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• (1) James Webb Space Telescope Hardware Update as of 2016.

• (2) How will JWST measure Galaxy Assembly & Supermassive Blackhole
Growth — handshake with 2016 LIGO Gravitational Wave results.

• (3) How will JWST measure the Epoch of First Light (using gravitational
lensing) — handshake with Planck 2016 results.

• (4) Where do our students end-up? Possible NASA Careers

• (5) Summary and Conclusions.

Sponsored by NASA/HST & JWST

Talk is on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/asuphysics16_hstjwst.pdf

 http://www.asu.edu/clas/hst/www/jwst/jwsttalks/asuphysics16_hstjwst.pdf


Any (space) mission is a balance between what science demands, what
technology can do, and what budget & schedule allows ... (courtesy Prof. R. Ellis).



JWST ≃2.5× larger than Hubble, so at ∼2.5× larger wavelengths:

JWST has the same resolution in the near-IR as Hubble in the optical.



JWST is the perfect near–mid-IR sequel to HST and Spitzer:

Vastly larger collecting area than HST in UV-optical and Spitzer in mid-IR.



(1) Update of the James Webb Space Telescope (JWST), 2016.

To be used by students & scientists after 2018 ... It’ll be worth it.

(RIGHT) Life-size JWST prototype on the Capitol Mall, May 2007.



(1) Update of the James Webb Space Telescope as of 2016.

• A fully deployable 6.5 meter (25 m2) segmented IR telescope for imaging
and spectroscopy at 0.6–28 µm wavelength, to be launched in Fall 2018.

• Nested array of sun-shields to keep its ambient temperature at 40 K,
allowing faint imaging (AB=31.5 mag) and spectroscopy.



• The JWST launch weight will be <
∼6500 kg, and it will be launched to

L2 with an ESA Ariane-V launch vehicle from Kourou in French Guiana.



(1a) How will JWST travel to its L2 orbit?

• After launch in (Oct.) 2018 with an ESA Ariane-V, JWST will orbit
around the Earth–Sun Lagrange point L2, 1.5 million km from Earth.

• JWST can cover the whole sky in segments that move along with the
Earth, observe >

∼70% of the time, and send data back to Earth every day.



(1b) How will JWST be automatically deployed?

• During its two month journey to L2, JWST will be automatically de-
ployed, its instruments will be cooled, and be inserted into an L2 orbit.

• The entire JWST deployment sequence is being tested several times on
the ground — but only in 1-G: component and system tests in 2014–2017
at GSFC (MD), Northrop (CA), and JSC (Houston).

• Component fabrication, testing, & system integration is on schedule: 18
out of 18 flight mirrors completely done, and meet the 40K specifications.



Active mirror segment support through “hexapods”, similar to Keck.

Redundant & doubly-redundant mechanisms, quite forgiving against failures.



Apr. 2016: >
∼99% of launch mass designed and built (>

∼70% weighed).









Spring 2014: All 18 flight mirrors delivered to NASA GSFC (MD).



July 2014: Secondary Mirror Support deployment successfully tested.



(1c) JWST hardware to date, and how to best use it for high redshift lensing.

[LEFT]: Aug. 2014: Engineering Kapton Sunshield; 2016: Flight Sunshield.

[RIGHT]: Nov. 2014: First JWST mirrors mounted onto support structure,
using Engineering Demo mirrors — Flight mirrors mounted in Jan. 2016.

• Our Galaxy is a bright IR source at λ>
∼1–5µm: In certain directions of

the sky, some straylight can hit secondary mirror via Sunshield.

• This can effect JWST (lensing) studies of First Light objects.





JWST lifetime: Requirement: 5 yrs; Goal: 10 yrs; Propellant: 14 yrs.





(1c) JWST instruments: USA (UofA, JPL), ESA, & CSA.



• JWST hardware made in 27 US States: >
∼99% of launch-mass finished.

• Ariane V Launch & NIRSpec provided by ESA; & MIRI by ESA & JPL.

• JWST Fine Guider Sensor + NIRISS provided by Canadian Space Agency.

• JWST NIRCam made by UofA and Lockheed.

This nationwide + international coalition was critical for project survival!





2014: Flight ISIM (all 4 instruments) in test; Oct. 15-Feb. 2016: CryoVac3.



2014–2016: Complete system integration at GSFC and Northrop.
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World’s largest TV chamber OTIS: will test whole JWST in 2016–2017.



April 2015: Testing OTIS chamber with the JWST Engineering model.



(2) How can JWST measure Galaxy Assembly and SMBH/AGN Growth?

HST (WFC3 & ACS) reach 26.5-27.0 mag (∼100 fireflies from Moon) over
0.1×full Moon area in 10 filters from 0.2–2 µm wavelength.

JWST has 3×sharper imaging to ∼31.5 mag (∼1 firefly from Moon) at
1–29 µm wavelength, tracing young and old stars + dust.



(2a) WFC3: Hubble’s new Panchromatic High-Throughput Camera

HST WFC3 and its IR channel: a critical pathfinder for JWST science.



WFC3/UV & IR channels unprecedented throughput & areal coverage:

• QE>
∼70%, 4k×4k array of 0′′.04 pixel, FOV ≃ 2′.67 × 2′.67.

• QE>
∼70%, 1k×1k array of 0′′.13 pixel, FOV ≃ 2′.25 ×2′.25.

⇒ WFC3 opened major new parameter space for astrophysics in 2009:

WFC3 filters designed for star-formation and galaxy assembly at z≃1–8.

• HST WFC3 and its IR channel a critical pathfinder for JWST science.



(1) LIGO first observed
Gravitational Waves on
Sept. 14, 2015.

(2) These were caused
by two merging (29+36
M⊙) black holes about
1 Gyr ago!

• E=Mc2: 3 M⊙ was
converted to energy in a
fraction of a second!



Ordinary massive stars (10–30 M⊙) leave modest black holes (∼3–10 M⊙).



Conclusion 1: Most low-mass black holes today are small, slow eaters:

• 29–36 M⊙ blackholes may be leftover from First Stars (first 500 Myr).

• Likely too massive to be leftover from ordinary Supernova explosions, ...

• How come only now seen merging by LIGO (12.5 Byr after BB)?

• They were likely not fast & efficient eaters, but slow and messy ...



Elliptical galaxy M87 with Active Galactic Nucleus (AGN) and relativistic jet:

The danger of having Quasar-like devices too close to home ...

They are EXTREMELY bright sources if viewed “down-the-pipe”.

∼0.5% of the baryonic mass, but produce most of the photons!





Blue=X-rays; White=Optical; Orange=Radio



• Quasars: Centers of galaxies with feeding supermassive blackholes:
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• Hubble IR-images of the most luminous Quasar known in the universe.

• Seen at redshift 6.42 (universe 7.42× smaller than today), 900 Myr old!

• Contains 1014 solar luminosities within a region as small as Pluto’s orbit!

• A feeding monster blackhole (>3×109 solar mass) 900 Myr after BB!



(2b) WFC3: Detection of one QSO Host System at z≃6 (Giant merger?)

[LEFT]: First detection out of four z≃6 QSOs (Mechtley et al. 2016).

• One z≃6 QSO host galaxy: Giant merger morphology + tidal structure?

• Same λ=1.25 & 1.6 µm structure. Colors constrain dust.

[RIGHT]: Blue dots: z≃6 quasar spectrum, Red: z≃6 host galaxy.

• Host galaxy has dusty starburst-like UV–far-IR spectrum: reddening of
AFUV (host)∼1 mag (Mechtley et al. 2014).

• JWST can detect 10–100× fainter dusty hosts (for z<
∼20, λ<

∼28µm).



Conclusion 2: Supermassive black holes started early & were very rapid eaters:

• Massive galaxies today contain a super-massive blackhole, no exceptions!

• Masses ∼3×109 solar, leftover from the First Stars (first 500 Myr)?

• Must have fed enormously rapidly in the first 1 Byr after the Big Bang.

• Were eating cat-astrophically (and secretly) until they ran out of food ...

• JWST can image the First Quasars to z>
∼10 (if we can find them).



Will this ever happen to our
own Galaxy?

YES! Hubble showed no lat-
eral motion of Andromeda:

Approaches at –110 km/s.

Hence, Andromeda will merge
with Milky Way!

The two blackholes (106–107

suns) will also merge!

Not to worry: only 4–5 Byr
from today!



(3) How will JWST Observe First Light and Reionization?

• Detailed cosmological
models (V. Bromm) sug-
gest that massive “Pop
III” stars (>

∼100 Msun)
started to reionize the uni-
verse at z<

∼10–30 (0.1–0.5
Gyr; “First Light”).

• This should be visi-
ble to JWST as the first
Pop III stars or surround-
ing (Pop II.5) star clus-
ters, and perhaps their ex-
tremely luminous super-
novae at z≃10→30.

We must make sure that we theoretically understand the likely Pop III mass-
range, their mass function, their clustering properties, their SN-rates, etc.,
before JWST flies, so we know what to look for.



Implications of WMAP year-1—Planck 2016 results for JWST First Light:

HST/WFC3 z<
∼7–9←− −→ JWST z≃8–25 (Courtesy: Dr. Bill Jones)

Year-9 WMAP and Planck 2016 data provided better foreground removal
(Hinshaw+ 2012; Planck 2016: B. Crill, 2016 APS mtg):

=⇒ (First Light &) Reionization occurred between these extremes:

• (1) Instantaneous: z∼7.5±1 (pol. optical depth τ≃0.055±0.009), or:

• (2) Inhomogeneous & drawn out: starting at z>
∼20, peaking at z<

∼9–10,
ending at z≃7.

• Since Planck 2016’s polarization τ has come down considerably (τ≃0.055),
how many reionizers will JWST actually see at z≃10–15?



3) How will Webb measure First Light: What to expect in (Ultra)Deep Fields?

• Can’t beat redshift: to see First Light, must observe near–mid IR.

⇒ This is why JWST needs NIRCam at 0.8–5 µm and MIRI at 5–28 µm.



592h HUDF weighted log-log: FuvNuvUBViIzYJWH, AB<
∼28–31 (>

∼2 nJy).

The HST-unique part for JWST: Panchromatic 13 filter HUDF: UV–Blue emphasized.



592h HUDF weighted log-log: FuvNuvUBViIzYJWH, AB<
∼ 31 (>

∼2 nJy).

o z=7–8, o z=9, O z=10–12. Panchromatic 13 filter HUDF: Red–IR emphasized.



841 orbits = 592h HUDF: AB<
∼31 mag; Objects affect ∼45% of pixels!!

Panchromatic 13 filter HUDF: False-color “Bolometric” or χ2 image.



(3) How can JWST best observe First Light using lensing?

?

1.6µm counts (Windhorst+2011). [F150W, F225W, F275W, F336W, F435W, F606W, F775W, F850LP, F105W, F125W, F140W not shown].

• Faint-end of near-IR galaxy counts has a steep slope.

⇒ Faint-end of luminosity function at median redshift is also steep.

• In 800-hr JWST can see to ∼32 mag: dwarf galaxy at z≃11!

• Lensing will change the landscape for JWST observing strategies.



WMAP9/Planck13:
Reion z=11+/-1

Gxy LF (z=6-20): 

p=0.16   

(Mpc   )

Predicted Schechter Luminosity Function (LF) at redshifts 6<
∼z<
∼20:

Area/Sensitivity for: Hubble UDF, Webb: 10 MDFs, 2 DFs, & 1 UDF.

• JWST need to use lensing targets to see many z≃12–15 objects.



HST Frontier Field A2744: JWST needs lensing to see First Light at z>
∼10–15.



Conclusion: JWST First Light strategy must consider three aspects:

(1) The catastrophic drop in the LF (space density) for z>
∼8.

(2) Cannot-see-the-forest-for-the-trees effect [“Natural Confusion” limit]:

Background objects blend into foreground because of their own diameter.

(3) House-of-mirrors effect [“Gravitational Confusion”]:

• JWST needs to find most First Light objects at z>
∼10–15 through the

best cosmic lenses:

• Lensing is what Einstein thought was impossible to observe.



(4) What do our Astrophysics College Graduates do?

Future Careers at NASA:

• Over the last 25 years, (ASU) Astrophysics College Graduates typically:

• (0) Have very low unemployment (<
∼few %).

• (1) About 30% are faculty at Universities or 4-year colleges.

• (2) About 30% are researchers at NASA or other government centers.

• (3) About 20% work in Aerospace or related industries.

• (4) About 20% are faculty at Community Colleges or Highschools.

See also: http://aas.org/learn/careers-astronomy

http://www.aip.org/statistics/astronomy/

https://webapp4.asu.edu/programs/t5/careerdetails/19-2011.00?init=false&nopassive=true

http://scitation.aip.org/content/aip/magazine/physicstoday/article/68/6/10.1063/PT.3.2815

http://aas.org/learn/careers-astronomy
http://www.aip.org/statistics/astronomy/
https://webapp4.asu.edu/programs/t5/careerdetails/19-2011.00?init=false&nopassive=true
http://scitation.aip.org/content/aip/magazine/physicstoday/article/68/6/10.1063/PT.3.2815


NASA workforce as pie-chart and in numbers — 2013 total: about 18,000).

Nation-wide NASA contractors (Northrup, Lockheed, Boeing, etc): 150,000.

See also: https://wicn.nssc.nasa.gov/generic.html

https://wicn.nssc.nasa.gov/generic.html


Some of our ASU grad students do important outreach events:

Annual Girl Scout Stargazing at the White House South lawn (July 2015).

Our own Amber Straughn (right; now at NASA GSFC working for Nobel
Laureate Dr. John Mather) informs the Obama’s about NASA.



(5) Summary and Conclusions

(1) HST set stage to measure galaxy assembly in the last 12.7-13.0 Gyrs.

(2) JWST passed Preliminary & Critical Design Reviews in 2008 & 2010.

• More than 99% of JWST H/W built or in fab, & meets/exceeds specs.

(3) JWST is designed to map the epochs of First Light, Reionization, and
Galaxy Assembly & SMBH-growth in detail.

• Measure rapid growth of first supermassive blackholes & host galaxies.

• To see the most First Light, JWST must cover the best lensing clusters!

• Must routinely observe what Einstein thought impossible.

(4) JWST will have a major impact on astrophysics this decade:

• IR sequel to HST after 2018: Training the next generation researchers.

• Your JWST proposals are due <
∼1.8 years from today!



SPARE CHARTS
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JWST underwent several significant replans and risk-reduction schemes:

• <
∼2003: Reduction from 8.0 to 7.0 to 6.5 meter. Ariane-V launch vehicle.

• 2005: Eliminate costly 0.7-1.0 µm performance specs (kept 2.0 µm).

• 2005: Simplification of thermal vacuum tests: cup-up, not cup-down.

• 2006: All critical technology at Technical Readiness Level 6 (TRL-6).

• 2007: Further simplification of sun-shield and end-to-end testing.

• 2008: Passes Mission Preliminary Design & Non-advocate Reviews.

• 2010, 2011: Passes Mission Critical Design Review: Replan Int. & Testing.



Keys to stay on schedule: 1) Sufficient Project contingency (>
∼25% of total).

& 2) Well replanned and managed Project (starting late summer 2011).



Milestones: How the Project reports its progress monthly to Congress.



FY14: 8 milestones late by 1 month due to Oct 13 Government shutdown.

FY15: Most the “Lates” not on critical path, causing no launch delay.



Path forward to Launch (in Oct. 2018): 10 months schedule reserve.

Instruments+detectors & Optical Telescope Element remain on critical path.



JWST’s Wave Front Sensing and Control is similar to the Keck telescope.

In L2, need WFS updates every 10 days depending on scheduling/illumination.



Wave-Front Sensing tested hands-off at 40 K in 1-G at JSC in 2016–2017.

Ball 1/6 scale-model for WFS: produces diffraction-limited 2.0 µm images.



JWST can observe North/South Ecliptic pole targets continuously:

• 1000-hr JWST projects swap back/forth between NEP/SEP targets.

• They will rely a lot on Rockwell Collins’ (Heidelberg) reaction wheels.



• (3c) What instruments will JWST have?

All JWST instruments can in principle be used in parallel observing mode:

• As of 2016, now also implemented for parallel science observations.



(6) How can JWST measure Star-Formation and Earth-like exoplanets?

NGC 3603: Young star-cluster triggering star-birth in “Pillars of Creation”



30 Doradus: Giant young star-cluster in Large Magellanic Cloud (150,000
ly), triggering birth of Sun-like stars (and surrounding debris disks).









HST/ACS Coronagraph imaging of planetary debris disk around Fomalhaut:
First direct imaging of a moving planet forming around a nearby star!

JWST can find such planets much closer in for much farther stars.



HST/NICMOS imaging of planetary system around the (carefully sub-
tracted) star HR 8799: Direct imaging of planets around a nearby star.

Press release: http://hubblesite.org/newscenter/archive/releases/2011/29/

JWST can find such planets much closer in for much farther-away stars.



JWST can do very precise photometry of transiting Earth-like exoplanets.

JWST IR spectra can find water and CO2 in (super-)Earth-like exoplanets.



JWST IR spectra can find water and CO2 in transiting Earth-like exoplanets.


