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Any (space) mission is a balance between what science demands, what
technology can do, and what budget & schedule allows ... (courtesy Prof. R. Ellis).



Outline

• (1) Recent key lessons from the Hubble Wide Field Camera 3.

• (2) Update on JWST — given in Dr. Mark Clampin’s talk.

• (3) JWST Measuring Galaxy Assembly & Supermassive Black-Hole
Growth.

• (4) How can JWST measure the Epochs of First Light & Reionization?

• (5) Summary and Conclusions.

Sponsored by NASA/HST & JWST



JWST ≃2.5× larger than Hubble, so at ∼2.5× larger wavelengths:

JWST has the same resolution in the near-IR as Hubble in the optical.



2000 Decadal: JWST is the near–mid-IR sequel to HST and Spitzer:

• Vastly larger A(×Ω) than HST in UV-optical and Spitzer in mid-IR.



(1) Recent key lessons from the Hubble Wide Field Camera 3.



WFC3/UVIS unprecedented UV–blue throughput & areal coverage:

• QE>
∼70%, 4k×4k array, 0′′.04 pixels, FOV ≃ 2′.67 × 2′.67.

WFC3/IR unprecedented near–IR throughput & areal coverage:

• QE>
∼70%, 1k×1k array, 0′′.13 pixels, FOV ≃ 2′.25 ×2′.25.

⇒ WFC3 opened major new parameter space for astrophysics in 2009:

WFC3 filters designed for star-formation and galaxy assembly at z≃1–8.

• HST WFC3 and its IR channel a critical pathfinder for JWST science.





Well determined ages for young (∼2 Myr) stars in Centaurus A jet, with
star-formation in jet’s wake (Crockett et al. 2012, MNRAS, 421, 1602).

JWST will trace older stellar pops and SF in much dustier environments.

• We must do all we can with HST in UV–blue before JWST flies.



HST WFC3 observations of Quasar Host Galaxies at z≃6 (age<
∼1 Gyr)

• Careful contemporaneous orbital PSF-star subtraction: Removes most of
“OTA spacecraft breathing” effects (Mechtley ea 2012, ApJL, 756, L38)

• PSF-star (AB=15 mag) subtracts z=6.42 QSO (AB=19) nearly to the
noise limit: NO host galaxy detected 100×fainter (AB>

∼23.5 mag at r>
∼0′′.3).



HST WFC3 observations of Quasar Host Galaxies at z≃6 (age<
∼1 Gyr)
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• TinyTim fit of PSF-star + GalFit models QSO nearly to the noise limit:
NO z=6.42 host galaxy at AB>

∼23.5 mag at radius r≃0′′.3–0′′.5.

THE most luminous Quasars in the Universe: Are all their host galaxies
faint (dusty)? ⇒ Major implications for Galaxy Assembly–SMBH Growth.



HST WFC3 observations of Quasar Host Galaxies at z≃6 (age<
∼1 Gyr)
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• TinyTim fit of PSF-star + GalFit models of galaxy light-profile, nearly to
the noise limit: NO host galaxy at AB>

∼23.0 mag with re≃0′′.5 (Mechtley
et al. 2012, ApJL, 756, L23; astro-ph/1207.3283).

• JWST Coronagraphs can do this 10–100× fainter (and for z<
∼20, λ<

∼28µm)
— but need JWST diffraction limit at 2.0µm and clean PSF to do this.
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• Blue dots: z=6.42 QSO SED, Grey: Average radio-quiet QSO spectrum
at z<
∼1 (normalized at 0.5µ). Red: z=6.42 host galaxy (WFC3+submm).

• Nearby fiducial galaxies (starburst ages<
∼1 Gyr) normalized at 100µm:

Rules out z=6.42 spiral or bluer host galaxy SEDs. (U)LIRGs permitted.

• JWST Coronagraphs can do this 10–100× fainter (and for z<
∼20, λ<

∼28µm).



(3) Brief Update of JWST — see Dr. Mark Clampin’s talk.

To be used by students & scientists after 2018 ... It’ll be worth it.

(RIGHT) Life-size JWST prototype on the Capitol Mall.



• (4) How can JWST measure Galaxy Assembly?

10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10-σ)
over 40 arcmin2 at 0.07–0.15” FWHM from 0.2–1.7µm (UVUBVizYJH).

JWST adds 0.05–0.2” FWHM imaging to AB≃31.5 mag (1 nJy) at 1–
5µm, and 0.2–1.2” FWHM at 5–29µm, tracing young+old SEDs & dust.



Some science results of the Wide Field Camera Early Release Science data:

Galaxy structure at the peak of the merging epoch (z≃1–2) is very rich:
some resemble the cosmological parameters H0 , Ω, ρo, w, and Λ, resp.

Panchromatic WFC3 ERS images of early-type galaxies with nuclear star-
forming rings, bars, weak AGN, or other interesting nuclear structure.

(Rutkowski ea. 2012 ApJS 199, 4) =⇒“Red & dead” galaxies aren’t dead!

• JWST will observe any such objects from 0.7–29 µm wavelength.



HST WFC3: Rest-frame UV-evolution of Early Type Galaxies since z<
∼1.5.

(a)
(b)

• 10-band WFC3 ERS data measured rest-frame UV-light in nearly all
early-type galaxies at 0.3<

∼z<
∼1.5 (Rutkowski et al. 2012, ApJS, 199, 4).

=⇒ Most ETGs have continued residual star-formation after they form.

• Can determine their N(zform), which resembles the cosmic SFH dia-
gram (e.g., Madau et al. 1996). This can directly constrain the process of
galaxy assembly and down-sizing (Kaviraj, Rutkowski et al. 2012, MNRAS).

• JWST will extend Balmer+4000Å-break ages to z<
∼11.
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Lyman break galaxies at the peak of cosmic SF (z≃1-3; Hathi ea. 2010)

• JWST will similarly measure faint-end LF-slope evolution for 1<
∼z<
∼12.

(e.g., Bouwens et al. 2010; Hathi et al. 2012, 2012; Oesch et al. 2010).



Measured faint-end LF slope evolution (top) and characteristic luminosity
evolution (bottom) from Hathi et al. 2010 (ApJ, 720, 1708).

• In the JWST regime at z>
∼8, expect faint-end LF slope α≃2.0.

• In the JWST regime at z>
∼8, expect characteristic luminosity M∗ >

∼–19.

⇒ Could have critical consequences for gravitational lensing bias at z>
∼10.



WFC3 ERS 10-band redshift estimates accurate to <
∼4% with small sys-

tematic errors (Hathi et al. 2010, 2012), resulting in a reliable N(z).

• Measure masses of faint galaxies to AB=26.5 mag, tracing the process
of galaxy assembly: downsizing, merging, (& weak AGN growth?).

ERS shows WFC3’s new panchromatic capabilities on galaxies at z≃0–7.

• HUDF shows WFC3 z≃7–9 capabilities (Bouwens+ 2010; Yan+ 2010).

• WFC3 is an essential pathfinder at z<
∼8 for JWST (0.7–29 µm) at z>

∼9.

• JWST will trace mass assembly and dust content 3–4 mags deeper from
z≃1–12, with nanoJy sensitivity from 0.7–5µm.



(4a) How will JWST Observe First Light and Reionization?

• Detailed Hydrody-
namical models (e.g., V.
Bromm) suggest that
massive Pop III stars may
have reionized universe at
redshifts z<

∼10–30 (First
Light).

• A this should be visi-
ble to JWST as the first
Pop III stars and surround-
ing (Pop II.5) star clus-
ters, and perhaps their ex-
tremely luminous super-
novae at z≃10→30.

We must make sure we theoretically understand the likely Pop III mass-
range, their IMF, their duplicity and clustering properties, their SN-rates,
etc.



Implications of the (2011) 7-year WMAP results for JWST science:
HST/WFC3 z<

∼7–9←− −→ JWST z≃8–25

The year-7 WMAP data provided much better foreground removal
(Dunkley et al. 2009; Komatsu et al. 2011; see also Planck 2013):

=⇒ First Light & Reionization occurred between these extremes:

• (1) Instantaneous at z≃10.4±1.2 (τ=0.087±0.014), or, more likely:

• (2) Inhomogeneous & drawn out: starting at z>
∼20, peaking at z≃11,

ending at z≃7. The implications for HST and JWST are:

• HST/ACS has covered z<
∼6, and WFC3 is now covering z<

∼7–9.

• For First Light & Reionization, JWST must sample z≃8 to z≃15–20.

⇒ JWST must cover λ=0.7–29 µm, with its diffraction limit at 2.0 µm.



(4) How will JWST measure First Light & Reionization?

• Can’t beat redshift: to see First Light, must observe near–mid IR.

⇒ This is why JWST needs NIRCam at 0.8–5 µm and MIRI at 5–28 µm.





• Objects at z>
∼9 are rare (Bouwens+ 10; Trenti,+ 10; Yan+ 10), since

volume elt is small, and JWST samples brighter part of LF. JWST needs
its sensitivity/aperture (A), field-of-view (Ω), and λ-range (0.7-29 µm).

• With proper survey strategy (area AND depth), JWST can trace the
entire reionization epoch and detect the first star-forming objects at z<

∼20.

• JWST Coronagraphs can also trace super-massive black-holes as faint
quasars in young galaxies: JWST needs 2.0µm diffraction limit for this.



• ∼10–40% of the HUDF Y-drops and J-drops appear close to bright
galaxies (Yan et al. 2010, Res. Astr. & Ap., 10, 867).

• Expected from gravitational lensing bias by galaxy dark matter halo dis-
tribution at z≃1–2 (Wyithe et al. 2011, Nature, 469, 181).

• Need JWST to measure z≃9–15 LFs, and see if fundamentally different
from z<

∼8. Does gravitational lensing bias boost LF bright-end?



Hard to see the forest for the trees in the first 0.5 Gyrs?:

• Foreground galaxies (z≃1–2 or age≃3–6 Gyr) may gravitationally lens
or amplify galaxies at z>

∼8–10 (cosmic age<
∼0.5 Gyr; Wyithe et al. 2011).

• This could change the landscape for JWST observing strategies.



Two fundamental limitations determine ultimate JWST image depth:

(1) Cannot-see-the-forest-for-the-trees effect: Background objects blend
into foreground neighbors⇒ Need multi-λ deblending algorithms!

(2) House-of-mirrors effect: (Many?) First Light objects can be gravita-
tionally lensed by foreground galaxies⇒ Must model/correct for this!

• Proper JWST 2.0µm PSF and straylight specs essential to handle this.



(5) Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

Management replan in 2010-2011. No technical showstoppers thus far:

• More than 75% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail. JWST will determine:

• Formation and evolution of the first star-clusters after 0.2 Gyr.

• How dwarf galaxies formed and reionized the Universe after 1 Gyr.

• Galaxy Assembly and Super-Massive Black-Hole Growth for z<
∼7–12.

(4) JWST will have a major impact on astrophysics this decade:

• IR sequel to HST after 2018: Training the next generation researchers.

• JWST helps define next frontier to explore: the Dark Ages at z>
∼20.



SPARE CHARTS
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(4) Predicted Galaxy Appearance for JWST at redshifts z≃1–15

• The rest-frame UV-morphology of galaxies is dominated by young and
hot stars, with often significant dust imprinted (Mager-Taylor et al. 2005).

• High-resolution HST ultraviolet images are benchmarks for comparison
with very high redshift galaxies seen by JWST.



(4) Predicted Galaxy Appearance for JWST at redshifts z≃1–15
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With Hubble UV-optical im-
ages as benchmarks, JWST
can measure the evolution of
galaxy structure & physical
properties over a wide range
of cosmic time:

• (1) Most spiral disks will
dim away at high redshift,
but most formed at z<

∼1–2.

Visible to JWST at very high
z are:

• (2) Compact star-forming
objects (dwarf galaxies).

• (3) Point sources (QSOs).

• (4) Compact mergers &
train-wrecks.



HST/WFC3 G102 & G141 grism spectra in GOODS-S ERS (Straughn+ 2010)

IR grism spectra from space: unprecedented new opportunities in astrophysics.

• JWST will provide near-IR grism spectra to AB<
∼29 mag from 2–5.0 µm.



(Left) 128-hr HST/WFC3 IR-mosaic in HUDF at 1–1.6µm (YJH filters;
Bouwens et al 2010, Yan et al. 2010; +85-hr by R. Ellis in 09/2012).

(Right) Same WFC3 IR-mosaic, but stretched to <
∼10−3 of Zodical sky!

• The CLOSED-TUBE HST has residual low-level systematics: Imperfect
removal of detector artifacts, flat-fielding errors, and/or faint straylight.

⇒ The open JWST architecture needs very good baffling and rogue path
mitigation to do ultradeep JWST fields (JUDF’s) to 10−4 of sky.



H. Kim (2012 ApJS & Dissertation)





Well determined dust-corrected ages for stars in M83, with formation and
dissipation along/across spiral arms (Hwihyun Kim et al. 2012, ApJS).

JWST can do this in much dustier environments and for older stellar pop-
ulations. But must do all we can with HST in UV–blue before JWST flies!



JWST can do very precise photometry of transiting Earth-like exoplanets.

JWST IR spectra can find water and CO2 in (super-)Earth-like exoplanets.



JWST IR spectra can find water and CO2 in transiting Earth-like exoplanets.



Appendix 1: will JWST (& SKA) reach the Natural Confusion Limit?
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• HUDF galaxy counts (Cohen et al. 2006): expect an integral of >
∼2×106

galaxies/deg2 to AB=31.5 mag (≃ 1 nJy at optical wavelengths). JWST
and SKA will see similar surface densities to ≃1 and 10 nJy, resp.

• ⇒ Must carry out JWST and SKA nJy-surveys with sufficient spatial
resolution to avoid object confusion (from HST: this means FWHM<

∼0′′.08).

• ⇒ Observe with JWST/NIRSpec/MSA and SKA HI line channels, to
disentangle overlapping continuum sources in redshifts space.



Panchromatic Galaxy Counts from λ ≃0.2–2µm for AB≃10–30 mag

Data: GALEX, ground-based GAMA, HST ERS ACS+WFC3 + HUDF
ACS+WFC3 (e.g., Windhorst et al. 2011, ApJS 193, 27):
Filters: F225W, F275W, F336W, F435W, F606W, F775W, F850LP,
F098M/F105W, F125W, F160W.

• No single Lum.+Dens evol model fits over 1 dex in λ and 8 dex in flux.
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Combination of ground-based and space-based HST surveys show:

• (1) Apparent galaxy sizes decline from the RC3 to the HUDF limits:

• (2) At the HDF/HUDF limits, this is not only due to SB-selection effects
(cosmological (1+z)4-dimming), but also due to:

• (2a) hierarchical formation causing size evolution:
rhl(z) ∝ rhl(0) (1+z)−1

• (2b) increasing inability of object detection algorithms to deblend galaxies
at faint mags (“natural” confusion 6= “instrumental” confusion).

• (3) At AB>
∼30 mag, JWST and at >

∼10 nJy, SKA will see more than

2×106 galaxies/deg2. Most of these will be unresolved (rhl
<
∼0′′.1 FWHM

(Kawata et al. 2006). Since zmed≃1.5, this influences the balance of how
(1+z)4-dimming & object overlap affects the catalog completeness.

• For details, see Windhorst, R. A., et al. 2008, Advances in Space Re-
search, Vol. 41, 1965, (astro-ph/0703171) “High Resolution Science with
High Redshift Galaxies”


