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Outline & Conclusions

(1) JWST CVZ at the North (NEP) & South Ecliptic Pole (SEP).

(2) NIRCam + NIRISS-parallels can optimally cover the best NEP field.

(3) Unique new JWST Time-Domain Field (TDF) science in the NEP CVZ:

• Parallaxes (Oort Cloud Objects, scattered KBOs at high Ecliptic Lat?);

• Proper Motions (Brown Dwarfs: Galactic structure, atmos variability);

•Weak AGN Variability (e.g., SF–AGN connection; support LyC studies);

• Very high redshift supernovae incl Pair Instability Supernovae (PISN).

• (Darkest sky in NEP TDF): CIB-fluctuations constrain First Light sources.

• The best area in the JWST NEP CVZ will be a Community Field for Time
Domain science over 5–14 years (max JWST propellant life): first JWST
epoch public rightaway + data products ASAP. Must do for WFIRST.

(4) In the best lensing clusters, possible JWST caustic transits of Pop III
stars and their stellar-mass black hole accretion disks.



(1) JWST Continuous Viewing Zones (CVZs): North & South Ecliptic Poles.

Accessible by JWST 365 days/yr: only the NEP & SEP CVZ (r <
∼5◦):

• NEP has great regions for far-extragalactic science. LMC covers the SEP.

• CVZs great for parallax, proper motions, high redshift variability, etc.

• JWST NEP survey will also provide perfect grism calibrations for WFIRST.
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[LEFT]: WISE 4µm bright-object penalties in 10′ grid: Very few regions
(purple) exist without bright stars (AB<

∼16 mag), needed to minimize
persistence in JWST images (Jansen & Windhorst, astro-ph/1807.05278).

[RIGHT]: E(B−V) map (Schlegel+ 1998) in same NEP-region (bII ∼33◦).

Cleanest r=7′ region for JWST has modest extinction: E(B−V)<∼0.028m.



Deep Image of the Magellanic System with southern JWST CVZ indicated.

Besla, G., Martinez−Delgado, D., van der Marel, R., Beletsky, Y., et al. 2016, ApJ 825, 20
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[LEFT] Map of LMC+SMC and spurs (Besla et al. 2016, ApJ, 825, 20).

[RIGHT]: E(B−V) map (Schlegel et al. 1998) in SEP-region.

• SEP will be great for CVZ studies of LMC+outskirts (bottom of IMF).

• SEP/LMC can serve as counter-target for NEP surveys: offsets accumu-
lated angular momentum, and so help save JWST propellant/lifetime.

• WFIRST & LSST should monitor SEP in DDFs. Also best lensing clusters.
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Intended r=7′ JWST NEP TDF is indeed free of bright (AB<
∼16) stars.



At r<∼7′, JWST NEP TDF is a normal clean extragalactic survey field.

To AB<
∼26 mag, get many faint Galactic brown dwarfs and high-z dropouts.



(2) NIRCam + NIRISS-parallels optimally cover the best NEP TDF.

• FY>
∼16: most-used JWST instrument pairs implemented for science parallels.

• CVZ enables well-overlapping dark-sky NIRCam + NIRISS-parallel mosaics.

• WFIRST should keep its near-IR grism: the grism science is golden!



Exposure Maps of NEP JWST-Windmill & GO-Extensions:
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[LEFT]: Exposure map (15′×15′) of two offset contiguous areas: NIRCam
primary (green) + NIRISS parallel grism (purple), observable at∆PA=any◦.

[MIDDLE]: Same with ∆PA=90+180+270◦ added: our 50-hr GTO plan.

[RIGHT]: Possible 8-epoch GO-Community extension in JWST Cycle >
∼1.

White regions: NIRCam exposures overlap, reaching ∼0.75 mag deeper.
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[LEFT]: Example of 16-epoch extension. Instead, we suggest:

[MIDDLE]: 4-epoch filled NIRCam + NIRISS Windmill — any starting epoch.

[RIGHT]: 4-epoch extended NIRCam + NIRISS Windmill mosaic.

• GO’s can repeat NIRCam primaries + NIRISS parallels as often as needed
during JWST’s 5–14 year lifetime at any PA — no ORIENT restrictions!

• JWST NEP provides img+spectral ground-truth to AB<
∼28 for WFIRST!

• NEP is a must-do for (calibration of) WFIRST Deep Drilling Fields.



(3) Unique new JWST Variability Science possible in the NEP TDF:

(a) (b)

[LEFT] Flux diff. between 2 HUDF epochs vs. i-mag (Cohen et al. 2006).

• Red points mark >
∼3σ variables between 6 epoch pairs to AB<

∼28 mag.

[MIDDLE] Same for all-epoch flux differences in number-of-σ.

[RIGHT] Weak AGN point-source with 20% flux variation on timescales of
months (≃weeks in restframe).

• JWST NEP may show a few % of all objects to have variable weak AGN
on timescales of months–years to AB<

∼29–30 mag.

• JWST NEP will provide a robust, independent way to select weak AGN,
complementing NIRCam colors + NIRISS grism emission lines.

• Plus 6-epoch Chandra and 10-epoch VLA+VLBA µJy images, etc.



Redshift, z
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[LEFT] Projected Supernova yield for a single JWST/NIRCam field:

r∼7′ JWST NEP TDF provides ∼16× more high-z SNe than 1 NIRCam.

• JWST NEP will detect every Type Ia SN to z<∼5, and 90% of all Core
Collapse (CC) SNe to z<∼1.5 (Rodney et al. 2015; Strolger et al. 2015).

[RIGHT] Simulated light curves for various SN types at z=7. JWST may
detect some (rare) Pair Instability SuperNovae (PISN; Kasen et al. 2011).

• 7-yr timescale of massive PISN: Must start NEP field in JWST Cycle 1.

• The JWST NEP Time-Domain field is critical for high-z SN work:

• WFIRST to monitor (SNe+)hosts found by JWST, including SNe at z>∼5.



(3) Other Science Enabled by the Darkest Possible JWST NEP sky:

[LEFT] Object-free Spitzer 3.6 µm power-spectrum constrain CIB fluctu-
ation models (Cappelluti et al. 2017; Kashlinsky et al. 2012, 2015):

• Orange dashed shows (>∼50 hr, 10×10′ ) JWST NEP CIB-limits, e.g., :
Primordial black hole models (PBHs; Kashlinsky et al. 2016); or
Direct-collapse black hole models models (DCBHs; Yue et al. 2015).

[RIGHT] Spitzer–Chandra cross-corr spectrum (Mitchell-Wynne et al. 2016):

• Pop III objects at z>∼7 have sky-SB >
∼31 mag/arcs2, + likely a (stellar

mass) black hole component (Kashlinsky+ 2018, Windhorst+ 2018).



(4) Possible caustic transits from Pop III stars and their BH accretion disks.

Windhorst+ (2018, ApJS, 234, 41): JWST (and 25–39 m ground-based
telescopes) may detect Pop III stars and their stellar-mass BH accretion
disks directly to AB<

∼28–29 mag via caustic transits in the right clusters.

• WFIRST & LSST DDFs (TDFs!) should anticipate this and build on it.



Anticipated cosmic SFR at z>∼7:

[LEFT] Observed (e.g., Madau & Dickinson; 2014 ARAA, 52, 415);

[RIGHT] RAMSES models (e.g., Sarmento et al. 2018, ApJ, 854 75).

⇒ Adopt this SFR increasing from z≃17 to z≃7, implying:

• For lowest mass objects, Fe/H increases from ∼0 to 10−4–10−3 Z⊙.

• Integrated SFR from z>∼7 has sky-SB(K)>∼31 mag arcsec−2 (Windhorst
et al. 2018), similar to the 3.6 µm CIB sky-SB possibly from BH’s.
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2016; Windhorst+ 2018)
imply:

• Diffuse 1–4µm sky-SB
<
∼0.1 nW/m2/sr (K>

∼31

mag/”2), possibly from:

• 1) Pop III stars at z≃7–
17, and/or

• 2) their stellar-mass BH
accretion disks.

This can make Pop III
stars or their BH accretion
disks visible to JWST at
AB<

∼28–29 mag.

• Requires using the best lensing clusters and monitoring caustic transits.

• WFIRST and LSST must monitor this together with & after JWST.



Need clusters with minimal ICL and microlensing near the critical curves.

HFF A2744: JWST needs cluster caustic transits to see Pop III objects.
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For source at z=10, critical curves for HFF cluster MACS 1149 at z≃0.54
[LEFT], and main cluster caustics [RIGHT].

• Transverse cluster (sub-component) velocities can be vT
<
∼1000 km/s

(Kelly+ 2018; Nat Ast. 2, 334; Windhorst+ 2018, ApJS, 234, 41).

• Main caustic magnification µ≃10 (dcaustic/”)
−1/2. For Pop III ob-

jects at z>∼7 with 1–30 R⊙, µ can be >
∼104–105 for <

∼0.4 year.

• Must use clusters with minimal ICL near the critical curves, since ICL
microlensing dilutes the main caustics (Diego+ 2018, ApJ, 857, 25).



(4) HST observations of a B-star caustic transit at z≃1.49

Kelley et al. 2018 (Nat Astr. 2, 334): caustic transit of a B-star at z≃1.49.



Kelley et al. 2018 (Nat Astr. 2, 334): caustic transit of a B-star at z≃1.49.

Diego+ 2018 (ApJ, 857, 25): caustic transits in the presence of microlensing.

See also Miralda-Escudé (1991), Venumadhav et al. (2017, ApJ, 850, 49).



MESA stellar evolution models for z=0.0 Z⊙ Pop III stars
(Windhorst, Timmes, Wyithe et al. 2018, ApJS, 234, 41):

• 30–1000 M⊙ Pop III stars (Z=0.0 Z⊙) live ∼10× shorter than
2–5 M⊙ Pop III stars in their AGB stage.

• Hence, 2–5 M⊙ AGB companion stars can feed the LIGO-mass BHs left
over from M>

∼30 M⊙ Pop III stars.
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Windhorst+ (2018, ApJS, 234, 41):

• Multicolor accretion-disk models for stellar-mass black holes [RIGHT]:
For MBH ≃5–700 M⊙, accretion disks radii and luminosities are similar
to those of Pop III AGB stars, when the BH is fed by a Roche lobe-filling
lower-mass companion star on the AGB (which live >

∼10× longer).

• Assumes 2nd generation O-stars have high enough Fe/H (>∼10−4 Z⊙)
that 2–5 M⊙ AGB companion stars exist and feed these LIGO-mass BHs.

• This may make stellar-mass black hole accretion disks at least as likely
to be seen via caustic transits as the Pop III stars themselves.



Mass–Luminosity relation for zero Z/Zo Pop III MESA models:

For a range of IMF slopes, most Pop III star sky-SB comes from 20–300 M⊙.



(4) What are the best lensing clusters to monitor caustic transits?

Griffiths et al. (2018 MNRAS, 475, 2853): GAMA cluster at z≃0.42 found
through mass-concentration selection. Has 89 VLT MUSE members:

• Cluster has minimal ICL near the critical curves, optimal for caustic
transit studies.

• JWST, WFIRST & LSST should monitor clusters with minimal ICL near
the critical curves to minimize microlensing and maximize magnifications.



Conclusions (Windhorst et al. 2018; Tables 1–5):

• If M>
∼30 M⊙ Pop III ZAMS stars (AB∼37–42 mag at z>∼7) have

µ>
∼104–105 during caustic transits, they could be detectable for a few

months to AB<
∼29 mag with JWST.

• Pop III RGB and AGB stars have more advantageous combined Bolomet-
ric +IGM+K-corrections, and could be 1–2 mag brighter, but live ∼10×
shorter than ZAMS stars.

• Pop III stellar mass black hole (M>
∼20 M⊙) accretion disks also could

be ∼1 mag brighter and live ∼10× longer than their ZAMS stars.

• JWST & WFIRST could detect both Pop III stars and their stellar-mass
BH (M>

∼20 M⊙) accretion disks at AB<
∼28-29 mag via cluster caustic

transits if µ≃104–105 (i.e., if ICL microlensing doesn’t dominate).

• Expect <
∼1 caustic transit/yr at z>∼7 when JWST monitors >

∼3 clusters.

• Stellar-mass BH accretion disks may dominate caustic transits at z>∼7.

• WFIRST & LSST should anticipate this (LSST at z<∼6), and plan for it.



SPARE CHARTS



HST

[LEFT] HST UV-vis filters complement the JWST NEP community field:

• HST adds λ’s inaccessible to JWST, or where HST has better PSF.

[RIGHT] Standard 8-band 0.8–5 µm filter set for JWST NIRCam.

• ⇒ These are what all GTO’s will use as standard NIRCam filters!



Windhorst, Timmes, Wyithe et al. (2018, ApJS, 234, 41):

• 30–1000 M⊙ Pop III stars (Z=0.0 Z⊙) live ∼10× shorter than 2–5
M⊙ Pop III stars in their AGB stage.

• Hence, 2–5 M⊙ AGB companion stars can feed the LIGO-mass BHs left
over from M>

∼30 M⊙ Pop III stars.



• If M>
∼30 M⊙ Pop III ZAMS stars have µ>

∼104–105 during caustic
transits, they could be detectable for months to AB<

∼29 mag with JWST.

• Expect <
∼1 caustic transit/yr at z>∼7 when JWST monitors >

∼3 clusters.



• If M>
∼20M⊙ Pop III RGB stars have µ>

∼104–105 during caustic transits,
they could be detectable for a few months to AB<

∼29 mag with JWST.

• Note the combined Bolometric+IGM+K-corrections is more advanta-
geous for Pop III RGB stars.



• If M>
∼20M⊙ Pop III AGB stars have µ>

∼104–105 during caustic transits,
they could be detectable for a few months to AB<

∼29 mag with JWST.

• Note the combined Bolometric+IGM+K-corrections are far more advan-
tageous for Pop III AGB stars (especially at z>∼12)!



• If M>
∼20M⊙ Pop III stellar mass black hole accretion disks have µ>

∼104–

105 during caustic transits, they could be detectable for a few months to
AB<

∼29 mag with JWST.

• Note the combined Bolometric+IGM+K-corrections are also more ad-
vantageous for Pop III stellar-mass black hole accretion disks.
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Trumpet diagrams for
JWST lensing clusters
from ground-based
spectroscopic N(z)
(Windhorst+ 2018):

• 1) Add random
space velocity vsp to
clusters.

• 2) Projected vT
must be <

∼1000km/s
for vsp not to unduly
disturb radial N(z).

• 3) Best clusters
(Bullet) for caustic
transits can have
vT

<
∼2700 km s−1.

• WFIRST and LSST should monitor such clusters in DDFs (TDFs).



What are the best lensing clusters for JWST to see First Light objects?:

[LEFT] Best lensing clusters vs. ROSAT, Planck, SPT, MaDCoWS.

[RIGHT] Best lensing clusters compared to CLASH clusters.

(Contours: Number of lensed JWST sources at z≃1–15 to AB<
∼31 mag).

• Resulting sweet spot for JWST lensing of First Light Objects (z>∼10):

Redshift: 0.3<∼z<∼0.5; Mass: 1015−15.6 M⊙; Concentration: 4.5<∼C<
∼8.5



Galaxy SEDs for different ages: peak at λrest≃1.6µm (Kim et al. 2017).

JWST-NIRCam peaks in sensitivity for λ=3–5µm, where Zodi is lowest.

Sweet spot for lensing cluster z<∼0.5: Zodi-gain mitigates (1 + z)4-dimming.

• Minimizes effects from near-IR K-correction and ambient ICL.



[TOP]: [Left] HUDF F160W image with worst case (95% of Zodi) straylight amplitude imposed

± a 4% linear gradient from corner-to-corner.

[Middle]: Best fit to sky-background with R. Jansen’s “rjbgfit.pro”.

[Right]: HUDF image from left with best-fit sky-background subtracted.

[BOTTOM]: Same as top, but with single-component 2D pattern superimposed, modeled & removed.

• If JWST straylight has slight or complex gradients, we must carefully
plan JWST imaging of lensing clusters with strong ICL.
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