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Outline

• (1) Brief Update of the James Webb Space Telescope (JWST)

• (2) How can JWST measure the Epochs of First Light & Galaxy As-
sembly, and Supermassive Black-Hole Growth?

— in the context of what Hubble Wide Field Camera 3 (WFC3) has done:
including the first z≃6 QSO host galaxy detections this month ...

• (3) Summary and Conclusions.

Sponsored by NASA/HST & JWST

Full 1-hr talks this trip: Canberra (June 27), Macquarie (July 4), Uluru (July 18), U. Melbourne (July 22), Perth (July 25),

and Sydney (Uni July 30; AAO July 30; CSIRO July 31) — see the URL’s in the Spare Charts/References).



(1) Brief Update of the James Webb Space Telescope

• A fully deployable 6.5 meter (25 m2) segmented IR telescope for imaging
and spectroscopy at 0.6–28 µm wavelength, to be launched in Fall 2018.

• Nested array of sun-shields to keep its ambient temperature at 40 K,
allowing faint imaging (AB=31.5 mag) and spectroscopy.



JWST is the perfect near–mid-IR sequel to HST and Spitzer:

• Vastly larger A(×Ω) than HST in UV-optical and Spitzer in mid-IR.
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Sunshield

   Template membrane build to flight-like requirements for verification of:

"  Shape under tension to verify gradients and light line locations

"  Hole punching & hole alignment for membrane restraint devices (MRD)

"  Verification of folding/packing concept on full scale mockup

"  Layer 3 shape measurements completed

$Layer-3 template membrane 
under tension for 3-D shape 
measurements at Mantech 

Full-scale JWST mockup with 
sunshield pallette %
    &



(1b) JWST instruments update: US (UofA, JPL), ESA, & CSA.

JWST’s short-wavelength (0.6–5.0µm) imagers:

• NIRCam — built by UofA (AZ) and Lockheed (CA).

• Fine Guidance Sensor (& 1–5 µm grisms) — built by CSA (Montreal).

• FGS includes very powerful low-res Near-IR grism spectrograph (NIRISS).

• FGS delivered to GSFC 07/12; NIRCam scheduled for Fall 2013.



JWST’s short-wavelength (0.6–5.0µm) spectrograph:

• NIRSpec — built by ESA/ESTEC and Astrium (Munich).

• Flight build completed and tested with First Light in Spring 2011.

NIRSpec delivery to NASA/GSFC scheduled for Fall 2013.



JWST’s mid-infrared (5–29µm) camera and spectrograph:

• MIRI — built by ESA consortium of 10 ESA countries & NASA JPL.

• Flight build completed and tested with First Light in July 2011.

MIRI delivered to NASA/GSFC in May 2012!
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OTE Testing – Chamber A at JSC

Will be the largest cryo vacuum test chamber in the world 
Notice people for scale 

OTIS: Largest TV chamber in world: Will test whole JWST in 2015–2016.



(2) HST WFC3 observations of Quasar Host Galaxies at z≃6 (age<
∼1 Gyr)

• Careful contemporaneous orbital PSF-star subtraction: Removes most of
“OTA spacecraft breathing” effects (Mechtley ea 2012, ApJL, 756, L38)

• PSF-star (AB=15 mag) subtracts z=6.42 QSO (AB=19) nearly to the
noise limit: NO host galaxy detected 100×fainter (AB>

∼23.5 mag at r>
∼0′′.3).



(2) WFC3: First detection of one Quasar Host Galaxy at z≃6 (Giant merger?)

• Monte Carlo Markov-Chain of observed PSF-star + Sersic ML light-
profile. Gemini AO data critical for PSF stars (Mechtley+ 2013).

• First solid host galaxy detection out of four z≃6 QSOs [3 more to come].

• One z≃6 QSO host galaxy: Giant merger morphology + tidal structure?

• Same J+H structure! Blue UV-SED colors: (J–H)≃0.19, constrains dust.

• IRAS starburst galaxy-like SED from rest-frame UV–far-IR, AV
>
∼1 mag.

• Mhost
AB (z≃6)<

∼–23.0 mag, i.e., >
∼2–3 mag brighter than L∗(z≃6)!

⇒ z≃6 QSO duty cycle <
∼10−2 (<

∼10 Myrs); 1/4 QSO’s close to Magorrian.



(1) HST WFC3 observations of dusty QSO host galaxies at z≃6

10-1 100 101 102 103

Rest-frame Wavelength (µm)

107

108

109

1010

1011

1012

νF
ν
 (
J
y

·H
z)

Arp 220

IRAS 22491-1808

IC 1623

NGC 4631

J1148+5251 (AGN + Host)

J1148+5251 (Host Only)

• Blue dots: z≃6 QSO SED, Grey: Average radio-quiet QSO spectrum at
z<
∼1 (normalized at 0.5µ). Red: z≃6 host galaxy (WFC3+submm).

• Nearby fiducial galaxies (starburst ages<
∼1 Gyr) normalized at 100µm:

Rules out z=6.42 spiral or bluer host galaxy SEDs for 1148+5251.
(U)LIRGs permitted (Mechtley et al. 2012, ApJL, 756, L38).

• Detected QSO host has IRAS starburst-like SED from rest-frame UV–
far-IR, AV

>
∼1 mag (Mechtley et al. 2013).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



• Objects at z>
∼9 are rare (Bouwens+ 12; Trenti,+ 10; Yan+ 10), since

volume elt is small, and JWST samples brighter part of LF. JWST needs
its sensitivity/aperture (A), field-of-view (Ω), and λ-range (0.7-29 µm).

• With proper survey strategy (area AND depth), JWST can trace the
entire reionization epoch and detect the first star-forming objects.

• JWST Coronagraphs can also trace super-massive black-holes as faint
quasars in young galaxies: JWST needs 2.0µm diffraction limit for this.



(2) How can JWST measure First Light, Reionization, & Galaxy Assembly?

10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10-σ)
over 40 arcmin2 at 0.07–0.15” FWHM from 0.2–1.7µm (UVUBVizYJH).

JWST adds 0.05–0.2” FWHM imaging to AB≃31.5 mag (1 nJy) at 1–
5µm, and 0.2–1.2” FWHM at 5–29µm, tracing young+old SEDs & dust.
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Measured evolution of faint-end LF slope α (top), characteristic luminosity
M∗ (bottom), and UV SED-slope β (right; Hathi et al. 2010, 2013).

• In the JWST regime at z>
∼8, expect faint-end LF slope α≃2.0.

• In the JWST regime at z>
∼8, expect UV SED-slope β<

∼–2.5.

⇒ Significant consequences for cosmic reionization at z>
∼6 by dwarf galaxies.

• In the JWST regime at z>
∼8, expect characteristic luminosity M∗ >

∼–19.

⇒ Could have important consequences for gravitational lensing bias at z>
∼10.



(2c) How will JWST measure First Light & Reionization?

• Can’t beat redshift: to see First Light, must observe near–mid IR.

⇒ This is why JWST needs NIRCam at 0.8–5 µm and MIRI at 5–28 µm.





Two fundamental limitations determine ultimate JWST image depth:

(1) Cannot-see-the-forest-for-the-trees effect: Background objects blend
into foreground neighbors ⇒ Need multi-λ deblending algorithms!

(2) House-of-mirrors effect: (Many?) First Light objects can be gravita-
tionally lensed by foreground galaxies ⇒ Must model/correct for this!

• Proper JWST 2.0µm PSF and straylight specs essential to handle this.



(5) Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

• Most z≃6 QSO host galaxies faint (dusty?), with 1 exception: L>>L∗.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

Management replan in 2010-2011. No technical showstoppers thus far:

• More than 80% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail. JWST will determine:

• Formation and evolution of the first star-clusters after 0.2 Gyr.

• How dwarf galaxies formed and reionized the Universe after 1 Gyr.

(4) JWST will have a major impact on astrophysics this decade:

• IR sequel to HST after 2018: Training the next generation researchers.

• JWST will define the next frontier to explore: the Dark Ages at z>
∼20.
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JWST underwent several significant replans and risk-reduction schemes:

•
<
∼2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.

• 2005: Eliminate costly 0.7-1.0 µm performance specs (kept 2.0 µm).

• 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.

• 2006: All critical technology at Technical Readiness Level 6 (TRL-6).

• 2007: Further simplification of sun-shield and end-to-end testing.

• 2008: Passes Mission Preliminary Design & Non-advocate Reviews.

• 2010, 2011: Passes Mission Critical Design Review: Replan Int. & Testing.



(1a) How will JWST travel to its L2 orbit?

• After launch in 2018 with an ESA Ariane-V, JWST will orbit around the
Earth–Sun Lagrange point L2, 1.5 million km from Earth.

• JWST can cover the whole sky in segments that move along with the
Earth, observe >

∼70% of the time, and send data back to Earth every day.



JWST can observe segments of sky that move around as it orbits the Sun.
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Active mirror segment support through “hexapods”, similar to Keck.

Redundant & doubly-redundant mechanisms, quite forgiving against failures.



JWST’s Wave Front Sensing and Control is similar to the Keck telescope.

In L2, need WFS updates every 10 days depending on scheduling/illumination.



• (1c) What instruments will JWST have?

All JWST instruments can in principle be used in parallel observing mode:

• Currently only being implemented for parallel calibrations.





• JWST hardware made in 27 US States: >
∼75% of launch-mass finished.

• Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.

• JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.

• JWST NIRCam made by UofA and Lockheed.



OSIM: Here is where JWST Instruments inside ISIM are being tested.







(2) HST WFC3 observations of Quasar Host Galaxies at z≃6 (age<
∼1 Gyr)
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• TinyTim fit of PSF-star + Sersic models of galaxy light-profile, nearly to
the noise limit: NO host galaxy at AB>

∼23.0 mag with re≃0′′.5 (Mechtley
et al. 2012, ApJL, 756, L23; astro-ph/1207.3283)

• JWST Coronagraphs can do this 10–100× fainter (and for z<
∼20, λ<

∼28µm)
— but need JWST diffraction limit at 2.0µm and clean PSF to do this.



(2) WFC3 observations of Quasar Host Galaxies at z≃2 (evidence for mergers?)
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• Monte Carlo Markov-Chain runs of observed PSF-star + Sersic ML
light-profile models: merging neighbors (some with tidal tails?; Mechtley,
Jahnke, Koekemoer, Windhorst et al. 2013).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



(Left) 128-hr HST/WFC3 IR-mosaic in HUDF at 1–1.6µm (YJH filters;
Bouwens et al 2010, Yan et al. 2010; +85-hr by R. Ellis in 09/2012).

(Right) Same WFC3 IR-mosaic, but stretched to <
∼10−3 of Zodical sky!

• The CLOSED-TUBE HST has residual low-level systematics: Imperfect
removal of detector artifacts, flat-fielding errors, and/or faint straylight.

⇒ The open JWST architecture needs very good baffling and rogue path
mitigation to do ultradeep JWST fields (JUDF’s) to 10−4 of sky.
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• Select the most massive galaxy groups at z>
∼0.3 as gravitational lensing-

bias targets for JWST studies at z>
∼2-15.

• In rich clusters, it will be harder to separate intra-cluster straylight from
out-of-field or rogue path straylight in ultradeep JWST images.



Hard to see the forest for the trees in the first 0.5 Gyrs?:

• Foreground galaxies (z≃1–2 or age≃3–6 Gyr) may gravitationally lens
or amplify galaxies at z>

∼8–10 (cosmic age<
∼0.5 Gyr; Wyithe et al. 2011).

• This could change the landscape for JWST observing strategies.



HST/WFC3 G102 & G141 grism spectra in GOODS-S ERS (Straughn+ 2010)

IR grism spectra from space: unprecedented new opportunities in astrophysics.

• JWST will provide near-IR grism spectra to AB<
∼29 mag from 2–5.0 µm.



(4) Predicted Galaxy Appearance for JWST at redshifts z≃1–15

• The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4) Predicted Galaxy Appearance for JWST at redshifts z≃1–15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

• (1) Most spiral disks will
dim away at high redshift,
but most formed at z<

∼1–2.

Visible to JWST at very high
z are:

• (2) Compact star-forming
objects (dwarf galaxies).

• (3) Point sources (QSOs).

• (4) Compact mergers &
train-wrecks.


