi modal sky-SB for all HST WFPC2 targets over 16.3
years in orbit, rejecting those where target overfills FOV.
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[LEFT]: Measured Zodi sky-SB(bEcl ) in HST V555/V606 and I814.

[RIGHT]: Constrains KBO sky-integral at >
∼40 AU (Kenyon & Windhorst,

2001, ApJL, 547, L69) beyond AB∼29 (where it is measured):

To avoid Olbers paradox, KBO size distribution must have N(r) ∝ r−α,
with α<

∼3.3 at AB>
∼29 mag (due to solar system collisional history).

If L2 meteoroid size distribution same as in Kuiper belt (also have α<
∼3.3

to avoid Olbers paradox!), then L2 meteoroid impact rate predictable.



July 2014: OTIS — World’s largest TV chamber readied to test JWST.



JWST’s Wave Front Sensing and Control is similar to the Keck telescope.

In L2, need WFS updates every 10 days depending on scheduling/illumination.



Wave-Front Sensing tested hands-off at 40 K in 1-G at JSC in 2015-2016.

Ball 1/6 scale-model for WFS: produces diffraction-limited 2.0 µm images.



JWST can observe North/South Ecliptic pole targets continuously:

• 1000-hr JWST projects swap back/forth between NEP/SEP targets.

• They will rely a lot on Rockwell Collins’ (Heidelberg) reaction wheels.



• (3c) What instruments will JWST have?

All JWST instruments can in principle be used in parallel observing mode:

• Currently only being implemented for parallel calibrations.



N(z~11, AB<30 mag)  [~4x2h JWST] N(z~11, AB<31 mag)  [~4x25h JWST] N(z~11, AB<32 mag)  [~4x150h JWST]

What do the 6 possible z≃9 and single z>
∼10 HUDF candidate mean?

Integrate Schechter LFs with α(z), Φ∗ (z) and M∗ (z): <
∼45% sky-

coverage by AB<
∼30 objects (Koekemoer+13). Cosmic Variance >

∼30%.

For any α(z>
∼9–10), implies M∗ (z>

∼10)>
∼–17.5 mag (fainter!), so plan:

• (1) [Left] Webb “Medium-Deep” Fields (WMDF) (10×4×2h RAW):
Expect few z≃10–12 objects to AB<

∼30 mag, so plan lensing targets.

• (2) [Middle] Webb Deep Field (WDF) (4×25h 7-filt NIRCam GTO):
Expect 8–25 objects at z≃10–12 to AB<

∼31 mag.

• (3) [Right] Webb UltraDeep Field (WUDF) (4×150h; NIRCam DD?]:
Expect 30–90 objects to AB<

∼32 mag, many more if lensing targets.



HST/WFC3 G102 & G141 grism spectra in GOODS-S ERS (Straughn+ 2010)

IR grism spectra from space: unprecedented new opportunities in astrophysics.

• JWST will provide near-IR grism spectra to AB<
∼29 mag from 2–5.0 µm.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15

• The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

• (1) Most spiral disks will
dim away at high redshift,
but most formed at z<

∼1–2.

Visible to JWST at very high
z are:

• (2) Compact star-forming
objects (dwarf galaxies).

• (3) Point sources (QSOs).

• (4) Compact mergers &
train-wrecks.
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Violet lines are gxy
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sets in for faintest
surveys (AB>

∼25).
Will update for JWST.


