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Sponsored by NASA/HST & JWST



WARNING: Asking NASA for images is like drinking from a fire-hydrant!

Don’t do this at home!! :)



Edwin P. Hubble (1889–1953) — Carnegie astronomer James E. Webb (1906–1992) — Second NASA Administrator

Hubble: Concept in 1970’s; Made in 1980’s; Operational 1990–>
∼2014.

JWST: The infrared sequel to Hubble from 2018–2023 (–2029?).



JWST ≃2.5× larger than Hubble, so at ∼2.5× larger wavelengths:

JWST has the same resolution in the near-IR as Hubble in the optical.



(1) The Best of Hubble: Recent results from the HST and its WFC3



WFC3: Hubble’s new Panchromatic High-Throughput Camera

HST WFC3 and its IR channel: a critical pathfinder for JWST science.



WFC3/UVIS channel unprecedented UV–blue throughput & areal coverage:

• QE>
∼70%, 4k×4k array of 0′′.04 pixel, FOV ≃ 2′.67 × 2′.67.

WFC3/IR channel unprecedented near–IR throughput & areal coverage:

• QE>
∼70%, 1k×1k array of 0′′.13 pixel, FOV ≃ 2′.25 ×2′.25.

WFC3 filters designed for star-formation and galaxy assembly at z≃1–8:

• HST WFC3 and its IR channel a critical pathfinder for JWST science.



(2) Measuring Galaxy Assembly and Supermassive Black-Hole Growth.

One of the remarkable HST discoveries was how numerous and small faint
galaxies are: The building blocks of giant galaxies seen today.



(2) HST turned the classical Hubble sequence upside down!

Who (when) Cosmic Epoch Ellipticals Spirals Irr’s/mergers

Hubble (1920’s) z=0 (13.73 Gyr) ∼40% >
∼50% <

∼10%

HST (1990’s) z≃1–2 (3–6 Gyr) <
∼15% ∼30% >

∼55% !



M. Rutkowski (2012, ApJS, 199, 3).





Well determined dust-corrected ages for stars in M83, with formation and
dissipation along/across spiral arms (Hwihyun Kim et al. 2012, ApJS).

JWST can do this in much dustier environments and for older stellar pop-
ulations. But must do all we can with HST in UV–blue before JWST flies!



NGC 3032: “Boring old elliptical galaxy” with residual ongoing star-formation!

Central star-formation could be feeding central super-massive black-hole!



Central Hα outflow from the Spiral Galaxy Messier 106.

Hubble image by amateur astronomers Robert Gendler and Jay GaBany!





HST Antenna galaxy: Prototype of high redshift, star-forming, major merger?



Merger of Andromeda galaxy (M31) with Milky Way about 4 Gyr from now.





Merging galaxies constitute <
∼1% of Hubble sequence TODAY (age>

∼12.5 Gyr).

Tadpole galaxies are early stage mergers, very common at z>
∼2 (age<

∼3 Gyr).

JWST will measure Galaxy Assembly to z<
∼20 (cosmic age >

∼0.2 Gyr).



HST/WFC3 & ACS reach AB=26.5-27.0 mag (∼100 fireflies from Moon)
over 0.1×full Moon area in 10 filters from 0.2–2µm wavelength.

JWST has 3×sharper imaging to AB≃31.5 mag (∼1 firefly from Moon)
at 1(–29)µm wavelengths, tracing young and old stars + dust.







(2) Measuring Galaxy Assembly & Supermassive Blackhole Growth

Does galaxy assembly go hand-in-hand with supermassive blackhole growth?



The danger of having Quasar-like devices too close to home ...



Elliptical galaxy M87 with Active Galactic Nucleus (AGN) and relativistic jet.









Well determined ages for young (∼2 Myr) stars in Centaurus A jet, with
star-formation in jet’s wake (Crockett et al. 2012, MNRAS, 421, 1602).

JWST can do this in much dustier environments (and for older stars). We
must do all we can with HST in UV–blue before JWST flies.



HST WFC3 observations of Quasar Host Galaxies at z≃6 (age<
∼1 Gyr)

• Careful contemporaneous orbital PSF-star subtraction: Removes most of
HST “OTA spacecraft breathing” effects (Mechtley et al. 2012, ApJL).

• PSF-star (AB=15 mag) subtracts z=6.42 QSO (AB=19) nearly to the
noise limit: NO host galaxy detected 100×fainter (AB>

∼23.5 mag at r>
∼0′′.3).



WFC3: First detection of one Quasar Host Galaxy at z≃6 (Giant merger?)

• First z≃6 host galaxy detection (Mechtley, Windhorst+ 2013).

• First solid detection out of four z≃6 QSOs [3 more to be observed].

• 14hr QSO host galaxy: Giant merger morphology + tidal structure?

• Same J+H-band structure!: blue colors at z≃6 — constrains dust.

• Mhost(z≃6)∼–22.5 mag ⇒ Luminosity≃1011Lsun!

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).

• JWST will show who came first: Chicken (host galaxy) or Egg (SMBH).



WFC3 observations of Quasar Host Galaxies at z≃2 (evidence for mergers?)
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• Quasar host galaxies at z≃2: also merging neighbors (some with tidal
tails?; Mechtley, Jahnke, Koekemoer, Windhorst et al. 2013).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).







(3) What is the James Webb Space Telescope (JWST)?

Need young generation of students & scientists after 2018 ... It’ll be worth it!

(RIGHT) Life-size JWST prototype on the Capitol Mall, May 2007 ...



(3) What is the James Webb Space Telescope (JWST)?

• A fully deployable 6.5 meter (25 m2) segmented IR telescope for imaging
and spectroscopy at 0.6–28 µm wavelength, to be launched in Fall 2018.

• Nested array of sun-shields to keep its ambient temperature at 40 K,
allowing faint imaging (31.5 mag = firefly from Moon!) and spectroscopy.



• The JWST launch weight will be <
∼6500 kg, and it will be launched to

L2 with an ESA Ariane-V launch vehicle from Kourou in French Guiana.



(3a) How will JWST travel to its L2 orbit?

• After launch in 2018 with an ESA Ariane-V, JWST will orbit around the
Earth–Sun Lagrange point L2, 1.5 million km from Earth.

• JWST can cover the whole sky in segments that move along with the
Earth, observe >

∼70% of the time, and send data back to Earth every day.



• (3b) How will JWST be automatically deployed?

• During its two month journey to L2, JWST will be automatically de-
ployed, its instruments will be cooled, and be inserted into an L2 orbit.

• The entire JWST deployment sequence will be tested several times on
the ground — but only in 1-G: Component and system tests in Houston.

• Component fabrication, testing, & integration is on schedule: 18 out of
18 flight mirrors completely done, and meet the 40K specifications!



Active mirror segment support through “hexapods”, similar to Keck.

Redundant & doubly-redundant mechanisms, quite forgiving against failures.
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Sunshield



   Template membrane build to flight-like requirements for verification of:


"  Shape under tension to verify gradients and light line locations


"  Hole punching & hole alignment for membrane restraint devices (MRD)


"  Verification of folding/packing concept on full scale mockup


"  Layer 3 shape measurements completed


$Layer-3 template membrane 
under tension for 3-D shape 
measurements at Mantech 


Full-scale JWST mockup with 
sunshield pallette %
    &






(3b) JWST instrument update: US (UofA, JPL), ESA, & CSA.

MIRI delivery 05/12; FGS 07/12; NIRCam and NIRSpec Fall 2013.



• JWST hardware made in 27 US States: >
∼75% of launch-mass finished.

• Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.

• JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.

• JWST NIRCam made by UofA and Lockheed.



JWST’s short-wavelength (0.6–5.0µm) imagers:

• NIRCam — built by UofA (AZ) and Lockheed (CA).

• Fine Guidance Sensor (& 1–5 µm grisms) — built by CSA (Montreal).

• FGS delivered to GSFC 07/12; NIRCam scheduled for Fall 2013.



JWST’s short-wavelength (0.6–5.0µm) spectrograph:

• NIRSpec — built by ESA/ESTEC and Astrium (Munich).

• Fight build completed and tested with First Light in Spring 2011.

NIRSpec delivery to NASA/GSFC scheduled for Fall 2013.





JWST’s mid-infrared (5–29µm) camera and spectrograph:

• MIRI — built by ESA consortium of 10 ESA countries & NASA JPL.

• Fight build completed and tested with First Light in July 2011.

MIRI delivered to NASA/GSFC in early May 2012.



OSIM: Here is where Instruments inside ISIM will be tested.
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OTE Testing – Chamber A at JSC


Will be the largest cryo vacuum test chamber in the world 
Notice people for scale 

OTIS: Largest TV chamber in world: will test whole JWST in 2015–2016.



(4) What is First Light, Reionization, and Galaxy Assembly?

HST: Hubble sequence & galaxy evolution at z<
∼7–8 (age>

∼0.7 Gyr).

JWST: First Light, Reionization, & Galaxy Assembly z>
∼8-20 (0.2-0.7 Gyr).

WMAP: Neutral Hydrogen first forms at z=1090 (cosmic age≃0.38 Myr).



(4a) How will JWST Observe First Light and Reionization?

• Detailed hierarchical
models (Dr. V. Bromm)
show that formation of
Pop III stars reionized
universe for the first time
at z≃10–30 (First Light,
age≃500–100 Myr).

• This should be visi-
ble to JWST as the first
massive stars and sur-
rounding star clusters,
and perhaps their ex-
tremely luminous super-
novae at z≃10→30.



(4) How will JWST measure First Light & Reionization?

• Can’t beat redshift: to see First Light, must observe near–mid IR.

⇒ This is why JWST needs NIRCam at 0.8–5 µm and MIRI at 5–28 µm.



Hubble UltraDeep Field: Dwarf galaxies at z≃6 (age≃1 Gyr; Yan & Wind-
horst 2004), many confirmed by spectra at z≃6 (Malhotra et al. 2005).



The “Cosmic Stock Market chart of galaxies: Very few big bright objects
in the first Gyr, but lots of dwarf galaxies at z>

∼6 (age<
∼1 Gyr).

• With proper survey strategy (area AND depth), JWST can trace the
entire reionization epoch and detect the first star-forming objects.

• JWST Coronagraphs can also trace Super-Massive Black Holes as faint
Quasars in young galaxies: JWST needs 2.0µm diffraction limit for this!







Two fundamental limitations determine ultimate JWST image depth:

(1) Cannot-see-the-forest-for-the-trees effect: Background objects blend
into foreground neighbors ⇒ Need multi-λ deblending algorithms!

(2) House-of-mirrors effect: (Many?) First Light objects can be gravita-
tionally lensed by foreground galaxies ⇒ Must model/correct for this!

• Proper JWST 2.0µm PSF and straylight specs essential to handle this!



(5) Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

• Today’s Hubble sequence formed 7–10 Gyrs ago.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

Budget and Management replan in 2011. No technical showstoppers!

• More than 75% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail. JWST will determine:

• Formation and evolution of the first star-clusters after 0.2 Gyr.

• How dwarf galaxies formed and reionized the Universe after 1 Gyr.

• How to find water and CO2 in transiting Earth-like exoplanets.

(4) JWST will have a major impact on astrophysics this decade:

• IR sequel to HST after 2018: Training the next generation researchers.



SPARE CHARTS



• References and other sources of material shown:

http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool]

http://www.asu.edu/clas/hst/www/ahah/ [Hubble at Hyperspeed Java–tool]

http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/ [Clickable HUDF map]

http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/

http://ircamera.as.arizona.edu/nircam/

http://ircamera.as.arizona.edu/MIRI/

http://www.stsci.edu/jwst/instruments/nirspec/

http://www.stsci.edu/jwst/instruments/fgs

Gardner, J. P., et al. 2006, Space Science Reviews, 123, 485–606

Mather, J., & Stockman, H. 2000, Proc. SPIE Vol. 4013, 2

Windhorst, R., et al. 2008, Advances in Space Research, 41, 1965

Windhorst, R., et al., 2011, ApJS, 193, 27 (astro-ph/1005.2776)
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http://www.jwst.nasa.gov/
http://www.stsci.edu/jwst/
http://ircamera.as.arizona.edu/nircam/
http://ircamera.as.arizona.edu/MIRI/
http://www.stsci.edu/jwst/instruments/nirspec/
http://www.stsci.edu/jwst/instruments/fgs


(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15

• The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

• (1) Most spiral disks will
dim away at high redshift,
but most formed at z<

∼1–2.

Visible to JWST at very high
z are:

• (2) Compact star-forming
objects (dwarf galaxies).

• (3) Point sources (QSOs).

• (4) Compact mergers &
train-wrecks.



(6) How can JWST measure Star-birth and Earth-like exoplanets?

NGC 3603: Young star-cluster triggering star-birth in “Pillars of Creation”



30 Doradus: Giant young star-cluster in Large Magellanic Cloud (150,000
ly), triggering birth of Sun-like stars (and surrounding debris disks).















HST/ACS Coronagraph imaging of planetary debris disk around Fomalhaut:
First direct imaging of a moving planet forming around a nearby star!

JWST can find such planets much closer in for much farther stars.



HST/STIS Coronagraph imaging of planetary debris disk around Fomal-
haut: Follow-up imaging show moving planet is in highly inclined orbit.

JWST can find such planets much closer in for much farther stars.



HST/NICMOS imaging of planetary system around the (carefully sub-
tracted) star HR 8799: Direct imaging of planets around a nearby star!

Press release: http://hubblesite.org/newscenter/archive/releases/2011/29/

JWST can find such planets much closer in for much farther-away stars!



JWST can do very precise photometry of transiting Earth-like exoplanets.

JWST IR spectra can find water and CO2 in (super-)Earth-like exoplanets.



JWST IR spectra can find water and CO2 in transiting Earth-like exoplanets.





JWST underwent several significant replans and risk-reduction schemes:

• <
∼2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.

• 2005: Eliminate costly 0.7-1.0 µm performance specs (kept 2.0 µm).

• 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.

• 2006: All critical technology at Technical Readiness Level 6 (TRL-6).

• 2007: Further simplification of sun-shield and end-to-end testing.

• 2008: Passes Mission Preliminary Design & Non-advocate Reviews.

• 2010: Passes Mission Critical Design Review — Replan Int. & Testing.



JWST’s Wave Front Sensing and Control is similar to the Keck telescope.

In L2, need WFS updates every 10 days depending on scheduling/illumination.



Wave-Front Sensing tested hands-off at 40 K in 1-G at JSC in 2015-2016.

Ball 1/6 scale-model for WFS: produces diffraction-limited 2.0 µm images.



Life-sized JWST model, at NASA/GSFC with the whole JWST Project ...



Life-sized JWST model, at NASA/GSFC Friday afternoon after 5 pm ...



JWST can observe segments of sky that move around as it orbits the Sun.





(0) Intro: Cosmic Expansion and Contents of the Universe

Expansion ⇒ redshift λobs = λrest . (1+z)

Hubble’s Law: D ≃ v / Ho ≃ (c/Ho) . z = Ro . z

Cosmic Content: inside R0=(c/H0 )≃13.73 Glyr:
[ tuniv = (211 ±1 !) . (tdino=65 Myr) ]

Photons (light): Nhν ∼ 1089

Baryons (atoms): Nb ∼ 1080

η=Photons/Baryons η ∼ 109 ⇒ He/H ratio = 0.235

Energy Density: as fraction of critical closure density:

Baryons (atoms): Ωb = ρb/ρcrit ≃ 0.042
Dark Matter: Ωd = ρd/ρcrit ≃ 0.20
Dark Energy (Λ): ΩΛ = ρΛ/ρcrit ≃ 0.76
(Supermassive) black holes: ρsmbh/ρcrit ≃ 0.0001

Total Ωtot=ρtot/ρcrit≃1.00±0.02
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Angular size θ vs. redshift z

in Lambda cosmology:

H0 = 73 km/s/Mpc,
Ωm = 0.24, ΩΛ = 0.76.

• θ ∝ 1/z for z<
∼0.05

(small angle approximation).

• θ ∝ z for z >
∼3 !!

• Objects appear larger with
redshift for z>

∼1.65 !!

But angular sizes of rigid rods
are nearly constant for all red-
shifts 0.5 <

∼z <
∼10 !



JWST — Web-links:

http://capwiz.com/supportjwst/home/

http://www.whitehouse.gov/contact

http://www.facebook.com/SaveJWST

http://twitter.com/#!/saveJWST or http://goo.gl/iAR4I

http://savethistelescope.blogspot.com/

http://www.change.org/petitions/do-not-cancel-funding-for-the-james-webb-space-telescope

General JWST Information:

http://www.aura-astronomy.org/news/news.asp?newsID=264

http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/

http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool]

Thank you for your time and attention!

http://capwiz.com/supportjwst/home/
http://www.whitehouse.gov/contact
http://www.facebook.com/SaveJWST
http://twitter.com/#!/saveJWST
http://goo.gl/iAR4I
http://savethistelescope.blogspot.com/
http://www.change.org/petitions/do-not-cancel-funding-for-the-james-webb-space-telescope
http://www.aura-astronomy.org/news/news.asp?newsID=264
http://www.jwst.nasa.gov/
http://www.stsci.edu/jwst/
http://www.asu.edu/clas/hst/www/jwst/

