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Typical Questions

• What is the magnitude of cost and schedule growth?

• How reliable are projects’ estimates in the conceptual design stage?

• Why does cost growth occur?

• What is the relationship between cost, schedule and “complexity”?

• Are there any improvements that can be made in estimating the 
costs of future design concepts?
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Forty NASA Robotic Science Missions Experienced 27% Cost 
and 22% Schedule Growth*

* “Using Historical NASA Cost and Schedule Growth to Set Future Program and Project Reserve Guidelines”, Bitten R., Emmons D., Freaner C.
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While Significant Variability is Evident, for Every 10% of Schedule 
Growth, there is a Corresponding 12% Increase in Cost*

%Cost Growth = 1.2348 * %Schedule Growth
R2 = 0.6124
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* “Using Historical NASA Cost and Schedule Growth to Set Future Program and Project Reserve Guidelines”, Bitten R., Emmons D., Freaner C.
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Comparison of Schedule Growth Data with Agency 
Guidelines: NASA Telescope Missions
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Initial Schedule
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NASA/JPL Guidance
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Four of Six Telescope Missions 
Exceeded Common Schedule 

Reserve Guidelines 

Four of Six Telescope Missions 
Exceeded Common Schedule 

Reserve Guidelines 

Growth shown is above planned schedule reserve
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Comparison of Schedule Growth and Success for 
Planetary Missions vs. Earth-orbiting Missions*
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 Planetary Earth-
Orbiting 

Sample 
Size 10 56 

Schedule 
Growth 3.9% 38.3% 

 

• Development times for 
Planetary missions less than 
Earth-orbiting missions due 
to constrained launch 
windows

• Planetary missions 
experienced less schedule 
slip on average than earth-
orbiting missions

• However, planetary missions 
failed or impaired twice as 
often

0 10 20 30 40 50

Failures

Successes

Average Development Time

Outcome Planetary Earth-
orbiting 

% Successful 30% 84% 
% Partial 40% 7% 
% Catastrophic 30% 9% 

* “The Effect of Schedule Constraints on the Success of Planetary Missions”, Bitten R.E., Bearden D.A., Lao N.Y. and Park, T.H.
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Typical Questions

• What is the magnitude of cost and schedule growth?

• How reliable are projects’ estimates in the conceptual design stage?

• Why does cost growth occur?

• What is the relationship between cost, schedule and “complexity”?

• Are there any improvements that can be made in estimating the 
costs of future design concepts?
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How Reliable are the Projects’ Estimates at the Conceptual 
Design Stage and How Does Confidence Progress?

Ten Missions Demonstrate How Accuracy of Project Estimates Increases 
Over Time however Cost Growth, Over and Above Reserves, Still Occurs 

Deep into the Project Life Cycle

Ten Missions Demonstrate How Accuracy of Project Estimates Increases 
Over Time however Cost Growth, Over and Above Reserves, Still Occurs 

Deep into the Project Life Cycle
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In What Phase Does Cost Growth Occur?

Greatest Growth Occurs During Integration and Test (Phase D) When 
Trying to Get Hardware & Software to Function as Designed

Greatest Growth Occurs During Integration and Test (Phase D) When 
Trying to Get Hardware & Software to Function as Designed
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Typical Questions

• What is the magnitude of cost and schedule growth?

• How reliable are projects’ estimates in the conceptual design stage?

• Why does cost growth occur?

• What is the relationship between cost, schedule and “complexity”?

• Are there any improvements that can be made in estimating the 
costs of future design concepts?
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Some of the Reasons

• Inadequate definition of technical and management aspects of a program 
prior to seeking approval 

(NASA’s Project Management Study, 1980)

• Program and funding instability; difficulties in managing programs in an 
environment where funding must be approved annually and priorities 
change 

(Advisory Committee on the Future of the U.S. Space Program, 1990)

• Lack of emphasis on technological readiness and requirements on the front 
end of a program 

(NASA’s Roles and Missions Report, 1991)

• Program redesign, Technical Complexity, Budget Constraints, Incomplete 
Estimates 

(GAO Report on NASA Program Costs, 1992)
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The Reasons for Growth - Study of 40 NASA Missions:
Internal versus External Factors Driven-Growth*

• Internal Growth 
(within Project’s control) 

– Technical
• Spacecraft development difficulties 
• Instrument development difficulties
• Test failures
• Optimistic heritage assumptions

– Programmatic
• Contractor management issues
• Inability to properly staff an activity

• External Growth 
(outside Project’s control)

– Launch vehicle delay
– Project redesign
– Requirements growth
– Budget constraint
– Labor strike
– Natural disaster

External 
Only
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Both
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No 
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57.5%

Distribution of Growth

S/C Only
22.2%

Other
14.8%

Inst. Only
33.3%

Both Inst 
& S/C
29.6%

Launch
83.3%

Other
16.7%

Distribution of 
Internal Growth

Distribution of 
External Growth 

* “Using Historical NASA Cost and Schedule Growth to Set Future Program and Project Reserve Guidelines”, Bitten R., Emmons D., Freaner C.
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Mass Growth Exceeds Typical Guidance* 

• Average mass growth for ten missions studied is 43% which 
exceeds the typical industry guidelines of 30% mass reserves (over 
CBE) at the start of Phase B

43%
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* “An Assessment of the Inherent Optimism in Early Conceptual Designs and its Effect on Cost and Schedule Growth”, Freaner C., Bitten R., Bearden D., and Emmons D. 
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Assessing Relationships for Causality:
Inherent Optimism in Initial Design & Estimates*

Progression of Average Cost Growth for Discovery Selections May be 
Indicative of Competitive Pressures Leading to More Aggressive Designs
Progression of Average Cost Growth for Discovery Selections May be 

Indicative of Competitive Pressures Leading to More Aggressive Designs
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* “Using Historical NASA Cost and Schedule Growth to Set Future Program and Project Reserve Guidelines”, Bitten R., Emmons D., Freaner C.
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Typical Questions

• What is the magnitude of cost and schedule growth?

• How reliable are projects’ estimates in the conceptual design stage?

• Why does cost growth occur?

• What is the relationship between cost, schedule and “complexity”?

• Are there any improvements that can be made in estimating the 
costs of future design concepts?
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Hypothesis*

• Complexity Index could be derived using a broad set of 
parameters to arrive at a top-level representation of the 
system

• Correlation to spacecraft cost and/or development time based 
on actual program experience might be apparent

• Data assembled for most spacecraft launched during past 
two decades (1989 to present) including technical 
specifications, costs, development time, mass properties and 
operational status

• Complexity Index calculated based on performance, mass, 
power and technology choices for purposes of comparison

• Relationship between complexity and “failures” investigated 
compared with adequacy of cost and schedule resources

• Method to assess complexity at the system-level should allow 
more informed overall decisions to be made for new systems 
being conceived

Illustrations reprinted courtesy of NASA
* “A Complexity-based Risk Assessment of Low-Cost Planetary Missions: When is a Mission Too Fast and Too Cheap?”, Bearden, D.A. 
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Payload Mass (kg) 0 265 6065 90 55%
Payload Orbit Average Power (W) 0 166 1600 62 38%
Payload Peak Power (W) 0 174 750 85 31%
Payload Data Rate (average) (Kbps) 0 11678 304538 175 55%
Number of Instruments 1 4 18 3 43%
Aperture diameter (cm) 3 67 240 60 58%
Foreign Partnership None GS, LV, SC Bus PL, mult PL 0 0%
Mission Design Life  (mos) 0 39 240 7 5%
Launch Mass Margin (%) -4% 23% 60% 24% 43%
Spacecraft Launch Mass (Wet) (kg) 12 1076 18189 973 73%
Spacecraft Mass (Dry) (kg) 6 806 16329 916 77%
Spacecraft Bus Dry Mass (kg) 26 598 10264 589 76%
Spacecraft Heritage (%) 0% 42% 100% 57% 37%
Radiation Total Dose (krads) 0 74 600 50 61%
Level of Redundancy (%) 0% 36% 100% 25% 49%
Orbit Regime STS/ISS, GEO LEO/MEO, H-LEO/Dip, NE Interplan (au) 3 90%

Payload Mass (kg) 0 265 6065 90 55%
Payload Orbit Average Power (W) 0 166 1600 62 38%
Payload Peak Power (W) 0 174 750 85 31%
Payload Data Rate (average) (Kbps) 0 11678 304538 175 55%
Number of Instruments 1 4 18 3 43%
Aperture diameter (cm) 3 67 240 60 58%
Foreign Partnership None GS, LV, SC Bus PL, mult PL 0 0%
Mission Design Life  (mos) 0 39 240 7 5%
Launch Mass Margin (%) -4% 23% 60% 24% 43%
Spacecraft Launch Mass (Wet) (kg) 12 1076 18189 973 73%
Spacecraft Mass (Dry) (kg) 6 806 16329 916 77%
Spacecraft Bus Dry Mass (kg) 26 598 10264 589 76%
Spacecraft Heritage (%) 0% 42% 100% 57% 37%
Radiation Total Dose (krads) 0 74 600 50 61%
Level of Redundancy (%) 0% 36% 100% 25% 49%
Orbit Regime STS/ISS, GEO LEO/MEO, H-LEO/Dip, NE Interplan (au) 3 90%

Factor Unit Min Mean Max ExampleFactor Unit Min Mean Max Example

Complexity Index Example

BOL Power (W) 12 761 8000 1750 89%
EOL Power (W) 3 653 6600 1651 92%
Solar Array  Area (m^2) 0 5 58 7.5 82%
Solar Cell Type/Power Source Si GaAs, GaAs-mult GaAs-conc, RTG/R GaAs-mult 75%
Battery Type Lead-acid NiCd, SNiCd NiH2, Li-Ion Li-Ion 100%
Battery Capacity  (A-hr) 1 36 516 266 98%
# Articulated Structures 0 1 6 2 87%
# Deployed Structures 0 2 9 3 81%
Mech. Degrees of Freedom (max) 0 1 6 2 63%
Solar Array Configuration body-fixed deployed, single-axis articulated B 0%
Structures Material Aluminum Al w/Comp-face, Exotic Composite Al 0%

Pointing Accuracy (deg) 0 2 35 0.0039 88%
Pointing Knowledge (deg) 0 1 20 0.0036 80%
Platform Agility (slew rate) (deg/sec) 0 1 5 0.62 80%
Pointing Stability (Jitter) (urad/sec) 0 87 524 5.000 64%
Number of Thrusters+Tanks (#) 0 6 26 18 86%
Propulsion Type None, Cold-Gas Mono, Biprop-(blow,pres) OB+US, Ion mono 40%
Total Impulse (delta-V) (m/sec) 0 314 5845 190 61%
Downlink Comm Band UHF/VHF/SHF S, L, X K/Ka/Ku X 75%

Max Uplink Data Rate (kbps) 0 38 2000 2.0 27%
Transmitter Power (peak) (W) 1 10 60 20 85%
Central Processor Power (Mips) 0 58 1600 119 81%
Onboard Software Code (KSLOC) 2 78 650 110 79%
Flight Software Reuse (%) 0% 36% 90% 47% 44%
Data Storage Capacity (Mbytes) 0 4186 136000 512.0 60%
Thermal Type passive heaters, semi-active active, cryo heaters 25%
Multi-Element System? single-sc CL, mult (aerobr, rend) entry/landed/dock mult 66%

Complexity Index
Normalized Complexity Index

60%
79%
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Schedule as Function of Complexity y = 20.084e1.7203x

R2 = 0.7165
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* “A Complexity-based Risk Assessment of Low-Cost Planetary Missions: When is a Mission Too Fast and Too Cheap?”, Bearden, D.A. 
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Development Cost as Function of Complexity y = 5.6931e5.9893x

R2 = 0.8973
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* “A Complexity-based Risk Assessment of Low-Cost Planetary Missions: When is a Mission Too Fast and Too Cheap?”, Bearden, D. A. 
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3-D Trade Space – Intuitive Result: Missions that have the 
greatest complexity, are highest cost and longest development*

Higher Cost,
Longer Schedule
More Complex

Missions

* “A Quantitative Assessment of Complexity, Cost, And Schedule:  Achieving A Balanced Approach For Program Success”, Bitten R.E., Bearden D.A., Emmons D.L.
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Complexity Bands vs. Cost and Schedule Help Proposers 
Define Scope of Mission to Fit Fixed Cost & Schedule*
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* “A Quantitative Assessment of Complexity, Cost, And Schedule:  Achieving A Balanced Approach For Program Success”, Bitten R.E., Bearden D.A., Emmons D.L.
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NASA’s Report Card Following Mars ’98 Failures

• Complexity of Failed Missions High in 
Both Catagories!

• Planetary Missions are “Fastest”
– But fail more often than earth-orbiters

• NASA Earth-Orbiting Missions are 
“Cheapest”

– But longer to develop than planetary
• Overall Success Record is About 3 

out of 4 !

NASA 
Planetary

NASA Earth 
Orbiting All NASA

Average Complexity of Failed/Impaired Missions 94% 91% 93%
Average Complexity of Successful Missions 70% 55% 58%
Overall Average Complexity 82% 60% 67%
Success Ratio: "Better" 50% 86% 74%
Average Development Time: "Faster" (mos) 41 46 44
Total Spacecraft Cost: "Cheaper" ($M) 132 75 98

Reprinted with permission of Aviation Weekly and Space Technology

AW&ST 12 June 2000
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For a project that has fixed requirements and schedule, the inevitable 
outcome is that cost will grow if developmental problems occur

• Case Study: Mars Exploration Rover (MER)
– 90-day surface lifetime; ~9-mos cruise
– Launch Mass: 1050 kg (Delta II)
– Mobile platform: 1000-m range

• Assessment found that:
– 33-month development appeared inadequate
– “Open Checkbook” and heritage offset shortfall 

• Mitigations:
– Focused on rapidly deploying staff to front load 

schedule (dual/triple shifts)
– Developed extra hardware test-beds

• Cost grew from $299M to $420M
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AW&ST, 26 May 2003

Reprinted with permission of Aviation Weekly and Space Technology
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Typical Questions

• What is the magnitude of cost and schedule growth?

• How reliable are projects’ estimates in the conceptual design stage?

• Why does cost growth occur?

• What is the relationship between cost, schedule and “complexity”?

• Are there any improvements that can be made in estimating the 
costs of future design concepts?
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Example: Substantial Differences Exist between STEREO Science 
Definition Team (SDT) and Final Implemented Configuration*

STEREO STEREO
Programmatics SDT Final

Schedule (months) 40 70
Launch Vehicle Taurus Delta II

Technical
Mass (kg)

Satellite (wet) 211 612
Spacecraft (dry) 134 414
Payload 69 133

Power (W)
Satellite (Orbit Average) 152 515
Payload (Orbit Average) 58 108

Other
Transponder Power (W) 20 60
Downlink Data Rate (kbps) 150 720
Data Storage (Gb) 1 8

SDT Configuration

Final Configuration

Illustrations 
reprinted 

courtesy of 
NASA

* “An Assessment of the Inherent Optimism in Early Conceptual Designs and its Effect on Cost and Schedule Growth”, Freaner C., Bitten R., Bearden D., and Emmons D. 
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Effect of Increased Complexity on Flight System Cost:
STEREO Complexity Increased from 40% to 60%*

 System Cost as Function of Complexity y = 11.523e5.7802x

R2 = 0.8832
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* “An Assessment of the Inherent Optimism in Early Conceptual Designs and its Effect on Cost and Schedule Growth”, Freaner C., Bitten R., Bearden D., and Emmons D. 
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Schedule as Function of Complexity y = 24.22e1.6479x

R2 = 0.6889
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Effect of Increased Complexity on Development Time:
STEREO Complexity Increased from 40% to 60%*

* “An Assessment of the Inherent Optimism in Early Conceptual Designs and its Effect on Cost and Schedule Growth”, Freaner C., Bitten R., Bearden D., and Emmons D. 
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Typical Cost-risk Analyses Won’t Capture Large Changes During 
Concept Evolution*
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* “An Assessment of the Inherent Optimism in Early Conceptual Designs and its Effect on Cost and Schedule Growth”, Freaner C., Bitten R., Bearden D., and Emmons D. 
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Inadequate Budget Planning for One Project Results in a Domino 
Effect for Other Projects in the Program Portfolio
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Total Program Funding 1999-2006
• Planned = $689M
• Actual = $715M

Although the total program funding remained essentially the same over 
this time period, implementation of successive missions (e.g. MMS) was 

substantially affected
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Summary

• Methods exist to estimate cost and schedule at the conceptual phase albeit 
with some level of uncertainty

• The greatest growth manifests itself late in project during Integration & Test

• Data highlighted that the primary reason for cost and schedule growth is 
internal project technical and development issues often associated with 
instruments

• Initial project estimates may be unreliable due to design and technology 
immaturity and inherent optimism

• Success dependence on system complexity and adequacy of resources 
observed with identification of a “no-fly zone”

• Better technical and programmatic appraisal early in lifecycle is needed along 
with independent assessment of design and programmatic assumptions
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