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• (1) Update on the James Webb Space Telescope (JWST), 2015.

• (2) Hubble (Ultra)Deep & Frontier Fields to find z∼9–11 objects:
— Current limitations

• (3) How can JWST measure the Epoch of First Light (using lensing)?

• How many random Webb Deep Fields (WDFs) compared, to the best
lensing targets for JWST?

• (4) Summary and Conclusions.
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Talk is on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/israel15bgu_hstjwst.pdf
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Any (space) mission is a balance between what science demands, what
technology can do, and what budget & schedule allows ... (courtesy Prof. R. Ellis).



JWST ≃2.5× larger than Hubble, so at ∼2.5× larger wavelengths:

JWST has the same resolution in the near-IR as Hubble in the optical.



JWST is the perfect near–mid-IR sequel to HST and Spitzer:

• Vastly larger A(×Ω) than HST in UV-optical and Spitzer in mid-IR.



(1) Update of the James Webb Space Telescope (JWST), 2015.

To be used by students & scientists after 2018 ... It’ll be worth it.

(RIGHT) Life-size JWST prototype on the Capitol Mall, May 2007.



(1) Update of the James Webb Space Telescope as of 2015.

• A fully deployable 6.5 meter (25 m2) segmented IR telescope for imaging
and spectroscopy at 0.6–28 µm wavelength, to be launched in Fall 2018.

• Nested array of sun-shields to keep its ambient temperature at 40 K,
allowing faint imaging (AB=31.5 mag) and spectroscopy.



• The JWST launch weight will be <
∼6500 kg, and it will be launched to

L2 with an ESA Ariane-V launch vehicle from Kourou in French Guiana.



(1a) How will JWST travel to its L2 orbit?

• After launch in (Oct.) 2018 with an ESA Ariane-V, JWST will orbit
around the Earth–Sun Lagrange point L2, 1.5 million km from Earth.

• JWST can cover the whole sky in segments that move along with the
Earth, observe >

∼70% of the time, and send data back to Earth every day.



• (1b) How will JWST be automatically deployed?

• During its two month journey to L2, JWST will be automatically de-
ployed, its instruments will be cooled, and be inserted into an L2 orbit.

• The entire JWST deployment sequence is being tested several times on
the ground — but only in 1-G: component and system tests in 2014–2016
at GSFC (MD), Northrop (CA), and JSC (Houston).

• Component fabrication, testing, & system integration is on schedule: 18
out of 18 flight mirrors completely done, and meet the 40K specifications.



Active mirror segment support through “hexapods”, similar to Keck.

Redundant & doubly-redundant mechanisms, quite forgiving against failures.



May 2015: >
∼98% of launch mass designed and built (>

∼65% weighed).









Spring 2014: All 18 flight mirrors delivered to NASA GSFC (MD).



July 2014: Secondary Mirror Support deployment successfully tested.



(1) JWST hardware to date, and how to best use it for high redshift lensing.

[LEFT]: Aug. 2014: Engineering Kapton Sunshield; 2015: Flight Sunshield.

[RIGHT]: Nov. 2014: First JWST mirrors mounted onto support structure,
using Engineering Demo mirrors — Flight mirrors to be mounted in 2015.

• Our Galaxy is a bright IR source at λ>
∼1–5µm: In certain directions of

sky, some straylight can hit secondary mirror via Sunshield: <
∼40% of Zodi.

What does this mean for JWST lensing studies of First Light objects?







(1c) JWST instrument update: US (UofA, JPL), ESA, & CSA.

All delivered: MIRI 05/12; FGS 07/12; NIRCam 07/13, NIRSpec 9/13.



• JWST hardware made in 27 US States: >
∼98% of launch-mass finished.

• Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.

• JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.

• JWST NIRCam made by UofA and Lockheed.



JWST’s short-wavelength (0.6–5.0µm) imagers:

• NIRCam — built by UofA (AZ) and Lockheed (CA).

• Fine Guidance Sensor (& 1–5 µm grisms) — built by CSA (Montreal).

• FGS includes very powerful low-res Near-IR grism spectrograph (NIRISS).

• FGS delivered to GSFC 07/12; NIRCam delivered 07/13.

• Detectors replaced in 2015 between CryoVacuum tests CV2 and CV3.



JWST’s short-wavelength (0.6–5.0µm) spectrograph:

• NIRSpec — built by ESA/ESTEC and Astrium (Munich).

• Flight build completed and tested with First Light in Spring 2011.

NIRSpec delivered to NASA/GSFC in 09/13.

• Detectors replaced in 2015 between CryoVacuum tests CV2 and CV3.





JWST’s mid-infrared (5–29µm) camera and spectrograph:

• MIRI — built by ESA consortium of 10 ESA countries & NASA JPL.

• Flight build completed and tested with First Light in July 2011.

MIRI delivered to NASA/GSFC in 05/12.



June 2014: Flight ISIM (with all 4 instruments) in OSIM; Aug. 2015: CryoVac3.



2014–2016: Complete system integration at GSFC and Northrop.
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World’s largest TV chamber OTIS: will test whole JWST in 2016–2017.



April 2015: Testing OTIS chamber with the JWST Engineering model.



(2) How can JWST measure Galaxy Assembly and SMBH/AGN Growth?

10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10-σ)
over 40 arcmin2 at 0.07–0.15” FWHM from 0.2–1.7µm (UVUBVizYJH).

JWST adds 0.05–0.2” FWHM imaging to AB≃31.5 mag (1 nJy) at 1–
5µm, and 0.2–1.2” FWHM at 5–29µm, tracing young+old SEDs & dust.



(2a) WFC3: Hubble’s new Panchromatic High-Throughput Camera

HST WFC3 and its IR channel: a critical pathfinder for JWST science.



WFC3/UVIS channel unprecedented UV–blue throughput & areal coverage:

• QE>
∼70%, 4k×4k array of 0′′.04 pixel, FOV ≃ 2′.67 × 2′.67.

WFC3/IR channel unprecedented near–IR throughput & areal coverage:

• QE>
∼70%, 1k×1k array of 0′′.13 pixel, FOV ≃ 2′.25 ×2′.25.

⇒ WFC3 opened major new parameter space for astrophysics in 2009:

WFC3 filters designed for star-formation and galaxy assembly at z≃1–8.

• HST WFC3 and its IR channel a critical pathfinder for JWST science.



WFC3 ERS 10-band redshift estimates accurate to <
∼4% with small sys-

tematic errors (Hathi et al. 2010, 2013), resulting in a reliable N(z).

• Measure masses of faint galaxies to AB=26.5 mag, tracing the process
of galaxy assembly: downsizing, merging, (& weak AGN growth?).

⇒ Median redshift in (medium-)deep fields is zmed ≃1.5–2.

• HUDF shows WFC3 z≃7–9 capabilities (Bouwens+ 2014; Yan+ 2010).

• JWST will trace mass assembly and dust content <
∼5 mag deeper from

z≃1–12, with nanoJy sensitivity from 0.7–5µm.



(3) How will JWST Observe First Light and Reionization?

• Detailed cosmological
models (V. Bromm) sug-
gest that massive “Pop
III” stars (>

∼100 Msun)
started to reionize the uni-
verse at z<

∼10–30 (First
Light).

• This should be visi-
ble to JWST as the first
Pop III stars or surround-
ing (Pop II.5) star clus-
ters, and perhaps their ex-
tremely luminous super-
novae at z≃10→30.

We must make sure that we theoretically understand the likely Pop III mass-
range, their IMF, their duplicity and clustering properties, their SN-rates,
etc., before JWST flies, so we know what to look for.



Implications of WMAP year-9 & Planck 2015 results for JWST science:

HST/WFC3 z<
∼7–10←− −→ JWST z≃8–25

The year-9 WMAP and Planck 2015 data provided better foreground re-
moval (Komatsu+ 2011; Hinshaw+ 2012; Planck VIII 2015):

=⇒ First Light & Reionization occurred between these extremes:

• (1) Instantaneous: z≃8.8±1.5 (pol. optical depth τ≃0.066±0.016), or:

• (2) Inhomogeneous & drawn out: starting at z>
∼20, peaking at z<

∼9–10,
ending at z≃7. The implications for HST and JWST are:

• HST/ACS has covered z<
∼6, and WFC3 is covering z<

∼7–10.

• JWST designed to survey First Light/Reionization from z≃8 to z≃15–20.

• Since Planck 2015’s polarization τ has come down considerably (τ≃0.066),
how many reionizers will JWST actually see at z≃10–15?



3) How will Webb measure First Light: What to expect in (Ultra)Deep Fields?

• Can’t beat redshift: to see First Light, must observe near–mid IR.

⇒ This is why JWST needs NIRCam at 0.8–5 µm and MIRI at 5–28 µm.



592h HUDF weighted log-log: FuvNuvUBViIzYJWH, AB<
∼28–31 (>

∼2 nJy).

The HST-unique part for JWST: Panchromatic 13 filter HUDF: UV–Blue emphasized.



592h HUDF weighted log-log: FuvNuvUBViIzYJWH, AB<
∼ 31 (>

∼2 nJy).

o z=7–8, o z=9, O z=10–12. Panchromatic 13 filter HUDF: Red–IR emphasized.



841 orbits = 592h HUDF: AB<
∼31 mag; Objects affect ∼45% of pixels!!

Panchromatic 13 filter HUDF: False-color “Bolometric” or χ2 image.



(2a) Current limitations: Wavelength-dependent Deep-Field Completeness limits

[LEFT]: HUDF bolometric or χ2-image (false-color log-log stretch): weighted
average of 841 orbits (592 hr) in 13 filters reaching AB<

∼31 mag.

• Faint object wings cover ∼45% of all pixels (Koekemoer et al. 2013)!

[RIGHT]: HUDF wavelength-dependent completeness functions from Monte
Carlo (MC) insertions:

• Faint-end recovery fractions drop to ∼60% at longer wavelengths.

• Even the bright-end at H≃23 AB-mag is ∼15% incomplete!



(2b) Cluster-Position Dependence of Deep-Field Completeness limits

[LEFT]: HFF cluster A2744 in: F435W+F606W, F814W+F105W, F125W+F140W+F160W.

[RIGHT, TOP]: Lensing map for A2744 from Ebeling et al. (2014) [see updated models this Workshop].

[RIGHT BOTTOM]: Position-dependent completeness in a 3×3 MC-grid.

• Faint-end lensing sample incompleteness increases from∼10–40% in the
cluster outskirts/corners to ∼50–65% in cluster center [but see MUSE results!].

• Even bright-end of the cluster image is incomplete at the 5–50% level.



(3) How can JWST best observe First Light using lensing?

?

1.6µm counts (Windhorst+2011). [F150W, F225W, F275W, F336W, F435W, F606W, F775W, F850LP, F105W, F125W, F140W not shown].

• Faint-end near-IR count-slope≃0.16±0.02 dex/mag⇐⇒

Faint-end LF-slope α(zmed ∼1.6)≃–1.4⇒ reach MAB≃–14 mag.

• 800-hr WUDF can see AB<
∼32 objects: MAB ≃–15 (LMCs) at z≃11!

• Lensing will change the landscape for JWST observing strategies (WUDFF).
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Evolution of Schechter UV-LF: faint-end LF-slope α(z), Φ∗ (z) & M∗ (z):

• For JWST z>
∼8, expect α<

∼–2.0; Φ∗ <
∼10−3 (Mpc−3) (Bouwens+ 14).

• HUDF: Characteristic M∗ may drop below –18 or –17.5 mag at z>
∼10.

⇒ Will have significant consequences for JWST survey strategy.



WMAP9/Planck13:
Reion z=11+/-1

Gxy LF (z=6-20): 

p=0.16   

(Mpc   )

Schechter LF (6<
∼z<
∼20) with best-fit α(z), Φ∗ (z), M∗ (z) & µ=0.50.

Area/Sensitivity for: HUDF/XDF, 10 WMDFs, 2 WDFs, & 1 WUDF.

• Will need lensing targets for WMDF–WUDFF to see z≃12–15 objects.



WMAP9/Planck13:
Reion z=11+/-1

Gxy LF (z=6-20): 

(Mpc   )

Same as p. 15, but optimistic M∗ (z) drop: µ=0.33 (Oesch et al. 2013).

• If so, far more 9<
∼z<
∼12 objects expected in XDF, even though N(6<

∼z<
∼8)

remains the same⇐⇒M∗ (z≃11) fainter than –18±0.5 mag?



HST Frontier Field A2744: JWST needs lensing to see First Light at z>
∼10–15.
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For JWST, use the best lenses in 2018: Rich clusters of high compactness!

[Left] Redshift surveys: SDSS z<
∼0.25 (Yang+ 2007), GAMA z<

∼0.45

(Robotham+ 2011), and zCOSMOS z<
∼1.0 (Knobel+ 2012).

• GAMA: 22,000 groups z<
∼0.45; 2400 with Nspec

>
∼5 (Robotham+ 11).

• <
∼10% of GAMA clusters compact for lensing (Konstantopoulos+ 13).

• Need large sample to identify best lenses to find z∼6–15 sources.

(3) What are the best lensing targets for JWST to see First Light?



[Left] GAMA clusters with secure AAT redshifts for R<
∼19.8 AB-mag.

Also show redshift probability and absolute magnitude (Mr ) distributions.

[Right] Measured redshift distribution for two GAMA clusters.

• Will select our WMDF IDS targets on best-lensing compact clusters.



GAMA compact clusters compared to other cluster samples:

[LEFT] Best lensing GAMA clusters vs. ROSAT, Planck, SPT, MaDCoWS.

[RIGHT] Best lensing GAMA clusters vs. CLASH clusters.

(Contours: Number of lensed JWST sources at z≃1–5 to AB<
∼27 mag).

• Resulting sweet spot for JWST lensing of First Light Objects (z>
∼10):

Redshift: 0.3<
∼z<
∼0.5; Mass: 1015−15.6 M⊙; Concentration: 4.5<

∼C<
∼8.5

• GAMA clusters confirmed w/ >
∼24 zspec’s, removing chance projections.



GAMA group/cluster mass vs. Concentration, fitted with NFW DM-halo
profiles (Barone-Nugent+ 15).

[LEFT] = Nr of expected lensed sources at 10<
∼z<
∼15 (AB<

∼30 mag).

[RIGHT] = Nr of expected lensed sources at 6<
∼z<
∼15 (AB<

∼31 mag).

• 10 WMDFs on best 1015 M⊙ clusters: ∼100 z≃6–15 sources (AB<
∼30).

• WDF (AB<
∼31 mag) will get ∼250 lensed sources at z≃6–15.

WUDFF (AB<
∼32) on best cluster yields ∼800 lensed sources at 6<

∼z<
∼15!



Conclusion: JWST First Light strategy must consider three aspects:

(1) The rapid drop in the LF Φ∗ (z) and/or M∗ (z) for z>
∼8.

(2) Cannot-see-the-forest-for-the-trees effect [“Natural Confusion” limit]:

Background objects blend into foreground because of their own diameter⇒
Need multi-λ deblending algorithms & object subtraction (e.g., wavelets).

(3) Gravitational Lensing: JWST will need to find most First Light objects
at z>
∼10–15 through the best lensing compact clusters.

• Need multi-λ object-finders that works on sloped backgrounds.

• If M∗(z>
∼10)>

∼–18 or Φ∗ <
∼10−3.5, must image, (subtract,) & model

the entire gravitational foreground, and remove the (rogue-path) straylight.



(4) Summary and Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

Management replan in 2010-2011. No technical showstoppers thus far:

• More than 98% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail.

• To see the most First Light, JWST must cover the best lensing clusters!

• Need to consider brightness of — and low-level gradients in — IntraClus-
ter Light (ICL). May need a majority of gravitational lensing targets.

(4) JWST will have a major impact on astrophysics this decade:

• IR sequel to HST after 2018: Training the next generation researchers.

• Your JWST proposals are due <
∼3 years from today!



SPARE CHARTS



• References and other sources of material shown:

http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool]

http://www.asu.edu/clas/hst/www/ahah/ [Hubble at Hyperspeed Java–tool]

http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/ [Clickable HUDF map]

http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/

http://ircamera.as.arizona.edu/nircam/

http://ircamera.as.arizona.edu/MIRI/

http://www.stsci.edu/jwst/instruments/nirspec/

http://www.stsci.edu/jwst/instruments/fgs

Gardner, J. P., et al. 2006, Space Science Reviews, 123, 485–606

Mather, J., & Stockman, H. 2000, Proc. SPIE Vol. 4013, 2

Windhorst, R., et al. 2008, Advances in Space Research, 41, 1965

Windhorst, R., et al., 2011, ApJS, 193, 27 (astro-ph/1005.2776).

http://www.asu.edu/clas/hst/www/jwst/
http://www.asu.edu/clas/hst/www/ahah/
http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/
http://www.jwst.nasa.gov/
http://www.stsci.edu/jwst/
http://ircamera.as.arizona.edu/nircam/
http://ircamera.as.arizona.edu/MIRI/
http://www.stsci.edu/jwst/instruments/nirspec/
http://www.stsci.edu/jwst/instruments/fgs




JWST underwent several significant replans and risk-reduction schemes:

• <
∼2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.

• 2005: Eliminate costly 0.7-1.0 µm performance specs (kept 2.0 µm).

• 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.

• 2006: All critical technology at Technical Readiness Level 6 (TRL-6).

• 2007: Further simplification of sun-shield and end-to-end testing.

• 2008: Passes Mission Preliminary Design & Non-advocate Reviews.

• 2010, 2011: Passes Mission Critical Design Review: Replan Int. & Testing.



Keys to stay on schedule: 1) Sufficient Project contingency (>
∼25% of total).

2) Well replanned and managed Project (starting late summer 2011).



Milestones: How the Project reports its progress monthly to Congress.



FY14: 8 milestones late by 1 month due to Oct 13 Government shutdown.

FY15: 4/5 of the “Lates” not on critical path, causing no launch delay.



Path forward to Launch (in Oct. 2018): 10 months schedule reserve.

Instruments+detectors & Optical Telescope Element remain on critical path.



Flight back-plane ready to receive mirrors, starting in Fall 2014.



Flight sunshield to be completed & tested in 2015 at Northrop (CA).





JWST’s Wave Front Sensing and Control is similar to the Keck telescope.

In L2, need WFS updates every 10 days depending on scheduling/illumination.



Wave-Front Sensing tested hands-off at 40 K in 1-G at JSC in 2015–2016.

Ball 1/6 scale-model for WFS: produces diffraction-limited 2.0 µm images.



JWST can observe North/South Ecliptic pole targets continuously:

• 1000-hr JWST projects swap back/forth between NEP/SEP targets.

• They will rely a lot on Rockwell Collins’ (Heidelberg) reaction wheels.



• (3c) What instruments will JWST have?

All JWST instruments can in principle be used in parallel observing mode:

• Currently only being implemented for parallel calibrations.





[Left] CSIRO/ATNF 1.4 GHz image of Cen A (Feain+ 2009).

Fermi GeV source (Yang+ 12); & Auger UHE Cosmic Rays (Abreu+ 2010).

[Middle] SF in Cent A jet’s wake (Crockett+ 2012, MNRAS, 421, 1602).

[Right] Well determined ages for young (∼2 Myr) stars near Cen A’s jet.

• JWST will trace older stellar pops and SF in much dustier environments.

• We must do all we can with HST in the UV–blue before JWST flies.



(2b) HST WFC3 observations of QSO host systems at z≃6 (age<
∼1 Gyr)

• Careful contemporaneous orbital PSF-star subtraction: Removes most of
“OTA spacecraft breathing” effects (Mechtley ea 2012, ApJL, 756, L38).

• PSF-star (AB≃15 mag) subtracts z=6.42 QSO (AB≃18.5) nearly to the
noise limit: NO host galaxy detected 100×fainter (AB>

∼23.5 at r>
∼0′′.3).



(2b) WFC3: Detection of one QSO Host System at z≃6 (Giant merger?)

• Monte Carlo Markov-Chain of observed PSF-star + Sersic ML light-
profile. Gemini AO images to pre-select PSF stars (Mechtley+ 2014).

• First detection out of four z≃6 QSOs [2 more to be observed].

• One z≃6 QSO host galaxy: Giant merger morphology + tidal structure??

• Same J+H structure! Blue UV-SED colors: (J–H)≃0.19, constrains dust.

• Mhost
AB (z≃6)<

∼–23.0 mag, i.e., ∼2 mag brighter than L∗(z≃6)!

⇒ z≃6 QSO duty cycle <
∼10−2 (<

∼10 Myrs); 1/4 QSO’s close to Magorrian.

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



(2b) HST WFC3 observations of dusty QSO host galaxies at z≃6
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Arp 220

IRAS 22491-1808

IC 1623

NGC 4631

J1148+5251 (AGN + Host)

J1148+5251 (Host Only)

• Blue dots: z≃6 QSO SED, Grey: Average radio-quiet SDSS QSO spec-
trum at z>

∼1 (normalized at 0.5µ). Red: z≃6 host galaxy (WFC3+submm).

• Nearby fiducial galaxies (starburst ages<
∼1 Gyr) normalized at 100µm:

[LEFT] Rules out z=6.42 spiral or bluer host galaxy SEDs for 1148+5251.

(U)LIRGs & Arp 220s permitted (Mechtley et al. 2012, ApJL, 756, L38).

[RIGHT] Detected QSO host has IRAS starburst-like SED from rest-frame
UV–far-IR, AFUV (host)∼1 mag (Mechtley 2013 PhD; et al. 2014).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



(2b) WFC3 observations of QSO host galaxies at z≃2 (evidence for mergers?)
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• Monte Carlo Markov-Chain runs of observed PSF-star + Sersic ML
light-profile models: merging neighbors (some with tidal tails?; Mechtley,
Jahnke, MPI, Koekemoer, Windhorst et al. 2014).

• JWST Coronagraphs can do this 10–100× fainter (& for z<
∼20, λ<

∼28µm).



[TOP]: [Left] HUDF F160W image with worst case (95% of Zodi) rogue-path amplitude imposed

± a 4% linear gradient from corner-to-corner.

[Middle]: Best fit to sky-background with R. Jansen’s “rjbgfit.pro”.

[Right]: HUDF image from left with best-fit sky-background subtracted.

[BOTTOM]: Same as top row, but with a single-component simple 2D pattern superimposed, modeled and

removed, respectively.

• If JWST rogue-path straylight has slight or complex gradients, we must
carefully plan JWST imaging of lensing clusters with strong ICL.



[LEFT]: Completeness tests in HUDF F160W image before imposing on
top of Zodi (=22.70 H-mag arcsec−2; Petro 2001) [2nd–5th row]:

Constant 95% of Zodi amplitude; + a ±4% linear gradient; or simple 2D
pattern of ±4%; or a more complex pattern.

[RIGHT]: Same as left after best fit to + removal of image sky-background.

Red and blue lines: 50% 5-σ and 10-σ AB-completeness limits, resp.

• Simple low-frequency rogue-path gradients can be removed from “ran-
dom” deep fields, without much extra loss in sensitivity. Clusters: TBD.



HST/WFC3 G102 & G141 grism spectra in GOODS-S ERS (Straughn+ 2010)

IR grism spectra from space: unprecedented new opportunities in astrophysics.

• JWST will provide near-IR grism spectra to AB<
∼29 mag from 2–5.0 µm.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15

• The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4b) Predicted Galaxy Appearance for JWST at redshifts z≃1–15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

• (1) Most spiral disks will
dim away at high redshift,
but most formed at z<

∼1–2.

Visible to JWST at very high
z are:

• (2) Compact star-forming
objects (dwarf galaxies).

• (3) Point sources (QSOs).

• (4) Compact mergers &
train-wrecks.
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B, I, J AB-mag vs.
half-light radii re

from RC3 to HUDF
limit are shown.

All surveys limited by
by SB (+5 mag dash)

Deep surveys bounded
also by object density.

Violet lines are gxy
counts converted to
to natural conf limits.

Natural confusion
sets in for faintest
surveys (AB>

∼25).
Will update for JWST.


