How will JWST measure First Light, Reionization, & Galaxy Assembly: New Frontiers after Hubble

Rogier Windhorst (ASU) — JWST Interdisciplinary Scientist S. Cohen, R. Jansen (ASU), B. Frye (UofA), C. Conselice (UK), S. Driver (OZ), S. Wyithe (OZ), H. Yan (U-MO) (Ex) ASU Grads: N. Hathi, H. Kim, M. Mechtley, R. Ryan, M. Rutkowski, B. Smith, & A. Straughn

Colloquium at Ben-Gurion University of the Negev, Physics Department, Wednesday May 27 (Beer Sheva, Israel) All presented materials are ITAR-cleared.

Outline

- (1) Update on the James Webb Space Telescope (JWST), 2015.
- (2) Hubble (Ultra)Deep & Frontier Fields to find z~9–11 objects:
 Current limitations
 - (3) How can JWST measure the Epoch of First Light (using lensing)?
- How many random Webb Deep Fields (WDFs) compared, to the best lensing targets for JWST?
 - (4) Summary and Conclusions.

Sponsored by NASA/HST & JWST

Talk is on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/israel15bgu_hstjwst.pdf

What the Scientists See:

Any (space) mission is a balance between what science demands, what technology can do, and what budget & schedule allows ... (courtesy Prof. R. Ellis).

JWST $\simeq 2.5 \times$ larger than Hubble, so at $\sim 2.5 \times$ larger wavelengths: JWST has the same resolution in the near-IR as Hubble in the optical.

THE JAMES WEBB SPACE TELESCOPE

JWST is the perfect near-mid-IR sequel to HST and Spitzer:

• Vastly larger $A(\times \Omega)$ than HST in UV-optical and Spitzer in mid-IR.

(1) Update of the James Webb Space Telescope (JWST), 2015.

To be used by students & scientists after 2018 ... It'll be worth it. (RIGHT) Life-size JWST prototype on the Capitol Mall, May 2007.

(1) Update of the James Webb Space Telescope as of 2015.

- A fully deployable 6.5 meter (25 m²) segmented IR telescope for imaging and spectroscopy at 0.6–28 μ m wavelength, to be launched in Fall 2018.
- \bullet Nested array of sun-shields to keep its ambient temperature at 40 K, allowing faint imaging (AB=31.5 mag) and spectroscopy.

THE JAMES WEBB SPACE TELESCOPE

JWST LAUNCH

- LAUNCH VEHICLE IS AN ARIANE 5 ROCKET, SUPPLIED BY ESA
- SITE WILL BE THE ARIANESPACE'S ELA-3 LAUNCH COMPLEX NEAR
- KOUROU, FRENCH GUIANA

ARIANESPACE - ESA - NASA

• The JWST launch weight will be \lesssim 6500 kg, and it will be launched to L2 with an ESA Ariane-V launch vehicle from Kourou in French Guiana.

(1a) How will JWST travel to its L2 orbit?

After launch in (Oct.) 2018 with an ESA Ariane-V, JWST will orbit around the Earth–Sun Lagrange point L2, 1.5 million km from Earth.
JWST can cover the whole sky in segments that move along with the Earth, observe ≳70% of the time, and send data back to Earth every day.

• (1b) How will JWST be automatically deployed?

• During its two month journey to L2, JWST will be automatically deployed, its instruments will be cooled, and be inserted into an L2 orbit.

• The entire JWST deployment sequence is being tested several times on the ground — but only in 1-G: component and system tests in 2014–2016 at GSFC (MD), Northrop (CA), and JSC (Houston).

• Component fabrication, testing, & system integration is on schedule: 18 out of 18 flight mirrors completely done, and meet the 40K specifications.

Actuators for 6 degrees of freedom rigid body motion

Active mirror segment support through "hexapods", similar to Keck. Redundant & doubly-redundant mechanisms, quite forgiving against failures.

JWST Hardware Status

Mirror Acceptance Testing

A5

A1

B6

СЗ

A4

A2

The second secon

Primary Mirror Composite

- 15 flight primary mirrors and the flight secondary mirror are at GSFC in storage
 - All spares were at GSFC in storage (SM spares, 3 PMSA spares)
 2 EDU mirrors sent back to Ball for gear motor rework
 - All flight gear motor refurbishment is complete
 - All flight mirrors will be at GSFC by end of year, needed in 2015

Spring 2014: All 18 flight mirrors delivered to NASA GSFC (MD).

Pathfinder: Powered Deployment of SMSS

July 2014: Secondary Mirror Support deployment successfully tested.

(1) JWST hardware to date, and how to best use it for high redshift lensing.

[LEFT]: Aug. 2014: Engineering Kapton Sunshield; 2015: Flight Sunshield. [RIGHT]: Nov. 2014: First JWST mirrors mounted onto support structure, using Engineering Demo mirrors — Flight mirrors to be mounted in 2015. • Our Galaxy is a bright IR source at $\lambda \gtrsim 1-5\mu$ m: In certain directions of sky, some straylight can hit secondary mirror via Sunshield: $\lesssim 40\%$ of Zodi. What does this mean for JWST lensing studies of First Light objects?

Telescope Pathfinder – Risk Reduction

JWST Pathfinder is a partial telescope that is intended to reduce the implementation risk of the assembly, integration, and cryogenic optical test of the JWST optical assembly

All Instruments Integrated

(1c) JWST instrument update: US (UofA, JPL), ESA, & CSA.

Instrument Overview

Fine Guidance Sensor (FGS)

- Ensures guide star availability with >95% probability at any point in the sky
- Includes Narrowband Imaging Tunable Filter
- Developed by Canadian Space Agency & COM DEV

Near Infra-Red Camera (NIRCam)

- Detects first light galaxies and observes galaxy assembly sequence
- 0.6 to 5 microns
- Supports Wavefront Sensing & Control
- Developed by Univ. of AZ & LMATC

Mid-Infra-Red Instrument (MIRI)

- Distinguishes first light objects; studies galaxy evolution; explores protostars & their environs
- · Imaging and spectroscopy capability
- 5 to 27 microns
- Cooled to 7K by Cyro-cooler
- Combined European Consortium/JPL development

Near Infra-Red Spectrograph (NIRSpec)

- Measures redshift, metallicity, star formation rate in first light galaxies
- 0.6 to 5 microns
- Simultaneous spectra of >100 objects
- Developed by ESA & EADS with NASA/ GSFC Detector & Microshutter Subsystems

All delivered: MIRI 05/12; FGS 07/12; NIRCam 07/13, NIRSpec 9/13.

• JWST hardware made in 27 US States: \gtrsim 98% of launch-mass finished.

- Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.
- JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.
- JWST NIRCam made by UofA and Lockheed.

JWST's short-wavelength (0.6–5.0 μ m) imagers:

- NIRCam built by UofA (AZ) and Lockheed (CA).
- Fine Guidance Sensor (& 1–5 μ m grisms) built by CSA (Montreal).
- FGS includes very powerful low-res Near-IR grism spectrograph (NIRISS).
- FGS delivered to GSFC 07/12; NIRCam delivered 07/13.
- Detectors replaced in 2015 between CryoVacuum tests CV2 and CV3.

JWST's short-wavelength (0.6–5.0 μ m) spectrograph:

- NIRSpec built by ESA/ESTEC and Astrium (Munich).
- Flight build completed and tested with First Light in Spring 2011.

NIRSpec delivered to NASA/GSFC in 09/13.

• Detectors replaced in 2015 between CryoVacuum tests CV2 and CV3.

Micro Shutters

Metal Mask/Fixed Slit

Shutter Mask

Flight MIRI

JWST's mid-infrared (5–29 μ m) camera and spectrograph:

- MIRI built by ESA consortium of 10 ESA countries & NASA JPL.
- Flight build completed and tested with First Light in July 2011.

MIRI delivered to NASA/GSFC in 05/12.

June 2014: Flight ISIM (with all 4 instruments) in OSIM; Aug. 2015: CryoVac3.

TELESCOPE ARCHITECTURE

2014–2016: Complete system integration at GSFC and Northrop.

OTIS Test GSE Architecture and Subsystems

World's largest TV chamber OTIS: will test whole JWST in 2016–2017.

Pathfinder & JSC Chamber A: getting ready for OGSE1 (and eventually OGSE2 & Thermal Pathfinder)

April 2015: Testing OTIS chamber with the JWST Engineering model.

(2) How can JWST measure Galaxy Assembly and SMBH/AGN Growth?

10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10- σ) over 40 arcmin² at 0.07–0.15" FWHM from 0.2–1.7 μ m (UVUBVizYJH). JWST adds 0.05–0.2" FWHM imaging to AB \simeq 31.5 mag (1 nJy) at 1–5 μ m, and 0.2–1.2" FWHM at 5–29 μ m, tracing young+old SEDs & dust.

(2a) WFC3: Hubble's new Panchromatic High-Throughput Camera

HST WFC3 and its IR channel: a critical pathfinder for JWST science.

- WFC3/UVIS channel unprecedented UV-blue throughput & areal coverage:
 QE≳70%, 4k×4k array of 0["].04 pixel, FOV ≃ 2[!].67 × 2[!].67.
- WFC3/IR channel unprecedented near–IR throughput & areal coverage: • QE \gtrsim 70%, 1k×1k array of 0["].13 pixel, FOV \simeq 2[!].25 × 2[!].25.
- \Rightarrow WFC3 opened major new parameter space for astrophysics in 2009: WFC3 filters designed for star-formation and galaxy assembly at z \simeq 1–8.
- HST WFC3 and its IR channel a critical pathfinder for JWST science.

WFC3 ERS 10-band redshift estimates accurate to $\lesssim 4\%$ with small systematic errors (Hathi et al. 2010, 2013), resulting in a reliable N(z).

• Measure masses of faint galaxies to AB=26.5 mag, tracing the process of galaxy assembly: downsizing, merging, (& weak AGN growth?).

 \Rightarrow Median redshift in (medium-)deep fields is $z_{med} \simeq 1.5$ -2.

• HUDF shows WFC3 $z\simeq$ 7–9 capabilities (Bouwens⁺ 2014; Yan⁺ 2010).

• JWST will trace mass assembly and dust content $\lesssim 5$ mag deeper from $z\simeq 1-12$, with nanoJy sensitivity from $0.7-5\mu$ m.

(3) How will JWST Observe First Light and Reionization?

• Detailed cosmological models (V. Bromm) suggest that massive "Pop III" stars ($\gtrsim 100 \text{ M}_{sun}$) started to reionize the universe at $z \lesssim 10-30$ (First Light).

• This should be visible to JWST as the first Pop III stars or surrounding (Pop II.5) star clusters, and perhaps their extremely luminous supernovae at $z\simeq 10 \rightarrow 30$.

We must make sure that we theoretically understand the likely Pop III massrange, their IMF, their duplicity and clustering properties, their SN-rates, etc., before JWST flies, so we know what to look for.

Implications of WMAP year-9 & Planck 2015 results for JWST science:

 $HST/WFC3 z \lesssim 7-10 \longleftarrow JWST z \simeq 8-25$

The year-9 WMAP and Planck 2015 data provided better foreground removal (Komatsu⁺ 2011; Hinshaw⁺ 2012; Planck VIII 2015):

- ⇒ First Light & Reionization occurred between these extremes:
- (1) Instantaneous: $z \simeq 8.8 \pm 1.5$ (pol. optical depth $\tau \simeq 0.066 \pm 0.016$), or:
- (2) Inhomogeneous & drawn out: starting at $z\gtrsim 20$, peaking at $z\lesssim 9-10$, ending at $z\simeq 7$. The implications for HST and JWST are:
- HST/ACS has covered z \lesssim 6, and WFC3 is covering z \lesssim 7–10.
- JWST designed to survey First Light/Reionization from $z\simeq 8$ to $z\simeq 15-20$.
 - Since Planck 2015's polarization τ has come down considerably ($\tau \simeq 0.066$), how many reionizers will JWST actually see at $z \simeq 10-15$?
3) How will Webb measure First Light: What to expect in (Ultra)Deep Fields?

• Can't beat redshift: to see First Light, must observe near-mid IR. \Rightarrow This is why JWST needs NIRCam at 0.8–5 μ m and MIRI at 5–28 μ m.

The HST-unique part for JWST: Panchromatic 13 filter HUDF: UV-Blue emphasized.

592^{*h*} HUDF weighted log-log: FuvNuvUBViIzYJWH, AB \lesssim 28–31 (\gtrsim 2 nJy).

Panchromatic 13 filter HUDF.

of else-color "Balametric" or χ^2 unlige

6

841 orbits = 592^{k} HUDF AB \leq 31 mag, Objects affect \sim 45% of pixels l.

(2a) Current limitations: Wavelength-dependent Deep-Field Completeness limits

[LEFT]: HUDF bolometric or χ^2 -image (false-color log-log stretch): weighted average of 841 orbits (592 hr) in 13 filters reaching AB \lesssim 31 mag.

- Faint object wings cover $\sim 45\%$ of all pixels (Koekemoer et al. 2013)!
- [RIGHT]: HUDF *wavelength-dependent* completeness functions from Monte Carlo (MC) insertions:
- Faint-end recovery fractions drop to $\sim 60\%$ at longer wavelengths.
- Even the bright-end at H \simeq 23 AB-mag is \sim 15% incomplete!

(2b) Cluster-Position Dependence of Deep-Field Completeness limits

[LEFT]: HFF cluster A2744 in: F435W+F606W, F814W+F105W, F125W+F140W+F160W.

[RIGHT, TOP]: Lensing map for A2744 from Ebeling et al. (2014) [see updated models this Workshop]. [RIGHT BOTTOM]: *Position-dependent* completeness in a 3×3 MC-grid.

• Faint-end lensing sample *incompleteness* increases from $\sim 10-40\%$ in the cluster outskirts/corners to $\sim 50-65\%$ in cluster center [but see MUSE results!].

• Even bright-end of the cluster image is incomplete at the 5–50% level.

(3) How can JWST best observe First Light using lensing?

1.6µm counts (Windhorst⁺2011). [F150W, F225W, F275W, F336W, F435W, F606W, F775W, F850LP, F105W, F125W, F140W not shown]. • Faint-end near-IR count-slope $\simeq 0.16 \pm 0.02 \text{ dex/mag} \iff$ Faint-end LF-slope $\alpha(z_{med} \sim 1.6) \simeq -1.4 \Rightarrow$ reach $M_{AB} \simeq -14$ mag. • 800-hr WUDF can see AB $\lesssim 32$ objects: $M_{AB} \simeq -15$ (LMCs) at $z \simeq 11!$

• Lensing will change the landscape for JWST observing strategies (WUDFF).

Evolution of Schechter UV-LF: faint-end LF-slope lpha(z), $\overline{\Phi^*(z)}$ & $M^*(z)$:

• For JWST z \gtrsim 8, expect $\alpha \lesssim$ -2.0; $\Phi^* \lesssim 10^{-3}$ (Mpc⁻³) (Bouwens⁺ 14).

• HUDF: Characteristic M^* may drop below -18 or -17.5 mag at $z\gtrsim 10$.

 \Rightarrow Will have significant consequences for JWST survey strategy.

Schechter LF ($6 \lesssim z \lesssim 20$) with best-fit $\alpha(z)$, $\Phi^*(z)$, $M^*(z)$ & $\mu=0.50$. Area/Sensitivity for: HUDF/XDF, 10 WMDFs, 2 WDFs, & 1 WUDF. • Will need lensing targets for WMDF–WUDFF to see $z\simeq 12-15$ objects.

Same as p. 15, but optimistic M^* (z) drop: $\mu = 0.33$ (Oesch et al. 2013). • If so, far more $9 \lesssim z \lesssim 12$ objects expected in XDF, even though N($6 \lesssim z \lesssim 8$) remains the same $\iff M^*$ (z $\simeq 11$) fainter than -18 ± 0.5 mag? HST Frontier Field A2744: JWST needs lensing to see First Light at $z\gtrsim 10-15$.

(3) What are the best lensing targets for JWST to see First Light?

For JWST, use the best lenses in 2018: Rich clusters of high compactness!

[Left] Redshift surveys: SDSS $z \lesssim 0.25$ (Yang⁺ 2007), GAMA $z \lesssim 0.45$ (Robotham⁺ 2011), and zCOSMOS $z \lesssim 1.0$ (Knobel⁺ 2012).

- GAMA: 22,000 groups $z \lesssim 0.45$; 2400 with N_{spec} $\gtrsim 5$ (Robotham⁺ 11).
- $\lesssim 10\%$ of GAMA clusters compact for lensing (Konstantopoulos⁺ 13).
- Need large sample to identify best lenses to find $z\sim6-15$ sources.

[Left] GAMA clusters with secure AAT redshifts for $R \lesssim 19.8$ AB-mag. Also show redshift probability and absolute magnitude (M_r) distributions. [Right] Measured redshift distribution for two GAMA clusters. • Will select our WMDF IDS targets on best-lensing compact clusters.

GAMA compact clusters compared to other cluster samples:

[LEFT] Best lensing GAMA clusters vs. ROSAT, Planck, SPT, MaDCoWS. [RIGHT] Best lensing GAMA clusters vs. CLASH clusters.

(Contours: Number of lensed JWST sources at $z\simeq 1-5$ to AB $\lesssim 27$ mag).

• Resulting sweet spot for JWST lensing of First Light Objects ($z\gtrsim10$): Redshift: $0.3\lesssim z\lesssim0.5$; Mass: $10^{15-15.6} M_{\odot}$; Concentration: $4.5\lesssim C\lesssim8.5$

• GAMA clusters confirmed w/ \gtrsim 24 z_{spec}'s, removing chance projections.

GAMA group/cluster mass vs. Concentration, fitted with NFW DM-halo profiles (Barone-Nugent⁺ 15). [LEFT] = Nr of expected lensed sources at $10 \lesssim z \lesssim 15$ (AB $\lesssim 30$ mag).

 $[RIGHT] = Nr \text{ of expected lensed sources at } 6 \lesssim z \lesssim 15 \text{ (AB} \lesssim 31 \text{ mag)}.$

- 10 WMDFs on best $10^{15} M_{\odot}$ clusters: ~100 z~6–15 sources (AB \lesssim 30).
- WDF (AB \lesssim 31 mag) will get \sim 250 lensed sources at z \simeq 6–15.

WUDFF (AB \lesssim 32) on best cluster yields \sim 800 lensed sources at 6 \lesssim z \lesssim 15!

Conclusion: JWST First Light strategy must consider three aspects:

- (1) The rapid drop in the LF Φ^* (z) and/or M^* (z) for z \gtrsim 8.
- (2) Cannot-see-the-forest-for-the-trees effect ["Natural Confusion" limit]: Background objects blend into foreground because of their own diameter \Rightarrow Need multi- λ deblending algorithms & object subtraction (e.g., wavelets).
- (3) Gravitational Lensing: JWST will need to find most First Light objects at $z\gtrsim 10-15$ through the best lensing compact clusters.
- Need multi- λ object-finders that works on sloped backgrounds.
- If $M^*(z\gtrsim 10)\gtrsim -18$ or $\Phi^* \lesssim 10^{-3.5}$, must image, (subtract,) & model the entire gravitational foreground, and remove the (rogue-path) straylight.

(4) Summary and Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.Management replan in 2010-2011. No technical showstoppers thus far:

• More than 98% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and Galaxy Assembly & SMBH-growth in detail.

• To see the most First Light, JWST must cover the best lensing clusters!

• Need to consider brightness of — and low-level gradients in — IntraCluster Light (ICL). May need a majority of gravitational lensing targets.

(4) JWST will have a major impact on astrophysics this decade:

- IR sequel to HST after 2018: Training the next generation researchers.
- Your JWST proposals are due $\lesssim 3$ years from today!

SPARE CHARTS

• References and other sources of material shown:

http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool] [Hubble at Hyperspeed Java-tool] http://www.asu.edu/clas/hst/www/ahah/ [Clickable HUDF map] http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/ http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/ http://ircamera.as.arizona.edu/nircam/ http://ircamera.as.arizona.edu/MIRI/ http://www.stsci.edu/jwst/instruments/nirspec/ http://www.stsci.edu/jwst/instruments/fgs Gardner, J. P., et al. 2006, Space Science Reviews, 123, 485–606 Mather, J., & Stockman, H. 2000, Proc. SPIE Vol. 4013, 2 Windhorst, R., et al. 2008, Advances in Space Research, 41, 1965 Windhorst, R., et al., 2011, ApJS, 193, 27 (astro-ph/1005.2776).

Northrop Grumman Expertise in Space Deployable Systems

- Over 45 years experience in the design, manufacture, integration, verification and flight operation of spacecraft deployables
- 100% mission success rate, comprising over 640 deployable systems with over 2000 elements

JWST underwent several significant replans and risk-reduction schemes:

- \lesssim 2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.
- 2005: Eliminate costly 0.7-1.0 μ m performance specs (kept 2.0 μ m).
- 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.
- 2006: All critical technology at Technical Readiness Level 6 (TRL-6).
- 2007: Further simplification of sun-shield and end-to-end testing.
- 2008: Passes Mission Preliminary Design & Non-advocate Reviews.
- 2010, 2011: Passes Mission Critical Design Review: Replan Int. & Testing.

Project Funded Schedule Reserve

Keys to stay on schedule: 1) Sufficient Project contingency (≳25% of total).
2) Well replanned and managed Project (starting late summer 2011).

Fiscal Year 2015 JWST HQ Milestones

Month	Milestone	FY2014 Deferral	Comment
	1 Secondary Mirror Structure dynamics Test Readiness Review		Completed 11/20/14
Oct-14	2 ISIM Cyo-vacuum Test #2 complete	•	Completed 9/23/14
	3 Flight and flight spare MIRI Cryocooler Electronics Assembly delivered to JPL	•	Completed 10/6/14
	4 Johnson Space Center Optical Ground Support Equipment integration complete	•	Completed 10/10/14
	5 Install Engineering Development Unit Secondary Mirror Assembly onto Pathfinder		Completed 10/10/14
Nov-14	6 Johnson Space Center (JSC) Chamber A commissioning test start		Completed 10/18/14
	7 Data Management Subsystem software Build 3 delivery		Completed 9/30/14
	8 Demonstration model Mid-Boom Assembly thermal vacuum test start		Completed 11/19/14
	9 Transfer Telescope Pathfinder Structure ownership to GSFC		Completed 10/31/14
Dec-14	10 Flight Operations Subsystem Build 1 System Design Review		Completed 11/20/14
	12 Deliver flight Cold Head Accombly to ISIM for Cruce vacuum text #2		Completed 11/3/14
	12 Deriver high Cold Head Assembly to Islivi for Cryo-vacuum test #5		Completed 12/9/14
	14 Deliver Spacecraft Simulator handbook, Rev B (flight software huild 1) to GSEC		Completed 12/3/14
Jan-15	15 ISC Chamber & Commissioning complete		Completed 12/11/14
	16 Start formal Engineering Model Test Bed electrical integration		Completed 11/13/14
	17 Sunshield Mid-hoom Manufacturing Readiness Review		Completed 2/9/15
	18 Sunshield Flight Laver 3 delivered to Northron-Grumman (NGAS)		Completed 2/16/15
Feb-15	19 Deliver Telescone Pathfinder Structure to ISC		Completed 2/4/15
	20 Observatory Operations Scripts Subsystem Build 4 delivery		Completed 1/16/15
	21 Wavefront Sensing and Control Software Build 4 delivery		Completed 12/30/14
	22 Qualification Sunshield Membrane Retention Device thermal vacuum test start		Completed 3/12/15
	23 Deliver Cryocooler Jitter Attenuator Assembly to Optical Telescope Element		Delayed to April, ground support equipment issue
Mar-15			Delayed to June due to test unit welding issue, no schedule
	24 NGAS Acceptance of Spacecraft propellant tank		impact
	25 Near Infrared Instrument Detector changeouts complete		Completed 4/3/2014
	26 Start acceptance testing of flight Cryocooler Assembly and Electronics	•	
Apr-15	27 Flight Observatory Deployment Tower Assembly complete		Completed 3/12/15
ripi 10	28 ISIM Vibration Testing complete		
	29 Start Optical Ground Support Equipment test #1 at JSC		
	30 Flight Cryocooler Compressor Assembly to JPL for Acceptance Test #3	•	
	Dual Thruster Module Test Readiness Review		Milestone deleted, due to change in thruster design, new milestone in lune (#36)
May-15	31 Spacecraft Flight Software Build 2.2 Test Readiness Review		micscone in sure (#50).
	32 Sunshield Forward Cover Assemby shipped to NGAS		Moved to July, reprioritizing work for efficiencies at Nexolve
	33 Deliver Flight Aft Optics System to Telescope Pathfinder		
	34 Data Management Subsystem Build 4 delivery		
	35 Attitude Control System test set delivery to Observatory Integration and Test		Completed 2/6/15
	36 Propellant Mid-Course Correction testing complete	•	(modified milestone to include testing post build of hardware
Jun-15	37 Delivery of new Vibration Test System to GSFC		
	38 ISIM Acoustic testing complete		
	39 Proposal Planning Subsystem Build 11		
	40 Thruster Module Test Readiness Review		Completed 2/23/15
	41 Flight spare cryo-cooler assembly to JPL for Acceptance Test #4	•	
Jul-15	42 Aft Deployable ISIM Radiator build complete		
	43 ISIM Electro-Magnetic testing complete		
	44 Deliver Spacecraft Side Equipment Panels to Observatory integration and testing		
Aug-15	45 Deliver Reaction Wheel Assemblies to Observatory integration & testing		
	46 Start ISIM Cryo-vacuum Test #3		
	47 Start Optical Ground Support Equipment Test #2 at JSC		
Sep-15	48 Deliver Communications Antenna Bi-Axial Gimbal Assembly to Observatory integration		
	and testing		

Milestones: How the Project reports its progress monthly to Congress.

Milestone Performance

• Since the September 2011 replan JWST reports high-level milestones monthly to numerous stakeholders

	Total Milestones	Total Milestones Completed	Number Completed Early	Number Completed Late	Deferred to Next Year
Y2011	21	21	6	3	0
Y2012	37	34	16	2	3
Y2013	41	38	20	5	3
-Y2014 •	• 36	23	10	8	11
Y2015	48	25	16	5*	0

*Late milestones have been or are forecast to complete within the year. Deferred milestones are not included in the number-completed-late tally.

 Milestone accounting in FY2014 was complicated by the government shutdown and multicomponent milestones

FY14: 8 milestones late by 1 month due to Oct 13 Government shutdown. FY15: 4/5 of the "Lates" not on critical path, causing no launch delay.

Simplified Schedule

Path forward to Launch (in Oct. 2018): 10 months schedule reserve. Instruments+detectors & Optical Telescope Element remain on critical path.

- Center Section is complete
- Wings and cryo cycling is complete
- BSF assembly is complete
- Integration of the BSF to Center Section Complete
 - Cryo Cycling at MSFC XRCF complete

BSF and Center Section

Flight back-plane ready to receive mirrors, starting in Fall 2014.

Sunshield Template Membrane Work Completed

Templates Verify Design/Manufacturing Prior to Flim

- All Template Layers Completed
- Preparing for flight article manufacturing
- First two Flight Manufacturing Readiness Reviews Completed
- Membrane pull out test complete

Stringing Operations

Hole Tool Operations

Template Layers 3-5

Flight sunshield to be completed & tested in 2015 at Northrop (CA).

Telescope Assembly Ground Support Equipment

Hardware has been installed at GSFC approximately 8 weeks ahead of schedule

First light NIRCam		After Step 1	Initial Capture	Final Condition
	1. Segment Image Capture	* * * * * * * * * * * * * * * * * *	18 individual 1.6-m diameter aberrated sub-telescope images PM segments: < 1 mm, < 2 arcmin tilt SM: < 3 mm, < 5 arcmin tilt	PM segments: < 100 μm, < 2 arcsec tilt SM: < 3 mm, < 5 arcmin tilt
2. Coarse Alignment Secondary mirror aligned Primary RoC adjusted		After Step 2	Primary Mirror segments: < 1 mm, < 10 arcsec tilt Secondary Mirror : < 3 mm, < 5 arcmin tilt	WFE < 200 μm (rms)
3. Coarse Phasing - Fine Guiding (PMSA piston)		After Step 3	WFE: < 250 μm rms	WFE <1 µm (rms)
4. Fine Phasing		After Step 4	WFE: < 5 μm (rms)	WFE < 110 nm (rms)
5. Image-Based Wavefront Monitoring		After Step 5	WFE: < 150 nm (rms)	WFE < 110 nm (rms)

JWST's Wave Front Sensing and Control is similar to the Keck telescope. In L2, need WFS updates every 10 days depending on scheduling/illumination.

Wave-Front Sensing tested hands-off at 40 K in 1-G at JSC in 2015–2016. Ball 1/6 scale-model for WFS: produces diffraction-limited 2.0 μ m images.

JWST can observe North/South Ecliptic pole targets continuously:

- 1000-hr JWST projects swap back/forth between NEP/SEP targets.
- They will rely a lot on Rockwell Collins' (Heidelberg) reaction wheels.

• (3c) What instruments will JWST have?

Solution = 150 nm RMS OTE wavefront error ≤ 150 nm RMS OTE wavefront error

All JWST instruments can in principle be used in parallel observing mode:
Currently only being implemented for parallel *calibrations*.

Centaurus A NGC 5128 HST WFC3/UVIS

F225W+F336W+F438W

F502N [O III] F547M y F657N Hα+[N II] F673N [S II]

3000 light-years

1400 parsecs

56″

[Left] CSIRO/ATNF 1.4 GHz image of Cen A (Feain⁺ 2009).
Fermi GeV source (Yang⁺ 12); & Auger UHE Cosmic Rays (Abreu⁺ 2010).
[Middle] SF in Cent A jet's wake (Crockett⁺ 2012, MNRAS, 421, 1602).
[Right] Well determined ages for young (~2 Myr) stars near Cen A's jet.

• JWST will trace older stellar pops and SF in much dustier environments.

• We must do all we can with HST in the UV-blue before JWST flies.

(2b) HST WFC3 observations of QSO host systems at $z\simeq$ 6 (age \lesssim 1 Gyr)

Careful contemporaneous orbital PSF-star subtraction: Removes most of "OTA spacecraft breathing" effects (Mechtley ea 2012, ApJL, 756, L38).
PSF-star (AB~15 mag) subtracts z=6.42 QSO (AB~18.5) nearly to the noise limit: NO host galaxy detected 100×fainter (AB≳23.5 at r≳0^{''}/3).

(2b) WFC3: Detection of one QSO Host System at $z\simeq 6$ (Giant merger?)

- Monte Carlo Markov-Chain of observed PSF-star + Sersic ML lightprofile. Gemini AO images to pre-select PSF stars (Mechtley⁺ 2014).
- First detection out of four $z\simeq 6$ QSOs [2 more to be observed].
- One $z\simeq 6$ QSO host galaxy: Giant merger morphology + tidal structure??
- Same J+H structure! Blue UV-SED colors: $(J-H) \simeq 0.19$, constrains dust.
 - $M_{AB}^{host}(z\simeq 6) \lesssim -23.0 \text{ mag}$, i.e., $\sim 2 \text{ mag}$ brighter than $L^*(z\simeq 6)!$
- \Rightarrow z \simeq 6 QSO duty cycle $\lesssim 10^{-2}$ ($\lesssim 10$ Myrs); 1/4 QSO's close to Magorrian.
 - JWST Coronagraphs can do this 10–100× fainter (& for z \lesssim 20, λ \lesssim 28 μ m).
(2b) HST WFC3 observations of dusty QSO host galaxies at $z\simeq 6$

Blue dots: z≃6 QSO SED, Grey: Average radio-quiet SDSS QSO spectrum at z≳1 (normalized at 0.5μ). Red: z≃6 host galaxy (WFC3+submm).
Nearby fiducial galaxies (starburst ages≲1 Gyr) normalized at 100μm: [LEFT] Rules out z=6.42 spiral or bluer host galaxy SEDs for 1148+5251. (U)LIRGs & Arp 220s permitted (Mechtley et al. 2012, ApJL, 756, L38). [RIGHT] Detected QSO host has IRAS starburst-like SED from rest-frame UV-far-IR, A_{FUV}(host)~1 mag (Mechtley 2013 PhD; et al. 2014).
JWST Coronagraphs can do this 10–100× fainter (& for z≲20, λ≲28μm).

(2b) WFC3 observations of QSO host galaxies at $z\simeq 2$ (evidence for mergers?)

 Monte Carlo Markov-Chain runs of observed PSF-star + Sersic ML light-profile models: merging neighbors (some with tidal tails?; Mechtley, Jahnke, MPI, Koekemoer, Windhorst et al. 2014).

• JWST Coronagraphs can do this 10–100× fainter (& for z \lesssim 20, λ \lesssim 28 μ m).

[TOP]: [Left] HUDF F160W image with *worst case* (95% of Zodi) rogue-path amplitude imposed \pm a 4% *linear gradient* from corner-to-corner.

[Middle]: Best fit to sky-background with R. Jansen's "rjbgfit.pro".

[Right]: HUDF image from left with best-fit sky-background subtracted.

[BOTTOM]: Same as top row, but with a *single-component simple 2D pattern* superimposed, modeled and removed, respectively.

• If JWST rogue-path straylight has slight or complex gradients, we must carefully plan JWST imaging of lensing clusters with strong ICL.

[LEFT]: Completeness tests in HUDF F160W image *before* imposing on top of Zodi (=22.70 H-mag arcsec⁻²; Petro 2001) [2nd–5th row]: Constant 95% of Zodi amplitude; $+ a \pm 4\%$ linear gradient; or simple 2D pattern of $\pm 4\%$; or a more complex pattern.

[RIGHT]: Same as left *after* best fit to + removal of image sky-background. **Red** and blue lines: 50% **5**- σ and 10- σ AB-completeness limits, resp.

• Simple low-frequency rogue-path gradients can be removed from "random" deep fields, without much extra loss in sensitivity. Clusters: TBD.

HST/WFC3 G102 & G141 grism spectra in GOODS-S ERS (Straughn⁺ 2010)
IR grism spectra from space: unprecedented new opportunities in astrophysics.
JWST will provide near-IR grism spectra to AB≲29 mag from 2–5.0 µm.

(4b) Predicted Galaxy Appearance for JWST at redshifts z \simeq 1–15

Ultraviolet Galaxies NASA and R. Windhorst (Arizona State University) • STScI-PRC01-04

• The rest-frame UV-morphology of galaxies is dominated by young and hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison with very high redshift galaxies seen by JWST.

(4b) Predicted Galaxy Appearance for JWST at redshifts $z\simeq 1-15$

HST z=0 JWST z=2 z=5 z=9 z=15

With Hubble UV-optical images as benchmarks, JWST can measure the evolution of galaxy structure & physical properties over a wide range of cosmic time:

• (1) Most spiral disks will dim away at high redshift, but most formed at $z \lesssim 1-2$.

Visible to JWST at very high z are:

- (2) Compact star-forming objects (dwarf galaxies).
- (3) Point sources (QSOs).
- (4) Compact mergers & train-wrecks.

B, I, J AB-mag vs. half-light radii r_e from RC3 to HUDF limit are shown.

All surveys limited by by SB (+5 mag dash)

Deep surveys bounded also by object density.

Violet lines are gxy counts converted to to natural conf limits.

Natural confusion sets in for faintest surveys (AB≳25). Will update for JWS

