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ABSTRACT

A key open problem within galaxy evolution is to understand the evolution of
galaxies towards quiescence. This work investigates the suppression of star-formation
through shocks and turbulence at low-redshift, and at higher-redshifts, this work
investigates the use of features within quiescent galaxy spectra to redshift estimation,
and passive evolution of aging stellar populations to understand their star-formation
histories. At low-z, this work focuses on the analysis of optical integral field spec-
troscopy data of a nearby (z ~ 0.0145) unusual merging system, called the Taffy
system because of radio emission that stretches between the two galaxies. This sys-
tem, although a recent major-merger of gas-rich spirals, exhibits an atypically low
star-formation rate and infrared luminosity. Strong evidence of shock heating as a
mechanism for these atypical properties is presented. This result (in conjunction with
many others) from the nearby Universe provides evidence for shocks and turbulence,
perhaps due to mergers, as an effective feedback mechanism for the suppression of
star-formation. At intermediate and higher-z, this work focuses on the analysis of
Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) G800L grism
spectroscopy and photometry of galaxies with a discernible 4000A break. The useful-
ness of 4000A /Balmer breaks as redshift indicators by comparing photometric, grism,
and spectrophotometric redshifts (SPZs) to ground-based spectroscopic redshifts, is
quantified. A spectral energy distribution (SED) fitting pipeline that is optimized for
combined HST grism and photometric data, developed for this project, is presented.
This pipeline is a template-fitting based routine which accounts for correlated data
between neighboring points within grism spectra via the covariance matrix formalism,
and also accounts for galaxy morphology along the dispersion direction. Evidence is

provided showing that SPZs typically improve the accuracy of photometric redshifts



by ~17-60%. For future space-based observatories like the Nancy Grace Roman Space
Telescope (formerly the Wide Field InfraRed Survey Telescope, i.e., WFIRST) and
Euclid, this work predicts ~700-4400 galaxies degree2, within 1.6 < 2 < 3.4, for
galaxies with 4000A breaks and continuum-based redshifts accurate to <2%. This
work also investigates the star-formation histories of massive galaxies (M > 1015 M).
This is done through the analysis of the strength of the Magnesium absorption feature,
Mgb, at ~5175A. This analysis is carried out on stacks of HST ACS G800L grism

data, stacked for galaxies binned on a color vs stellar mass plane.
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Chapter 1

INTRODUCTION

Over the previous two decades, one crucial observation to emerge is the decline
of overall star-formation activity in the universe over the last ~10 billion years (i.e.,
since z ~ 2, see for example the review by Madau and Dickinson 2014). This key
finding, along with our growing understanding of how star-formation in galaxies is
extinguished (termed quenching or quiescence), has driven much recent astronomical
research. Figure 1 shows the cosmic star-formation rate over time. It can be clearly
observed that the average star-formation rate in the universe rose sharply after the
Big-Bang, peaking at z ~ 2, and has been decreasing ever since. The work presented
in this dissertation attempts to build on this collective understanding by (a) addressing
how major mergers can inhibit star-formation activity, (b) investigating the different
evolutionary pathways that can be taken to quiescence, and (c) investigating how
feedback from active galactic nuclei (AGN) has affected the surroundings of quiescent
galaxies.

This dissertation is based on ground-based integral field spectroscopy data from
the McDonald Observatory (Joshi, Appleton, et al. 2019), and slitless spectroscopy
from the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3)
on the Hubble Space Telescope (HST; Joshi, Cohen, et al. 2019).
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Figure 1. From Madau and Dickinson 2014, showing the volume-averaged cosmic
star-formation rate over most of cosmic history from FUV-+IR measurements. The
many different colored points are from a compilation of studies shown in their Table 1.

1.1 Feedback Mechanisms and Pathways to Quiescence

Galaxies can have their star-formation suppressed due to many effects, generally
called feedback mechanisms, either due to internal or environmental factors. Feedback
suppresses star-formation by ejecting and/or by heating up cooler atomic and molecular
gas rendering it unavailable for star-formation within a galaxy, or by preventing the
inflow of cold gas into the galaxy. Internal feedback mechanisms generally comprise
of winds due to stellar feedback (i.e., supernovae explosions and stellar winds, see,

e.g., Dekel and Silk 1986; Heckman, Armus, and Miley 1990; Mac Low and Ferrara



1999; Heckman et al. 2000; Veilleux, Cecil, and Bland-Hawthorn 2005; Muratov et al.
2015), and winds (or jets) due to AGN feedback (e.g., Silk and Rees 1998; Croton
et al. 2006; Schawinski et al. 2007; Fabian 2012; Harrison 2017, also see chapter 4 in
this dissertation); although positive AGN feedback, an enhancement in star-formation,
is also possible. External feedback mechanisms typically involve interactions between
galaxies (e.g., such as major or minor mergers suppressing star-formation on short
timescales, Robotham et al. 2014; Joshi, Appleton, et al. 2019, also see chapter 2 in this
dissertation), or between a galaxy and the medium surrounding it (e.g., strangulation
or ram-pressure stripping of gas from galaxies within galaxy groups and clusters,
Fujita 2004; Kawata and Mulchaey 2008; Peng, Maiolino, and Cochrane 2015).

It should also be noted that either internal or external processes can both drive
shocks into the interstellar /intergalactic media of galaxies, and cause a suppression
of star-formation. For example, I discuss the effects of shocks and turbulence on the
Taffy system (a pair of gas-rich spirals with a recent head-on encounter) in chapter 2
where shocks are driven into the intergalactic medium between the two galaxies as a
result of their recent collision. The effects of shocks in the Taffy galaxies, in particular,
are especially pronounced given the counter-rotation of the two galaxies, since the
counter-rotation leads to a boost in the shock velocities (see, e.g., Yeager and Struck

2020).

1.2 A Brief Introduction to Integral Field and Slitless Spectroscopy

Throughout this dissertation, I refer to integral field spectroscopy (in chapter 2)

and to slitless (or grism) spectroscopy (in chapters 3 and 5). Here I provide a few

sentences of introduction to both spectroscopic techniques. Integral field spectroscopy



is a spectroscopic technique used to obtain spatially resolved spectra, i.e., obtaining a
spectrum associated with every location covered within the field-of-view (where the
extent of each “location” is determined by the spatial resolution of the instrument). The
advantage with this technique is being able to simultaneously obtain spatially resolved
spectra for all sources of light within a field-of-view without the added difficulty of
having spectral overlap (as is the case for slitless spectroscopy) (for a review, see,
Allington-Smith 2006). The disadvantage with integral field spectroscopy, however, is
the limited observable field-of-view (FoV). This is typically only about 2x2 square
arcmin even for integral field units with the largest FoVs.

Slitless spectroscopy (also referred to as grism spectroscopy within this dissertation
since slitless spectroscopy on the HST is accomplished using a grism) is also a
technique that is used to obtain spatially resolved spectra (e.g., for details on HST
grism spectroscopy and reduction, see, Pasquali et al. 2001, 2006). The advantages
of slitless spectroscopy are similar to those of integral field spectroscopy. However
spectral overlap for sources lying along the dispersion direction is an issue; also see
section 3.4 in chapter 3 for a discussion on the nuances of grism data analysis. It is
generally the case that ground-based integral field spectroscopy is better at providing
high-resolution spectroscopy of faint emission lines within low-redshift objects (as I've
done in chapter 2), whereas, space-based slitless spectroscopy is better at providing
low-resolution spectroscopy of the stellar continuum and absorption features for fainter
objects (as I've done in chapters 3 and 5).

The chapters in this dissertation are organized as follows: in chapter 2, I describe
my work on the Taffy galaxies, which are a pair of merging (head-on) gas-rich spiral
galaxies with unusually low infra-red (IR) luminosity and star-formation rates. In

chapter 3, I describe my work investigating the 4000A break, a feature that gets



stronger for aging stellar populations, as a redshift indicator within grism spectra.
In chapter 4, I describe work I did investigating AGN feedback through the thermal
Sunyaev-Zel’dovich (tSZ) effect. In chapter 5, I present my investigation of the
star-formation histories (SFHs) and quenching timescales for massive galaxies at
intermediate and high-redshifts, and I conclude with a review and summary of my

future work in chapter 6.



Chapter 2

EVIDENCE FOR SHOCK-HEATED GAS IN THE TAFFY GALAXIES AND
BRIDGE FROM OPTICAL EMISSION-LINE IFU SPECTROSCOPY

This chapter is reproduced from the version published in 2019 in The Astrophysical

Journal, Volume 878, Page 161, with permission from the co-authors.

2.1 Introduction

It is now generally accepted that collisions and mergers between gas-rich galaxies
often generate intense star-formation activity and associated strong infrared emission
(e.g., Joseph and Wright 1985; Soifer et al. 1987; Soifer and Neugebauer 1991). Ultra
Luminous Infrared Galaxies, ULIRGs (Lig > 10'? L) and LIRGS (10'? > Lz /Ly >
10™) frequently involve mergers or interactions of gas-rich galaxy pairs, with the
likelihood of them being associated with a major merger increasing with infrared
(IR) luminosity (Armus, Heckman, and Miley 1987; Sanders, Soifer, Elias, Madore,
et al. 1988; Sanders, Soifer, Elias, Neugebauer, et al. 1988; Sanders and Mirabel 1996;
Elbaz et al. 2002; Armus et al. 2009). While it is clear that major mergers play an
important role in generating high IR luminosities in the local universe, their role at
higher redshift is still being explored.

Shocks and turbulence potentially play a role in changing the conditions of the
gas in collisional galaxies, not always leading to enhancements in star formation. In
the local Hickson Compact Groups, Alatalo et al. 2015 found evidence that multiple

collisions can quench or significantly suppress star formation in some systems where



turbulence and shocks are present (see also Lisenfeld et al. 2017). These galaxies had
previously been found to contain large volumes of warm molecular hydrogen that
emit their energy mainly in the mid-IR, and were believed to be shock-heated (Cluver
et al. 2013). An extreme example is found in the Stephan’s Quintet system. Here, a
large filament of molecular gas is found in the intergalactic medium in which a large
fraction of the gas is warm and in a shock-heated phase (Appleton et al. 2006; Guillard
et al. 2009; Cluver et al. 2010; Appleton et al. 2017). Shocks, though hard to detect
in LIRGs and ULIRGs because of the dominant effects of star formation on optical
emission-line diagnostics, are being increasingly detected with the advent of spatially
resolved optical integral field unit (IFU) spectroscopy (Rich, Kewley, and Dopita 2011,
2014, 2015). How large-scale shocks and turbulence affect the star formation in such
galaxies, and how important this process is in higher-redshift systems is currently
unknown.

An interesting example of an ongoing major merger that may be caught in a highly
disturbed state is the Taffy galaxy pair UGC 12915/4 (hereafter Taffy-N and Taffy-S
for simplicity). Despite having recently undergone a strong head-on collision, the
Taffy system appears surprisingly normal in its IR properties, with a total Lig = 4.5
x 10'° L, summed over the whole system based on multi-wavelength Spitzer and
Herschel SED photometric fitting Appleton et al. 2015; (see also Jarrett et al. 1999;
Sanders et al. 2003). The reason that the system is so normal in the IR, despite
its recent violent history, is not known. It may be that the Taffy system is in a
peculiar moment where most of its gas is so disturbed that it cannot yet generate
significant star formation. If so, studying the conditions of the gas in between the
galaxies (referred to as the bridge) may well yield interesting insight into how shocks

and turbulence can inhibit star formation in violently colliding galaxies.



The Taffy galaxies were named for the discovery of a bridge of radio continuum
emission, stretching, like salt-water taffy (candy), between the galaxies (Condon et al.
1993). Evidence suggests that the two galaxies collided 25-30 Myr ago, allowing
their stellar components to pass through each other, but stripping ~ 7 x 10° M, of
molecular and atomic gas into a bridge between them (Braine et al. 2003; Gao, Zhu,
and Seaquist 2003; Zhu et al. 2007). There is more gas in the bridge than in the two
galaxies combined.

The bridge appears to be strongly disturbed (and probably turbulent), based on
kinematically-broad CO line studies of the bridge, and strong mid-IR Hs emission
and [CII|157.7um lines suggestive of shocks (Peterson et al. 2012, 2018). Despite its
high gas mass, the average star formation rate (SFR) in the entire bridge through
SED fitting is quite low, ~0.45 M, yr~!, excluding the prominent extragalactic HII
region seen south-west of UGC 12915, which was separately found to have a SFR of
0.24 My, yr~! (Appleton et al. 2015). Numerical models of such a head-on collision
between two gas rich galaxies (e.g., Struck 1997) and a detailed model of the Taffy
system (Vollmer, Braine, and Soida 2012) provide strong support for the idea that the
gas left behind in the center of mass frame of the collision would be highly turbulent,
and that some would be strongly shock heated. Appleton et al. 2015 detected faint
extended soft X-ray emission, and several compact point X-ray sources in the bridge,
the former being consistent with shock-heated gas that has not had time to completely
cool since the collision occurred. Finally, Lisenfeld and V6lk 2010 concluded that the
radio emission in the bridge could be explained in terms of cosmic rays accelerated in
magnetic fields compressed in shocks.

Although the Taffy galaxies have been studied quite extensively at longer wave-

lengths (Condon et al. 1993; Jarrett et al. 1999), very little work has been done at



visible or near-IR wavelengths. Howard A. Bushouse 1987 presented early digital video
camera observations which showed Ha emission from the inner disks of both galaxies
and emission from the extragalactic HII regions in the bridge. Paa observations
from the ground were also made by Komugi et al. 2012. The galaxies show strong
disturbances in their optical structure, including rings and loops, and the possible
recent onset of star formation in the bridge, including at least one prominent extra-
galactic HII region, and fainter clusters—some of which are seen in archival NICMOS
observations from HST (Appleton et al. in preparation).

This paper represents the first major study of the ionized gas phase in the Taffy
system and bridge. I provide, for the first time, a detailed exploration of both the
kinematics and excitation properties of the optical emission line gas in the Taffy system.
The paper is organized as follows: §2.2 describes the observations and methods used
in the paper. I describe the fitting process used on the double line profiles and the
gas kinematics through Ha channel maps and velocity field moment maps in §2.3.1
and §2.4, respectively. The effects of dust extinction on the measured line fluxes are
discussed in §2.3.2. I describe the results from the line diagnostic diagrams in §2.5.
In §2.6, I discuss the results on the properties of the ionized gas and its excitation
mechanisms through the use of emission-line ratio diagnostic diagrams and comparison
with shock models. In §2.6 and §2.6.1 I discuss the estimates of the ionized gas
fraction from star formation and the SFR in the system. I discuss the evidence for
a post-starburst population in the underlying starlight in §2.6.3. In §2.7 I present
the conclusions. I assume a comoving distance to the galaxies of 62 Mpc based on a

1

mean heliocentric velocity for the system of 4350 km s™*, and a Hubble constant of

70 km s~*Mpct.



2.2 Observations, Data Reduction, and Analysis Methods

The IFU data presented in this work were obtained with the VIRUS-P Spectrograph
at McDonald Observatory (Hill et al. 2008; G. A. Blanc et al. 2010). VIRUS-P is
the Visible Integral-field Replicable Unit Spectrograph prototype (now called the
George and Cynthia Mitchell Spectrograph, GCMS) mounted on the 2.7 m Harlan
J. Smith telescope. The IFU has 246 fibers (each fiber has an angular diameter of
4716 on the sky) with a % filling factor. Several cycles of a 3-point dither pattern to
completely cover the 2.8 sq. arcminute field of view were used. The VP2 and VP4
gratings were used for the blue and red channel spectra respectively. VP2 and VP4
have a spectral resolution of 1.6 and 1.5 A and covered a range of 4700-5350 A and
62006850 A, respectively. This spectral resolution corresponds to a velocity resolution
of ~100 km s~tand ~70 km s~!at the wavelengths of H3 in VP2 and Ha in VP4,
respectively.

Observations of the Taffy galaxies were made on 2012 Jan 31 and Feb 2 (blue
spectrometer) and 2012 Feb 01 (red spectrometer) with a total exposure time per
dither position of 2200s (blue) and 1200s (red). Conditions were photometrically good
at the time of the observations with moderate seeing of 1.8-2.5 arcseconds (less than
the diameter of a fiber).

These data were processed using the VACCINE pipeline which identified and traced
each fiber on the CCD chip, and performed bias, flat-field and wavelength calibration
(based on lamp spectra) on a fiber-by-fiber basis for the science frames. VACCINE is
a Fortran-based reduction package developed for the HETDEX Pilot Survey (Adams
et al. 2011) and the VENGA project (G. A. Blanc et al. 2010). Cosmic-ray removal

was then performed using the IDL routine LA-Cosmic (van Dokkum 2001).
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2.2.1 Flux Calibration and Cube Building

The flux calibration and pointing refinements and final cube construction of these
data was performed in three steps following the methods described by Guillermo A.
Blanc et al. 2013: i) Relative spectrophotometric calibration was performed which is
applied to all the fibers. Observations were made in a 6-point dither pattern (including
several fibers) of the standard star Hz 15 (HIP 21776). An algorithm was used to
solve for the position of the star on the fibers and determine the spectrophotometric
transformation from native (ADU) units across the spectrum to units of erg s™' cm™2
A-!. The results were applied to all the fibers irrespective of throughput. This
step resulted in a relative flux uncertainty across the band of ~8%; ii) astrometry
and absolute flux calibration, using a bootstrapping method, was used to effectively
cross-correlate a reconstructed image of the galaxy derived by integrating the light
from each fiber, with a calibrated images of Taffy from the SDSS (York et al. 2000)
in the g- and r-band, suitably convolved to the resolution of the VIRUS-P fiber
system. This helped refine the astrometry, and the assembly of the final cube from the
individual observations of each field. The cross-correlation also allowed the spectrum
in each fiber to be absolutely scaled to the SDSS band in question. The details of this
procedure are given in Guillermo A. Blanc et al. 2013. Tests performed in that paper
show that the absolute spectrophotometric flux calibration has a typical accuracy
of 15-30%, after taking into account the uncertainties in SDSS calibration and the
VIRUS-P relative spectrophotometric accuracy; iii) a final flux-calibrated 3-d spectral
cube was created by combining all the various observational pointing frames into a

single interpolated cube with resulting 2 x 2 arcsec? spaxels (~0.3 kpc arcsec™! based

11



on the assumed distance of 62 Mpc). These processes were repeated for the red and

blue channels, creating final flux-calibrated blue and red spectral cubes.

2.2.2  Spectral Mapping, Continuum and Emission-Line Fitting

The processing and extraction of astrophysical information from the data cubes
was done using a combination of IRAF/PyRAF, IDL and Python routines. Before
beginning the analysis I smoothed the data cubes spatially, but not in the spectral
direction, using a Gaussian kernel with a standard deviation of 1.47 pixels. This was
done to boost the signal-to-noise ratio in areas that I was interested in; particularly the
Taffy bridge region which has relatively low signal-to-noise compared to the galaxies.
This spatial smoothing effectively reduces the noise in spectra from individual spaxels
by a factor of ~2. I used these spatially smoothed cubes for all of the analysis done
in this work.

For fitting each individual spaxel in the IFU data I used the IDL software toolkit
LZIFU (LaZy-1IFU) (Ho et al. 2016). LZIFU automates fitting multiple emission lines
superimposed on a continuum for multiple spaxels in each channel and provides 2D
maps of continuum and line fluxes, velocities and velocity dispersion. It is capable
of fitting emission lines that are superimposed on deep absorption features and also
emission lines with multiple velocity components. Figures 2 and 3 show the fitting
results for two individual spaxels that show these features in their spectra. Figure 2
shows a spaxel that has strong HS absorption and Hf emission superimposed on the
absorption trough. This spaxel lies very close to the center of Taffy-N. This absorption
must be accounted for with the continuum fitting to get accurate emission line fluxes

as well as an accurate line profile. The emission lines also show evidence for double
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Figure 2. LZIFU fitting results for a spaxel that has deep Hf absorption and Hj
emission superimposed on the absorption trough. The top left and right panels show
the blue and red data respectively, along with their model fits. The bottom panels
show the corresponding residuals from the fitting. The gray line shows the raw data
from the spaxel and the blue and red lines show the model fits to the respective
channels. Note that the Figure does not show the full wavelength coverage of the data
but instead is focused on showing the relevant absorption and emission features i.e.
Hp and the |[OIII]AA4959,5007 doublet in the blue channel and Ha and its neighboring
[NII]AN6548,6583 doublet lines in the red channel.

line profiles in many positions across the system. As an example, Figure 3 shows a
spaxel which lies close to the edge of the extragalactic HII region which clearly shows

two separate velocity components.
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Figure 3. Same as Figure 2 but now showing the LZIFU fitting results for another
spaxel which displays distinct velocity components more clearly.
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LZIFU works by first fitting the continuum with a custom implementation of
the PPXF code (Cappellari and Emsellem 2004) within LZIFU and then fitting the
emission lines after subtracting the continuum model. The continuum fitting uses a
set of model templates that are fit to a combined blue+red channel spectrum. LZIFU
also accounts for systematic errors in the models and non-stellar contributions to
the continuum data by fitting a multiplicative polynomial simultaneously with the
continuum models. The emission lines along with residuals from sky line subtraction
are masked during the continuum fitting process. I also specified the following lines
to be fit (and masked during continuum fitting) - H3, the [OIII]AN4959,5007 doublet,
[OI]A6300, [OI|A6364, Ha, the [NIIJAN6548,6583 doublet, and the [SII|]AN6716,6731
doublet. The extinction corrected emission line fluxes for all the lines detected in
different regions of the Taffy system (as defined in Figure 4) are tabulated in Table 1.

I ran LZIFU on the entire IFU data cube for the Taffy galaxies which is 58 x 58
and 59 x 59 spaxels with 2227 and 2350 spectral elements for the blue and red channels
respectively. The process of fitting the full cube was not straightforward for several
reasons relating to the peculiar kinematics of the Taffy system. The LZIFU software
was designed to work best with a galaxy showing slowly-varying velocity centroids
relatively close to the initial guess for the velocity of the system. In the Taffy system,
the velocity range of the emission lines over the whole system was large, with the
emission lines sometimes exhibiting complex behavior, in addition to occasionally
being observed superimposed on deep Balmer absorption lines. Furthermore, in a
large number of spaxels, I found multiple velocity components which did not always
move together as a function of position. As a result, a single set of initial guesses
for the various starting parameters did not work for the whole cube, but had to be

adjusted spatially to achieve good fits, especially in specific regions showing double
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line profiles. After an iterative process of fitting with different starting parameters
tuned to particular regions, I was able to get a consistent set of smoothly varying
results across the whole system. I provide the most relevant LZIFU parameters and

their starting guesses in Table 2.

2.3 Results

2.3.1 Emission-Line Gas and HS Absorption Within the System

Previous observations of the Taffy system in the visible wavelength range had
reported the detection of ionized gas within the galaxies and the extragalactic HII
region (H. A. Bushouse 1986; Howard A. Bushouse 1987). Because of the sensitivity of
the VIRUS-P instrument to very faint diffuse emission, I report the presence of ionized
gas throughout the Taffy system — both within the galaxies, the so-called extragalactic
HII region, and also in the bridge between the galaxies. 1 detect emission from many
lines, including Hey, HB, the |OIII]AN4959,5007 doublet, the [NII|AA6548,6583 doublet,
and the [SII]AN6716,6731 doublet lines (see Figures 2 and 3). I also detect strong
emission from the atomic oxygen line [OI]A6300 and sometimes the weaker [OI|\6364
line in the galaxies and the extragalactic HII region in the bridge. Although emission
lines dominate in many of the locations across the system, in some cases HS emission
is observed superimposed on a broad absorption trough indicative of a post-starburst
population (as seen in Figure 2).

In Figure 4 I present some extracted spectra in several places in the system to
provide an overview of the complexity of the kinematics in this system. The spectra

show expanded views of the [OIII]A5007 and Ha lines along the major axis of both
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galaxies and a sampling of the bridge. As with the previous HI investigations of Taffy
by Condon et al. 1993; Braine et al. 2003, the ionized gas spectra along the major axis
of Taffy-N (N1-N5) show clear rotation from low to high velocities as one proceeds
northwards, whereas in Taffy-S (S1-S5), the rotation is also obvious, but in the opposite
sense. This confirms the suggestion that the galaxies were counter-rotating when they
collided. Many of the line profiles are complex, and contain multiple components. Of
special note are the broad lines in the bridge (especially Bl and B2) as well as complex
multi-component structures in the north-west of both galaxies (N4, N5, S4 and S5).
The nucleus of Taffy-S (S2) also shows very broad strong [OIII] emission, and weaker
broad wings in Ha (especially when a correction is made for Ha absorption—see §4.2).
I also show polygons marking additional regions of interest on the SDSS image in
Figure 4. These polygons show regions which are investigated in the emission-line
diagnostic diagrams in §2.5. In the emission-line diagnostic diagrams, I investigate the
excitation mechanisms for the western regions of Taffy-N and the bridge separately
because these regions exhibit peculiar kinematics distinct from the rest of Taffy-N

and the bridge (see the detailed discussion in §2.4.1 and §2.4.2).

Figure 5a shows total Ha emission contours overlaid on a SDSS i-band image. The
two galaxies and the area near the extragalactic HII region can clearly be distinguished
as regions with the brightest Ha emission, with extended emission spread between
the galaxies. For Taffy-S, the brightest Ha lies on either side of the nucleus with
fainter emission from the direction of the nucleus. It is noticeable that there is no
obvious ionized gas associated with the faint southern part of the outer ring in Taffy-S,
although there may be some associated with the northern part of the ring between

the galaxies. Taffy-N has a very different distribution of ionized gas, with a strong
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Figure 4. Some examples of integrated VIRUS-P spectra from the Taffy system
expanded to emphasize the kinematics. The galaxies UGC 12915/4 referred to as
Taffy-N and Taffy-S respectively for clarity in the text are shown in this SDSS i-band
image. Spectra are shown extracted from the regions of the black and white colored
circles. The blue and red spectra correspond to the [OIII|5007 and He lines. The flux
axis is in units of 108 ergs ' em 2A~'. The polygon regions refer to the regions
that are color coded, using the same colors, in the later discussion of the emission-line
diagnostic diagrams (with the exception of the western part of Taffy-N which is shown
as green pluses in the line diagnostic diagrams). I denote Taffy-N, the western part of
Taffy-N, Taffy-S, the eastern bridge, and the western bridge by green, magenta, blue,
red, and orange colored polygons respectively. The nucleus of Taffy-S is also denoted
by a small blue polygon. The justification for selecting these regions is discussed in
the text. The region shown here as B1 is centered on a faint extragalactic HII region
discussed in the text. The gray dashed line denotes the systemic recessional velocity
for the Taffy pair at 4350 km/s.
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Figure 5. (a) Integrated Ha emission contours from the IFU data overlaid on an
SDSS i-band image. The contour levels are 30, 50, 100, 200, 300, 400, 600, 800, 1000,
and 1200, in units of 107! ergs~' em™2. The lowest contour level corresponds to
an approximately 20 detection. The red rectangle shows the IFU coverage. The
Ha emission was summed over the two velocity components in spaxels where there
were double profiles. (b) The measured Hf absorption-line equivalent width (EW) in
Angstroms across the Taffy system based on the ppxf fitting of the absorption lines
and continuum.

concentration in the inner disk, and fainter emission extending along the north-west

major axis where it appears to join with bridge material.

Figure 5b shows a map of the equivalent width of the Hf absorption across the
system. In contrast to the lack of emission lines in the southern ring of Taffy-S, strong
stellar absorption is seen there, along the extreme north-westerly edge of the galaxy,
and in an extended region north-east of the faint stellar ring. In Taffy-N the strongest
absorption is seen at the south-eastern end of the major axis in the region outside the
main body of Ha emission, although it extends at lower equivalent width as far as the

center of the galaxy. I will discuss the implications of this HS absorption in §2.6.3.
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Table 1. Visual dust extinction corrected emission line fluxes divided by region [1071°
W/m?|.
Region | Ay Hp [OIIA5007  [O1]AG300 Ha [NIAG583  [SIJAG716  [SIAG731
Taffy-N [ 229 32+023 1.98+02 059+ 0.16 912+ 0.16 434+ 0.14 224+ 0.14 1.35 + 0.16

Taffy-S | 0.94 1.67 £0.13 0.67 £0.11 039 £0.11 478+0.11 270£01 138+0.1 1.18=£0.12
Bridge | 1.89 142 £0.19 148 £0.16 0.55 £ 0.14 4.05 £ 0.13 1.89 £0.11 1.25+0.11 0.81 £ 0.13

Fluxes quoted for Taffy-N are from the combined Taffy-N and west-bridge regions,
i.e., including the western parts defined in Figure 4.

2.3.2 Dust Extinction From the Balmer Decrement

I estimate the extinction caused by dust by examining the line ratio of the
Balmer lines, Ha and Hf, referred to as the Balmer decrement, and assume Case B

recombination. The color excess E(B — V) is given by,

E(B — V) = 1.97logy, <(I_1042/—I;§)b) (2.1)

The extinction at wavelength A is related to the color excess by,
Ay =k(NEB-V). (2.2)

[ assume a reddening curve k() of the form given by Calzetti et al. 2000. Adopting
the same method for all the observed lines allows us to correct, spaxel by spaxel, the

observed line fluxes for dust extinction to arrive at intrinsic line fluxes.

A map of the dust extinction at visual wavelengths, Ay, derived from the Balmer
decrement is shown in Figure 6 and superimposed on the map are CO (1-0) contours
from Gao, Zhu, and Seaquist 2003 using data from the Berkeley-Illinois-Maryland-
Association (BIMA) interferometer. It can be seen that the dust extinction map
follows reasonably well the CO (1-0) surface density map, with a peak at the center
of Taffy-N (as expected since the Hy surface density is very high there). A high value

of extinction is also seen at the southern tip of Taffy-S. This extends beyond the
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CO column density contours, but I note that the VLA maps of HI in this region by
Condon et al. 1993 show a peak column density there of 1.8 x 10?! cm~2, which would
imply an Ay of ~ 1 mag integrated over a 18 x 18 arcsec? beam (Giiver and Ozel
2009).

Interestingly, I observe a low value of Ay at the center of the Taffy-S, and along the
northern edge of the spiral arm of that galaxy. The latter result is consistent with a low
Hy column there, although the low Ay in the nucleus may imply different conditions
in the gas excitation (deviations from the assumed Case B recombination—perhaps
due to a low-luminosity AGN) or a significantly reduced dust to gas ratio there.

Given that dust opacity measurements depend strongly on galaxy inclination (see
e.g., Simon P. Driver et al. 2007; Unterborn and Ryden 2008), I caution that the
dust extinction estimates for both galaxies should be treated as lower limits and that
actual Ay values could be much higher. For example, Gao, Zhu, and Seaquist 2003
estimate Ay values could be higher than 10 mag for both galaxies. The low Ay values
for the Taffy galaxies could be because measuring the dust extinction from the Ha
and Hf lines involved in the Balmer decrement effectively only probes the effects of
dust superficially (essentially a “skin” effect; e.g., Calzetti 2001). It also assumes a
simplistic dust geometry — a screen of dust between the observer and the Balmer
line emitting regions. Such an assumption might not be true for the complicated

kinematics within the post collision Taffy system.

2.4 The Kinematics of the Taffy System

As Figure 4 has shown, the spectra are quite complex in the system, and so I

present the kinematic results in two ways. Firstly, I present the channel maps of one
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Table 2.

LZIFU parameters supplied to the configuration file.

Parameter name Value Description
only_1side 0 0: 2-sided data. 1: 1-sided data
z 0.0145 Redshift
fit_ran [4700,6855] Fitting range
Continuum fitting with PPXF
mask_width 12 Full width to mask around emission lines defined

in Izifu_linelist.pro
Starting guess of delV and vel _dispersion of con-
tinuum (in km/s)

cont_vel_sig_guess |0., 50.|

cont_ebv_guess 0.1 Starting guess of ebv
Emission fitting with MPFIT
fit_dlambda 22. Full width around line centers to be fitted. (A)
ncomp 2 Number of component.
line_sig_guess 70. Initial guess of velocity dispersion for emission line
(km/s)
vdisp_ran [-50,500.] Velocity dispersion constraints in km/s.
vel_ran [-600.,+-600.] Velocity contriants in km/s. 0 is systemic velocity
from set.z
Variation in initial guess
comp_2_damp [0.6] Initial guess for amplitude of 2"¢ component as
fraction of 1% component amplitude
comp_2_dvel [-150,-50,+50,+150] Initial guess range for velocity of 2"¢ component;
given as difference between velocities of 1% and 27¢
components
comp_2_dvdisp [+20] Initial guess for velocity dispersion of 2™ compo-
nent

LZIFU explores all possible combinations of initial guesses of 1** and 2"¢ components.

of the lines (in this case Ha) to provide a large-scale view of the gas distribution as a
function of radial velocity channel. Secondly, I explore the spatial distribution of the
gas associated with different kinematic components, especially those associated with

multiple lines.

2.4.1 Ha Channel Maps

Figure 7 shows the Ha emission channel maps integrated over channels of width
70 km s~!. Tt is well known that the two galaxies are counter-rotating (e.g. Vollmer,

Braine, and Soida 2012), and the brightest ionized gas in the two systems reflects this.
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Tonized gas in Taffy-S is seen in the lowest velocity channel (3806-3876 km s™!) in the
north-west on the inside edge of the faint stellar ring, and progresses in a south-easterly
direction with increasing velocity eventually showing a major component of emission

1. Taffy-S also has some

in the south-east disk which fades away around 4780 km s~
peculiar kinematics. For example, in the NW part of the disk, faint gas emission is
seen over a wide range of velocities along the northern major axis even at the highest
velocities. This would not be expected for gas in normal rotation. Taffy-N is even
more peculiar. The main centroid of emission from the south-east disk appears at
around 4016-4086 km s~ 'and progresses steadily towards the north-west, showing the
counter-rotation. In addition, there is a peculiar region of emission which appears at
even lower velocities on the north-west extreme tip of Taffy-N, and cannot be part of
the normal rotation of the galaxy. Indeed, that structure appears to be part of the
bridge, since as velocities increase it becomes more extended and eventually connects
to the north-western region of Taffy-S. In addition to this bridge feature, a second
bridge component starts to appear between the galaxies at velocities of 4000 km s,
and at higher radial velocities it becomes quite strong in the region of the extragalactic
HII region. The emission bridges the two galaxies where it joins with emission that
potentially is associated with the faint stellar ring in the north-eastern part of Taffy-S.
The connection between the galaxies disappears at velocities in excess of 4650 km s1.

The faint stellar ring in the northern half of Taffy-S exhibits some peculiar emission.
Features that can be associated with this ring can be seen most clearly appearing from
velocities around 4000 km s~!. Moving to higher velocities shows several clumps that
appear to follow the ring from NW to SE. These clumps also appear to be surrounded

by emission that blends with the emission from the bridge. These features hint that

this ring was strongly influenced by the collision and shows a discernible transition
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from material that is clearly associated with Taffy-S to material clearly associated
with the bridge. A similar argument could also apply to Taffy-N although such a
transition is much harder to observe in Taffy-N which is highly inclined. It is clear
that the velocity structure of the gas in both galaxies and the bridge is very complex,
and so I will now explore the gas in terms of its spectral profiles—which allows us to

more easily separate normal regular rotation in the galaxies from peculiar motions.

2.4.2 Mapping Two-Component Line Profiles in the System

As I have shown previously, there are regions in the full data cube where the
emission-line spectra show more than one component. Similar, double line-profiles
were noticed in both the HI (Condon et al. 1993) spectra, and in spectra taken in the
far-IR [C 11] and [O 1] lines with Herschel (Peterson et al. 2018). Some regions of the
bridge also show two components in the CO 1-0 molecular gas observations of Gao,
Zhu, and Seaquist 2003. These observations (consistent with those of Gao, Zhu, and
Seaquist 2003; Peterson et al. 2018) show that the double-line profiles in the ionized
gas are not just confined to the bridge, but are also seen projected against parts of
the galaxy disks, especially Taffy-N.

To explore the kinematics further, I performed line fitting in two distinct passes.
Firstly I ran LZIFU, forcing it to fit only one component across the whole system.
This worked well in regions where the lines were single-valued, but produced poor
results in regions where the lines were double-profiled. The output from LZIFU at
this stage was a model data cube built from the model fits, as well as the best fitting
continuum cube. Also included were additional data products, including integrated

line maps for each of the lines fitted.
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Figure 7. Velocity channel map showing the Ha emission over -540 to +510 kms™!
with respect to the (optically defined) systemic recessional velocity of ~ 4350 kms™1.
The contours have been overlaid on a SDSS i-band image of the Taffy galaxies. The
color of the contours, going from white to blue, indicates the intensity of the Ha
emission going from low to high intensity. The contour levels are 1, 4, 10, 20, 40, 80,
105, and 135 in units of erg s~ em™2/(70 km s~1). Note that every contour level is not
visible in each panel because the Ha intensities change for each panel. The velocity
range shown for each panel (heliocentric velocity) is 70 kms™. The LZIFU emission
line cube was stitched as described in §2.4.2. The scale bar in the top left-hand panel

is 1 arcmin (18 kpc for D = 62 Mpc) in length.
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Secondly, I ran LZIFU again, but this time I required it to fit two components for
everything. In this case, the fitting worked well for the case of two components, but
I found that it performed poorly in places where the profiles were singular. In this
mode, since the software was fitting two separate line profiles, the output included
two sets of data products (model line cubes, integrated line and velocity field maps),
one set for each component—a low and high-velocity component.

I was able to interrogate the model results to determine, spaxel by spaxel, the
mean, standard deviation, and amplitudes for each of the single and two component

fits. This allowed us to divide the results into three classes of kinematic behavior:

1. Spectra consistent with a single Gaussian component, V

2. Spectra consistent with two components, V; and Vs, at different velocities (V;
represents the lowest velocity component, and Va the highest).

3. Spectra consistent with two components with nearly the same mean velocity,

but exhibiting both a narrow Vy,, and broad Vs, component.

To qualify as two components, the two Gaussian line centers, V; and V,, were required
to differ by at least 35 km s™!, or one-half of the velocity resolution at Hae wavelengths.
In practice, the lines were generally further apart than this and clearly separated.
Similarly, for a second component to be considered broad, Vg, must have a FWHM
of at least 1.5x that of Vy,. In a few cases, the LZIFU modeling failed to fit two
components to cases where a single line profile would have been more appropriate.
In these small number of cases, I inspected the profiles by eye to perform what I
considered to be the most reasonable classification.

In general when there was doubt about the classification, I inspected the profiles

by eye to confirm the classification. Overall the separation between single and two-
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components seemed reasonable, although I realize that there may be some areas where
the distinction is somewhat subjective. Less subjective methods of deciding whether to
fit single or multiple components to optical IFU data have been explored by Hampton
et al. 2017 using Artificial Neural Networks. These methods, which currently rely
on training sets using “expert” astronomer guidance, are encouraging for the future,
especially since such methods can classify velocity profiles faster than a human, and
with statistically similar outcomes. As IFU data becomes more common, and as
the amount of data increases with time, such methods may eventually be needed to
replace human classifications. In this paper, in most cases, the classification of a
two-component versus single Gaussian component was relatively unambiguous.

In order to explore the relationship between the regions of emission where a single
component is most appropriate compared with a region with two components, I have
created composite moment maps (intensity, mean velocity and velocity dispersion) by
combining those positions consistent with a single profile V, with those consistent with
one or other of the double profile cases. The reason I combined the single component
data with the two velocity components separately, was to look for continuity between
the single component gas and one or other of the double-lines. For example, if the
single component data mapped smoothly into velocity field of one of the two double
components, this might suggest they are really part of one single dynamical system,
whereas a sudden discontinuity would suggest no such regularity.

These “merged” single and double profile moment maps are shown in Figure 8.
Figures 8 a,b and ¢ represent moment maps created by combining spaxels containing
components V, with Vy and Vy,,, whereas Figures 8 d,e and f, represent the combination
of spaxels containing V¢ with V, and V. To make it clear where the different kinds of

profiles fall in the maps, I indicated in the Figure those regions enclosed within the red
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polygon that are consistent with Class-2 above (two components at different velocities).
Those regions of the maps consistent with a single line, Class-1, are colored with a
red background color. Finally, those regions where a narrow and broad component
were present, Class-3, are shown with a green background color.

Given that the kinematics are quite complex, I start by identifying those regions
which may show regular galactic rotation. The simplest kinematics to understand
are those of Taffy-S in the low-velocity component of Figure 8b. Here, the increasing
iso-velocity contours, going from yellow to dark blue progress regularly in the double-
line region, merging smoothly with the Vi, (green underlying color) and single-
component V; (red underlying color) contours. The velocity dispersion in the low-
velocity component in Taffy-S is also low across most of its disk. Concentrating only
on the low-velocity component for Taffy-S, it is clear that the velocities and dispersions
shown in Figures 8b and c look like a somewhat-warped, but regular rotating disk. In
contrast, Taffy-S is much more peculiar in the high-velocity component of Figures 8e
and f, where the galaxy shows only a small amount of obvious rotation, as well as
exhibiting a high velocity dispersion in a large part of the disk. It also has a band of
spectra classified as broad-line (Class-3 type; green underlying color) in the nuclear
regions.

I now turn my attention to Taffy-N which has more complex kinematics. This
galaxy is quite edge-on and may be expected to show regular rotation along its major
axis. Evidence of rotation is seen in the high velocity component of Taffy-N in the
southern part of the disk centered on the dense dust lane and nucleus. Figure 8e,
shows a clear rotation signature where the velocities (starting with the pale blue
contours in the south-east) increase along the major axis (dark-blue contours in the

north-west of the inner disk). Although this apparent regular rotation in the high
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velocity component is confined to the inner parts of the Taffy-N disk, the increasing
trend in velocity shows a reversal towards the north-western extended disk. This
might be interpreted as a turn-over in the rotation curve there.

Next I consider those parts of the velocity field that cannot be considered normal,
and are most likely caused by the strongly collisional nature of the Taffy pair. I have
already pointed out in the discussion of the channel maps that the north-western
part of Taffy-N has a peculiar low-velocity structure which is not part of the normal
rotation. This can be seen in Figure 8b (low velocity component) where much of the
NW disk of Taffy-N shows very little rotation, and also shows high velocity dispersion
(Figure 8c). Here I see that the gas extends as a finger towards the south-west, where
it forms a western bridge with Taffy-S. A second eastern bridge structure, is seen
associated with the extragalactic HII region, which is strongest in the high-velocity
component. The two structures are graphically emphasized in Figure 9. Much of the
gas between the two galaxies is seen in the eastern high-velocity bridge component,
and shows a velocity gradient which extends between the two galaxies along direction
of the radio-continuum bridge discovered by Condon et al. 1993. Some regions of the
high-velocity component bridge material have a high velocity dispersion—as was noted
in the spectra in Figure 4. I will show that much of the bridge gas in the high velocity
component has the excitation properties consistent with shocked gas.

Several regions also show Class-3 spectra—which means that one component is
broad. These regions (color green in all the panels of Figure 8) are confined to positions
along the minor axis of Taffy-S, and to a small region at the north-west tip of the
same galaxy. I show an example of these kind of spectra in Figure 10. Here I show
how LZIFU has fit two components to the Ha profile from the nucleus of Taffy-S

after correcting for weak Balmer absorption. This appears as a region of high velocity
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dispersion in Figure 8c and f. The Ha line profile shown is an average over a 4 x 4
spaxel region centered on the X-ray hot-spot in Taffy-S. The two components have
a FWHM of 320 £ 70 km s~ 'and 205 4+ 70 km s~!, with a small offset in velocity

between the two.

2.5  Excitation of the Ionized Gas in the Taffy System

I next consider the possible excitation mechanisms for the ionized gas within the
Taffy system by constructing emission line diagnostic diagrams based on LZIFU fitting
of each spaxel in the data cube (sometimes called BPT or VO diagrams; Baldwin,
Phillips, and Terlevich 1981; Veilleux and Osterbrock 1987; L. J. Kewley et al. 2001). 1
construct emission line diagnostic diagrams using the [OIII]\5007/H, [NII]A6583/Ha,
[OI|A6300/Her, and [SII|A, A6716,6731 /Ha ratios. I have significant detections of the
[NII] and [SII] lines in most spaxels that fall on the galaxies and bridge, whereas the
[OI]A6300A line is detected in fewer spaxels because it is not as strong. I require every
emission line used in the diagrams to be detected at the 3o level.

In order to look for differences in excitation properties between the low and high
velocity components where the lines are double, I show line diagnostic diagrams for
each of the components separately (top panels a and b) in each of the Figures 11,
12, and 13 for the [NII], |OI], and [SII] plots respectively. I also show the diagnostic
diagrams for the total emission (sum of the two components plus those fitted by a
single line) as a third panel (c) in each of the same Figures. These diagrams use
classifications from Lisa J. Kewley et al. 2006. In all three line diagnostic diagrams,

I plot spaxels associated with different spatial regions of the Taffy-system. The
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Figure 8. Contour maps, overlaid on a SDSS i-band image of the Taffy system, of
the moments of the velocity field. Zero velocity corresponds to an (optically defined)
recession velocity of 4350 km s™1. The top and bottom rows correspond to the low
and high velocity component as shown. From left to right, the column panels show the
integrated flux in Hea, radial velocity (with respect to systemic velocity), and velocity
dispersion, respectively. The contour levels for the integrated line flux maps are: 2000,
3000, 6000, 12000, 15000, 20000, 25000, and 30000 in units of ergs—!em=2kms~!.
The contour levels for the velocity maps are: -350, -250, -200, -150, -100, 0, 100, 150,
200, 250, and 350 in units of km s~1. The contour levels for the velocity dispersion
maps are: 50, 70, 90, 130, 160, 190, and 230 in units of km s~*. The red polygon
demarcates the boundary where I see two line components in the profiles of the
emission lines. The red spaxels outside the double line boundary indicate spaxels
where I see only a single velocity component. The green spaxels indicate spaxels where
I see two components but with significantly different widths (i.e., Class-3; I define the
three line profile classes in §2.4.2).
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Figure 9. The emission between the galaxies can be decomposed into two kinematically
different bridges of emission, seen represented in this single channel map of the Ha
for velocities 4156 to 4226 km s~!where parts of them both happen to appear at the
same velocity. The two separate filaments are best defined by looking at the full
range of channel maps shown in Figure 7. The eastern bridge structure extends from
the southern part of Taffy-N and extends down through the extragalactic HII region
until eventually it merges with the south-eastern disk of Taffy-S. The western bridge
extends from the north-west of Taffy-N into the bridge and eventually connects with
the north-western tip of Taffy-S. The eastern bridge is more closely associated with
the CO emission than the western bridge, although some clumpy regions are seen in
CO even in the west (black contours are from Gao, Zhu, and Seaquist 2003, see text
for more details).
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Figure 10. The Ha nuclear spectrum of Taffy-S (UGC 12914). The raw spectrum
is shown (grey solid line), as well as the spectrum after correction by LZIFU for
Ha absorption (solid black line). I show the decomposition into two profiles, one
with a broad lower-velocity component (blue dashed line) and a narrower slightly
higher-velocity component (red dashed line)-see text. The spectrum emphasizes the
importance of correcting for the continuum (driven mainly by the fit in the blue),
since in this case the Balmer absorption masked a broader component in the emission
line.
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symbols shown in the excitation diagrams are labelled in each Figure based on the
regions defined in Figure 4. For example, green points and crosses represent regions
in Taffy-N, while blue points represent Taffy-S (the nuclear region is distinguished
as blue diamonds). The Taffy bridge is shown as red crosses (east bridge), and filled
orange circles (west bridge). Because the west bridge contains fewer points than its
eastern counterpart, I also present the integrated line ratio for the western bridge as a
single larger open orange circle.

The line diagnostic diagrams show that the low and high velocity components often
behave differently, indicating a difference in their respective excitation mechanisms.
For the two galaxies (blue and green symbols), all three sets of line diagnostic diagrams
show spaxels mainly distributed within the HII, HIT++AGN-composite or LINER part
of the diagnostic diagram, with little hint of any pure AGN component. Much recent
work has shown that excitation by shocks can resemble excitation by an AGN. Rich,
Kewley, and Dopita 2011, 2014, 2015 showed that composite line ratios i.e., HII +
AGN, can be due to HIT + shocks. This is particularly true for merging galaxies, for
example Rich, Kewley, and Dopita 2014 showed that merging U/LIRGS can present
“composite” optical spectra in the absence of any AGN contribution, with increasing
contribution from shocks as the merger stage progresses from early to late-mergers. I
will argue below that much of the LINER emission, with the possible exception of the
nucleus of Taffy-S, is likely the result of fast shocks exciting the ionized gas in the
bridge and in significant parts of the galaxy disks.

I will first concentrate on describing excitation in Taffy-N. I decided to split Taffy-N
into two parts, one part covering the main disk of the galaxy and the other part
covering the western extension which appears to connect with the western bridge.

The emission from the main disk of Taffy-N (green points) is largely consistent with
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emission from HII-regions. This is true in all of the diagnostic diagrams in the low,
high, and summed components. The western extension of Taffy-N shows a mix of
HIT and LINER emission. This is especially evident in Figure 12 where the western
extension of Taffy-N falls clearly in the LINER area in the low velocity component
which I have previously noted from the channel maps may be associated with the
western bridge.

Next I consider Taffy-S (blue points and diamonds). There appears to be a
strong mix of Hll-region and LINER /composite excitation for Taffy-S in all diagnostic
diagrams. Despite the fact that the nucleus of Taffy-S does not show evidence for a
powerful AGN in the gas excitation diagrams, this does not necessarily preclude a
low-luminosity active nucleus being present-especially given the broader line-widths
discussed previously. Taffy-S’s nucleus (blue diamonds on Figures 11, 12, 13) does
show some evidence of being a LINER, especially in the low-velocity regime. I find
that most of the spaxels located on the nucleus of Taffy-S in the low-velocity (V;) line
diagnostic diagrams are in the LINER area in the [OI] and [SII] diagnostic diagrams,
and close to the AGN line in the [NII| diagram for both the low and high velocity
components. However, as previously noted, the velocity difference between the two
components is small (< 20 km s™1), with the main difference being in the width of the
lines, the V; component having a broader width than the Vo component (see Figure
10). This is consistent with Chandra X-ray observations (Appleton et al. 2015), which
showed the possible existence of a low-luminosity AGN based on the X-ray hardness
ratio.

I divide the bridge into two parts (east and west) as discussed previously. The
eastern bridge (red crosses) shows clear evidence of being HII-region excited in the

low-velocity component. The situation is quite different for the high-velocity Vs
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component (‘b’ panels) in Figure 11b, 12b. Here, I observe sets of east-bridge spaxels
that deviate strongly from the HII area locus. For example, in the [OIII|A5007 /H/
ratio, the east-bridge points are spread out along the [NII|/Ha and [OI]/Ha line,
extending strongly into the LINER area. The western bridge (orange filled circles)
show a mix of HIl-region and composite/ LINER behaviour in all diagrams. This
is quite similar to what I find for the western extension of Taffy-N indicating that
they might be excited by the same processes. Because there are so few points from
the western bridge, I also plot an average of the entire western bridge as an orange
open circle which is only shown in the ‘all’ components diagram. This falls in the
composite/LINER area for the [NII| and [OI] diagrams but in the HII area for the
[STI] diagram.

2.5.1 Evidence for Shocked Gas in the Taffy System

I first explore the possibility that the gas is excited by shocks. I over-plot predicted
line ratios from shocks on Figures 11, 12, and 13, taken from the MAPPINGS III
library of models (Allen et al. 2008). The model line ratios are plotted for different
shock velocities as solid colored lines. Based on the models of Vollmer, Braine, and
Soida 2012, I assume that much of the gas in the bridge and throughout the galaxies
is close to solar metallicity, since the gas has been stripped from the galaxies or
has been excited in situ. For the shock models I therefore assume solar metallicity.
The other parameters of the models include the pre-shock gas densities in the range
0.1 < n[em™3] < 1000 (stepping by a factor of 10 each time), and an assumed constant
magnetic field of B=5 uG (this is close to the equipartition magnetic field strength

of 8 G measured by Condon et al. 1993 through radio continuum measurements).
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I have plotted only the line ratios for the shock itself while excluding the precursor
component of the shock. For the moderate shock velocities that seem compatible with
the Taffy excitation velocities, it may be reasonable to ignore the effect of a strong
ionizing shock-precursor, as I shall discuss later.

For the east bridge points (red crosses), in the high-velocity component (‘b’ panels),
it is clear that the east bridge points fall relatively neatly between the solid lines for
shock velocities 175 km/s and 200 km/s (green and orange lines). For the west bridge
points, in cases where the points deviate from the HII-region area they are consistent
with the same shock velocity, e.g., the low-velocity components in all diagrams. Thus
the high-velocity east bridge component and the low-velocity west bridge component
seem consistent with shock excitation for all the line diagnostic diagrams.

The situation is mixed for the disks of galaxies themselves. As Figures 11b, 12b
and 13b show, there are some points within the disks of both galaxies which fall in the
composite region of the diagnostic diagram. Some of these points would be consistent
with a mixture of HII region and shocked gas excitation. The nucleus of Taffy-S is an
ambiguous case, because it could be excited by shocks in a mild outflow, or may be
gas excited by UV emission from a weak LLAGN.

The spreading of the points along lines of constant [OIIIJA5007/Hg ratio in the
high-velocity component in the bridge has a number of possible interpretations if I
assume that shocks are involved. Firstly, the spread might imply that the shocks
are occurring in an ensemble of gas clouds with different pre-shock densities. Such a
picture is consistent with previous observations of the Taffy bridge (Peterson et al.
2012, 2018) where I have observed gas in many different excited phases, from HI
(Condon et al. 1993) to warm molecular gas from the Spitzer IRS; along with the

detection of [CI] and [CII| emission (Peterson et al. 2018), and boosted values of
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[CII]/FIR and [CII]/PAH ratios. The existence of a highly multi-phase (and multi-
density) medium is also very consistent with the detection of soft X-ray emission from
the bridge. Thus it might be expected that shocks moving through such a multi-phase
gas would encounter a range of pre-shock densities—which would spread the points
along lines of constant shock velocity—as observed in Figures 11 and 12 especially.

An alternative explanation might be that some of the gas is of lower metallicity.
As the models of Allen et al. 2008 show, reducing the metallicity of the shocked gas
moves the points in the diagnostic diagrams to the left at roughly constant values of
[OITT]A5007 /H/3 ratio. However, if the collisional models of Vollmer, Braine, and Soida
2012 are correct, the gas in the bridge should have come from many different places
within the original pre-collisional disks, and deviations of factors of 100 in metallicity
in the bridge seem unlikely. I conclude that it is much more likely that I are observing
shocks within the bridge and parts of the galaxy disks which encounter clumps of
material at different densities.

What is the effect of ignoring the possible influence of a hot shock precursor in
the models? This is an effect where, in high velocity shocks, the gas in the shock is
so strongly heated that UV radiation from the shocked gas ionizes large amounts of
pre-shocked gas upstream of the shock. I show in Figure 14, an example of the [NI]|
line diagnostic diagram, the effect of including the shock and the shock precursor
(Allen et al. 2008). As can be seen by comparison with Figure 11 the behaviour when

1

I include the shock precursor with velocities < 300 km s~ is very similar to the case

with no shock precursor, which fits the data well. At shock velocities > 300 km s™!
the models including the shock precursor diverge significantly from these data. Similar

behaviour is noted in the other diagnostic diagrams (not shown). This implies that the

shock models between 100-300 km s™! fit the bridge data well regardless of whether
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the precursor is included. I note, however, that in dense gas (e.g. molecular gas known
to also be present in the bridge) the velocity at which a shock precursor may become
important will be much lower. Therefore future modeling the molecular shocks may

have to take precursor activity into account.

2.5.2  Alternatives to Shock Excitation: Diffuse Lyman Continuum Emission Leaking

From HII Regions?

In a recent paper by Weilbacher et al. 2018, it was noted that the Antennae
galaxies (NGC 4038/39), like the Taffy system, also exhibit significant diffuse ionized
gas emission. Although several mechanisms were put forward to explain the emission,
including the possibility of shocks, the authors favor an interpretation that much of
the diffuse gas is ionized by Lyman-continuum photons (hereafter Ly-C) “leaking”
from large numbers of HII regions found primarily in the disks of both galaxies, as
well as HII regions found within the “overlap region”. Much (but not all) of the
diffuse component was found close to massive star formation complexes in the system.
Using multi-color HST imaging of the clusters, the authors were able to compare the
luminosity of the Ha emission associated closely with a cluster with theoretical models
of the Ly-C flux from the clusters to determine whether the clusters were “leaking”
Ly-C photons into the surrounding gas. It was found that many of the HII regions
had non-zero escape fractions of Ly-C UV radiation, especially in the center of NGC
4038 and also in the “overlap” region. Thus, for the Antennae system, it was found

that the excess diffuse emission within the system could be explained as gas excited

by UV radiation escaping from the clusters.
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Figure 11. [NII|]A6583A line diagnostic diagrams. (a): for the low velocity component,
(b): for the high velocity component, and (c): total, i.e. sum of both velocity
components and also including line ratios from spaxels which show a single component.
Each point here represents the line ratios from a single spaxel. The red crosses,
green points, and blue points correspond to the eastern bridge, Taffy-N, and Taffy-S,
respectively. The blue diamonds are spaxels that fall within the nuclear region of
Taffy-S. The green pluses are spaxels from the western part of Taffy-N. The orange
circles are spaxels from the western part of the bridge. The unfilled orange circle is
the average of line ratios from all the spaxels within the western bridge. These colors
are consistent with those used to denote the corresponding regions in Figures 4 and
9, with the exception of the western part of Taffy-N which is shown as a magenta
polygon in Figure 4. The panels also show line ratios from the MAPPINGS III shock
models (Allen et al. 2008) overlaid on the measured line ratios i.e. colored solid lines.
The parameters assumed in the models are Z=Z. and B=5 uG. Along each shock
velocity line the points are marked by increasing number density. The classifications
are from Lisa J. Kewley et al. 2006. The shaded gray area around the solid black line
classifying the HII-region excited gas marks the area I used to put a lower limit on
the fraction of gas excited by star formation (see §2.6). The width of the shaded area
(above the HII classification line) is twice the size of the average error bar in each
panel.
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Figure 12. Same as Figure 11 but using the [OI])\6300A line. This Figure contains
fewer points than the [NII] and [SII| line diagnostic diagrams due to the [OI] line
being much weaker than the [NII] and [SII] lines and therefore being undetected in

many spaxels.
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Could some, or all of the extended ionized gas emission seen in the Taffy come from
similarly degraded UV light from HII regions in the disks of the Taffy galaxies that
might diffuse outwards and ionize large parts of the Taffy bridge? I estimate (Table 1)
that the amount of Ha emission coming from the bridge, after correcting for extinction,
is similar to that from Taffy-S and roughly 50% of the emission from Taffy-N. In
this case the majority of the escaping photons would have to come from the galaxies
themselves, since the star formation rate in the Taffy bridge is very low. Unfortunately,
unlike the case of the Antennae, I do not have multi-color high resolution images of
the individual star clusters, and this means that it is difficult to perform the same
kind of test that was applied, for all individual HII regions, by Weilbacher et al. 2018.
As a result, I cannot completely rule out a significant contribution to the ionized
medium in the Taffy coming from leaky HII regions. Nevertheless, many other lines
of evidence already suggest that shocks must be present in the Taffy bridge, and so I
prefer the shock explanation for the excitation of the high-velocity component, rather
than leaky HII regions. Future observations will be needed to attempt to model the
history of star formation in the clusters in the galaxies, which will allow us to estimate
the fraction of UV emission which may escape into the surround gas. This is beyond

the scope of the current paper.
2.6 Ionized Gas Fractions, Star formation Rates and Mass in the Ionized Component
Here I describe the method that I employed to estimate a lower limit to the fraction
of ionized gas excited by star-formation (as opposed to being shock excited) using the

[NTI] line diagnostic diagram. I use the [NII| line diagnostic diagram since it contains

the most number of points. I start by defining an effective HII-region excitation area.
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This is shown as a shaded gray region in the [NII| line diagnostic diagrams of Figure
11. T defined this area simply by “padding” the HII classification line (Lisa J. Kewley
et al. 2006) by twice the size of the average error in the y-direction (the y-error being
the larger error). I sum up the Ha flux in each spaxel that falls within this region.
This flux is divided by the total Ha flux to arrive at the lower limit for the fraction of
ionized gas excited by star-formation. This process is repeated independently on each
velocity component.

The fraction derived this way is a lower limit because the other spaxels, outside of
the shaded area (i.e. in the HII+AGN area) will contain emission from gas excited by
star-formation, and I cannot accurately disentangle the excitation from shocks and
star-formation (also see text in §2.5.1). The lower limits for the fraction of ionized
gas excited by star-formation that I derived are 64% and 46% for the lower and
higher velocity component, respectively. For the purposes of the calculations of star
formation rate (in §2.6.1) and ionized gas mass (in §2.6.2) I estimate the Ha luminosity,
coming only from star-formation, by L(Ha)gp = 0.64 L(Ha)iow + 0.46 L(Ha)ign; where
L(Ho)iow and L(Ha)pien are the extinction corrected total Ha luminosities in the low
and high velocity components, respectively.

This gives us an extinction-corrected value of L(Ha)sp = 4.99 4 0.54 x 10" ergs™!
for the lower limit to the Ha luminosity resulting from star-formation for the Taffy

system.

2.6.1 Star Formation Rate Estimate From Ha Luminosity

Using the following relation from Kennicutt 1998 I estimate the star formation

rate (SFR) in the entire Taffy system and the bridge region (using the entire region
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defined as the bridge in Figure 4), including Ha emission from the extragalactic HII
region.

Y[Mgyr!] = 7.9 x 107 L(Ha)[ergs™ ] (2.3)

I obtain L(Ha)sp = 4.99 4 0.54 x 10" ergs™! and
L(Ha)spbridge = 1.02 £ 0.14 x 10*! erg s~ for the extinction-corrected Ha luminosity
coming from star-formation for the entire Taffy system and bridge respectively, using
the method described previously. This translates to SFRs of 3.94 + 1.0 Mg, yr~! and
0.81 £ 0.22 M, yr~! respectively for the entire Taffy system and the bridge. These
SFRs agree well with previous estimates derived from UV-FIR SED fitting (Appleton
et al. 2015) of 3.65 + 0.03 My yr~! and 0.6940.06 My, yr—! respectively for the total
system and the bridge.

Interestingly, recent observations with the Atacama Large Millimeter Array
(ALMA) show dense filaments of molecular gas, in the Taffy bridge, with little
star-formation in them. These ALMA observations and the overall star-formation

properties will be discussed in a future paper (Appleton et al. in preparation).

2.6.2 lonized Gas Mass

The mass of ionized gas in the Taffy system, and in the bridge assuming Case B

recombination (Macchetto et al. 1996; Kulkarni et al. 2014) is given by :
Mo = 2.33 x 10% (Liga/10%)(10%/0,) M,

where Ly, is the extinction corrected Ho luminosity in units of erg s™, and n, is
the electron density. For the bridge, from the lower limits to the ionized gas fractions
from star-formation (see above) I obtained L(Ha)sp bridge = 1.02 £ 0.14 x 10*' ergs™ 1.

I also have n,=200 cm™3, based on the ratio of the [SII| lines. This then gives us
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Mion = 1.19 £ 0.22 x 10% My,. This calculation is uncertain because the Ha emission
originates from two different processes — HII regions and very likely shocks. However,
it does show that the ionized gas mass is an insignificant fraction (~0.2%) of the total
mass of gas in the bridge (~7 x 10° My; made up of a mix of HI and H,). This
is in agreement with the very low ionized gas fraction responsible for exciting the
|C 2]157.7um far-IR cooling line in the bridge (Peterson et al. 2018) determined from
the upper limit to the detection of [N 2|206um in the bridge. For the Taffy system as
a whole, using the extinction corrected Ha luminosity coming from star-formation,
L(Ha)sr = 4.99 4 0.54 x 10" ergs™!, T get Mo, = 5.8 4= 1.0 x 10° M, for the mass of
ionized gas in the entire Taffy system. Again, this is an insignificant fraction (~0.8%)

of the total gas mass in the Taffy system.

2.6.3 Post-Starburst Populations

I detect HB absorption lines within many spaxels on the galaxies. The spectra of
post-starburst galaxies are known to contain strong Balmer absorption lines due to
their stellar populations being dominated by A type stars. Evidence of a post-starburst
population is not uncommon in merging galaxies (e.g. Zabludoff et al. 1996; Yang et al.
2004, 2008), but attempts to measure the age of the stellar population are difficult,
especially when only Hf is observed (see for e.g. Worthey and Ottaviani 1997). Since
the spectral coverage did not include other post-starburst indices, I can only provide
preliminary results here. Further observations using full UV-optical SED, better
absorption line indices, and detailed modeling (e.g. French, Arcavi, and Zabludoff
2016) will be needed to obtain a better estimate for the age for the population which

is responsible for the Hf absorption.
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I measured the EW of the HF absorption line for each spaxel that contained either
the galaxies or the bridge. The EW was measured using,
_ fline f/\d)\

W(HB) [A] = o (2.4)

where the integral is done over the continuum subtracted absorption line fit and
(feont) 1s the average continuum value measured on either side of the Hf line. LZIFU
provides as output the fit to the stellar continuum and the nebular emission lines
separately. I use the continuum fit cube to refit a Gaussian absorption line to the
region centered on the HB absorption. The parameters from this fit then give the area
within the absorption line and the average continuum is measured in a band of ~10
spectral elements on both sides of the line.

Figure 5b shows the measured EW map for the Taffy system. Relatively deep Hf3
absorption (W(HS) > 10) occurs where there is little Ha emission. Two regions of high
W(Hp) lie in the northern and southern parts of the faint stellar ring that surrounds
Taffy-S. Another region, in the south-eastern part of Taffy-N, does extend into regions
where there is some star formation and older stellar populations are probably present,
with the deepest absorption lying outside of the main star formation disk.

It is generally true that values of W(Hp) of 10 < W(HpA) < 20 implies stellar
evolutionary ages for the post-starburst populations of several 100 Myr, and this
would imply that there is no connection between the post-starburst population and
the current collision between the two galaxies (e.g. Worthey and Ottaviani 1997).
From dynamical arguments it has been argued that the collision between the two Taffy
galaxies is quite recent (approximately 25-30 Myrs; Vollmer, Braine, and Soida 2012),
and so the fact that the outer ring of Taffy-S shows an old population would lead to

an apparent problem, if the stellar population of the ring was created in the collision.
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Figure 14. The effect of including the only the shocks compared to including shocks
with the shock precursor, from the models of Allen et al. 2008, for the [NII| diagnostic
diagram. The symbols (and their colors) and shock model parameters are the same as
the line diagnostic diagrams of Figures 11, 12, and 13. The included data points are
the same as those on the “All Velocity Components” diagram of Figure 11.

However, one solution might be that the stellar population of the ring is a stellar
density wave containing a much older pre-collisional system which had undergone star
formation a long time in the past. This is also the conclusion reached by Jarrett et al.
1999 who argue that the ring consists of stars from an old disk population from the
pre-collision disk.

The fact that both galaxies contain evidence of post-starburst activity might imply
that the galaxies underwent a high-speed encounter in the more distant past which
triggered star formation, but did not lead to immediate merger. If that is the case,
then we are probably currently witnessing the second (probably final) collision before
full merger. Broader wavelength coverage in the blue, to detect more absorption lines
and better characterize the age of the post-starburst population, will be needed to

test this idea.
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2.7 Conclusions

Using visible IFU data from the VIRUS-P instrument on 2.7m telescope at Mc-
Donald Observatory for the Taffy system, I have shown the results summarized

below.

e Detection of widespread ionized gas within the disks of the Taffy galaxies and
the bridge which exhibit very disturbed kinematics, including many regions with
double line profiles and emission regions that do not follow regular rotation.
Although both galaxies show velocity components that approximate gas rotation
around their centers, both galaxies also show peculiar motions, often associated
with gas which extends into the bridge between them. The gas associated with
Taffy-N (UGC 12915) contains a major kinematic component that does not take
part in regular rotation, but exhibits a high velocity dispersion and forms a
narrow western bridge to Taffy-S (UGC 12914). Taffy-S, although showing the
kinematics of a likely tidally-warped but regular (counter-)rotating disk, also
contains a peculiar kinematic component that is associated with a second ionized
gas bridge. This eastern bridge component, which extends from Taffy-N, through
the region containing the extragalactic HII region and eventually connecting with
the Taffy-S, is more closely associated with the molecular bridge seen previously
to extend between the galaxies. On the other hand, the western bridge, which
is much fainter, appears to be kinematically linked with the western extension
of Taffy-N (and the western part of Taffy-S) and shows a mix of HIl-region and
composite/ LINER excitation unlike the main disk of Taffy-N which is largely

consistent with HII-region excitation.
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e An analysis of the excitation of the ionized gas through diagnostic line ratios
shows that a significant fraction of the emission shows a mix of HIl-region and
LINER-type emission, especially in the areas where two velocity components can
be clearly distinguished. The LINER-type emission is especially dominant in
the high velocity component in the east-bridge region, but also over significant
portions of both galaxies. I observe emission line ratios in the high-velocity
component, for the east bridge and the low-velocity component of the west
bridge, that are consistent with the gas being excited by shocks with velocities
of ~175-200 km/s, and a range of pre-shock densities. Such evidence for shocks
permeating clouds of varying density is consistent with previous observations of
the bridge by Spitzer and Herschel, where strong mid- and far-IR cooling lines
are detected from warm molecular and diffuse atomic gas heated by turbulence.
While I cannot rule out a contribution to the diffuse ionized emission from
Lyman-continuum photons leaking from young HII regions embedded in the
disks of both galaxies, the weight of evidence, from previous multi-wavelength
observations of the bridge, suggests that shocks are a more likely explanation for
the LINER-type emission line ratios seen in the bridge and in parts of the disks
of both galaxies. Given the violence of the collision based on previous numerical
models of head-on collisions which suggest that the bridge is still in a highly
disturbed state, such shocks may not be unexpected.

e Strong Balmer absorption lines (10 < W(HpB)[A] < 15) are observed in parts
of the ring associated with Taffy-S (UGC 12914), as well as the south-east
portion of the edge-on disk of Taffy-N (UGC 12915). The absorption lines
are strongest in regions where the ionized and molecular gas distributions are

weak, suggesting that parts of the Taffy system have experienced a burst of star
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formation in the past, perhaps from a previous close passage of the two galaxies.
If so, it is possible that the current collision may be a second, more dissipative
collision, that will likely lead to merger in the near future. Further observations,
with a broader blue wavelength coverage than the current observations, will be
necessary to better determine the age of the post-starburst populations in both
galaxies.

Although there has been only weak evidence in the past for the nucleus of Taffy-S
(UGC 12914) containing a low-luminosity AGN from X-ray properties (Appleton
et al. 2015), I detect line widths in the nucleus as large as 320 km s™!. These
line-widths are typical of narrow-line Seyfert galaxies. The broad lines appear
to extend over 6-10 arcsecs along the minor axis. The excitation properties of
the nuclear gas are consistent with LINER emission, but without higher spatial
and velocity resolution data I cannot determine whether the Taffy-S nucleus
hosts a weak shocked highly confined outflow from a nuclear starburst, or is
excited by UV radiation from a LLAGN.

I provide evidence, supporting much previous work, that the Taffy system has
atypically low SFRs for a system having recently undergone a recent major-
merger. I find SFRs of 3.94 4 1.0 M, yr~* and 0.81 4 0.22 M, yr—! in the entire
Taffy system and the bridge (including the extragalactic HII region), respectively.
Low star formation rates in this recent post-collisional remnant may result from

the highly disturbed nature of the gas in the galaxies and bridge.

52



Chapter 3

SPECTROPHOTOMETRIC REDSHIFTS FOR Z ~ 1 GALAXIES AND
PREDICTIONS FOR NUMBER DENSITIES WITH WFIRST AND EUCLID

This chapter is reproduced from the version published in 2019 in The Astrophysical

Journal, Volume 883, Page 157, with permission from the co-authors.

3.1 Introduction

Galaxy evolution studies and cosmological measurements require redshift accuracy
at the few-percent level or better. In particular, cosmological measurements such
as measurements of the baryon acoustic scale (e.g., Eisenstein et al. 2005; Weinberg
et al. 2013), and weak lensing tomography (e.g., Hildebrandt et al. 2012), require
redshift accuracy at the percent or better level, and outlier fractions at the sub-
percent level (Weinberg et al. 2013). Measurements of galaxy overdensities also require
redshifts accurate at the level of a few percent. For example, Pharo et al. 2018,
identify overdensities using redshifts estimated from low-resolution grism spectra
combined with broad-band photometry. Accurate redshifts (typically with accuracy of
Az/(1+ 2)~0.001) can be obtained by using high-resolution spectroscopic data that
allow for the precise fitting of high-resolution synthetic spectra of stellar populations.
These can distinguish between synthetic stellar population models from different
regions of parameter space, and simultaneously provide accurate redshifts and stellar
population parameters. In practice, it is extremely difficult and very expensive to

conduct a large scale spectroscopic survey of faint and distant galaxies that is both
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unbiased and sufficiently deep to analyze the stellar continua, in order to secure both
accurate redshifts and detailed stellar population properties. Wide-field large scale
ground-based spectroscopic campaigns, e.g., SDSS (York et al. 2000), 6dF (Jones et al.
2004), GAMA (S. P. Driver et al. 2011), have been conducted to obtain high-resolution
spectra and accurate redshifts. These spectroscopic ground-based surveys, however,
are limited to the relatively brighter sources (~ 21-22 mag) at lower redshifts (z<0.5).

In addition, large scale Hubble Space Telescope (HST) photometric and grism
spectroscopic surveys have obtained photometric redshifts accurate to within a few
percent, and have led to a better understanding of the stellar populations of a
substantial number of galaxies at intermediate and high redshifts (z>1.5). Notable
examples include the Wide Field Camera 3 (WFC3) Early Release Science (ERS) field
(Windhorst et al. 2011) and the Cosmic Assembly Near-infrared Deep Extragalactic
Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011) which used imaging
from WFC3/IR and the Advanced Camera for Surveys (ACS) on the HST, while the
GRAPES (N. Pirzkal et al. 2004; Pasquali et al. 2006; Ryan et al. 2007; Hathi et al.
2009), PEARS (Ferreras et al. 2009), and FIGS (Norbert Pirzkal et al. 2017) surveys
invested 40, 200, and 160 HST orbits, covering 11.6, 119, 18.6 arcmin?, respectively to
do slitless spectroscopy with the ACS/G800L and WFC3/G102 grisms. Similarly the
3D-HST survey (Brammer et al. 2012; Skelton et al. 2014; Bezanson et al. 2016), which
is a HST survey with the WFC3/G141 grism, also invested 248 orbits to conduct
WFC3/G141 spectroscopy of the CANDELS fields covering 600 arcmin?.

The 4000A break is the strongest absorption feature in rest-frame visible spectra
of galaxies, particularly in early-type galaxies whose optical light is dominated by
older stars, and also to a lesser extent and more varying extent in late-type star

forming galaxies (Hathi et al. 2009). The break is expected to be stronger for later
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stellar spectral types and higher metallicities (see, e.g., Bruzual A. 1983; Hamilton
1985), and therefore for galaxies dominated by old and metal-rich stellar populations.
It is caused by the superposition of multiple absorption features within a narrow
wavelength range close to 4000A. The H and K absorption lines of Ca 11, at 3969A
and 3934A respectively, make up a significant part of the amplitude of the 4000A
break, which is why it is sometimes also referred to as the Ca H and K break. The
strength of the 4000A break is an excellent proxy for the age of the stellar population,
and for the lack of recent star formation activity (e.g., Bruzual A. 1983; Hamilton
1985; Poggianti and Barbaro 1997; Kauffmann, Heckman, White, Charlot, Tremonti,
Brinchmann, et al. 2003; Kauffmann, Heckman, White, Charlot, Tremonti, Peng, et al.
2003; Hernan-Caballero et al. 2013). Similar to the 4000A break, the Balmer break
at 3646A— caused by strong Balmer absorption lines in younger stellar populations
(<0.3 Gyr) — is also a useful feature for redshift determination. The 4000A /Balmer
breaks are useful as photometric redshift indicators to achieve accuracy of better
than a few percent, particularly if the photometry bands straddle the 4000A /Balmer
breaks.

In this paper, I combine grism spectra, containing a 4000A /Balmer break, and
photometric data to derive spectrophotometric redshifts (SPZs) and compare the
accuracy of SPZs to redshifts derived from only photometric data (photo-z) and
examine the dependence of redshift accuracy on D4000.

The deep grism data I use in this paper come from the Probing Evolution And
Reionization Spectroscopically (PEARS) survey done with the ACS/G800L grism on
HST (Ferreras et al. 2009; Straughn et al. 2009; Xia et al. 2011; Nor Pirzkal et al.
2013). These slitless grism spectra are much lower in resolution (R~100 for ACS Wide
Field Channel WFC/G800L; Pasquali et al. 2006) than traditional slit-spectroscopy
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(which typically have R>10?), but clearly have higher spectral resolution than broad-
band filters. While traditional slit-spectroscopy is inherently restricted to pre-selected
objects in the Field-of-View (FoV), slitless grism spectroscopy is capable of providing
spectra for nearly all sources in the FoV, after accounting for spectral overlap (e.g.,
Ryan, Casertano, and Pirzkal 2018).

I use PEARS grism spectra for galaxies within 0.600 < z < 1.235. This redshift
range is selected so that the 4000A break, if present, falls within the ACS /G800L grism
wavelength coverage of 0.6-0.95 pm. I also restrict our sample further by selecting
galaxies which have a discernible 4000A break, i.e., having D4000>1.1 (see §3.3.1
and 3.3.2 for details on our measurements and our sample selection). I note that
our results are based on grism spectra with a resolution of R~100 and a wavelength
coverage of 6000 < )\[A] < 9500. If either or both of these parameters increases i.e.,
a higher resolution and/or larger wavelength coverage for grism spectra, I expect
the SPZ accuracy to improve over photo-z accuracy in absolute terms and also for
lower D4000 values, as will be the case for the planned Wide Field InfraRed Survey
Telescope (WFIRST) and the Euclid space-based observatories.

This paper is structured as follows: in §3.2 I provide details of the slitless spec-
troscopy data and the PEARS survey. In §3.3, I explain the methods used for
measurements of the 4000A break and our sample selection, and in §3.4, I describe
our SED fitting procedure for estimating redshifts. In §3.5, I evaluate the dependence
of our photo-z, grism-z, and SPZ accuracy with D4000 by comparing to ground-based
spectroscopic redshifts. In §3.6, I provide the number density predictions based on
continuum derived redshifts for observations by future observatories, such as WFIRST
and Euclid. T conclude in §3.7. Wherever needed, I used the following cosmology: a

flat Universe with Hy = 67.4 kms~' Mpc~!, Q,, = 1 — Q, = 0.315, from the Planck
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2018 results (Planck Collaboration et al. 2018a). All magnitudes quoted in this paper
are AB magnitudes (Oke and Gunn 1983).

3.2 Observations
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Figure 15. The coverage of the PEARS survey within the GOODS fields. The red
pointings, superimposed on a HST/ACS/F606W mosaic from the 3D-HST collab-

oration, show the primary coverage of the PEARS survey with the ACS G800L
grism.

I use slitless spectroscopy obtained with the HST as part of the PEARS survey
(GO 10530; PI - S. Malhotra). The PEARS survey was awarded 200 orbits in Cycle 14
to cover 8 fields in the Great Observatories Origins Deep Survey (GOODS) North
(GOODS-N) and South (GOODS-S) regions (Giavalisco et al. 2004) to a depth of
2y p< 27 mag with the ACS/WFC G800L grism. A ninth ultra-deep field to 2 <
28 mag overlaps the Hubble Ultra Deep Field (HUDF; Beckwith et al. 2006). The
total area covered is ~119 arcmin®. The G800L grism delivers +1% order spectra with

a dispersion of about 40A per pixel (Pasquali et al. 2006). The best resolution of
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R~100 is achieved for point sources, but for most of the sources considered in this
paper (see §3.3.2 for details on our selected sample), which are spatially extended,
the effective resolution is lower because the spectrum is convolved with the object
morphology along the dispersion direction (Pasquali et al. 2001).

The ACS G800L grism nominally covers 0.55-1.05 um (for spectra dispersed
in the positive first order). The useful wavelength range, where the throughput of
the grism exceeds 10%, is 0.60-0.95 pm. While somewhat dependent on the exact
bandpasses used to measure the break strength, this allows one to trace the 4000A
break uninterrupted from z~0.600 to z~1.235. I refer to §3.3.1 for the definition of
the break indices and for the justification of our use throughout this paper of D4000
over D,4000. If the D,4000 index is used, instead of D4000, then the redshift range is
0.558 < z < 1.317.

Fig. 15 shows the footprints of the PEARS pointings within the GOODS-N and
GOODS-S regions. Each of the 8 deep PEARS pointings were observed for a total
of 20 HST orbits, while the ultra-deep pointing on the HUDF totaled 40 orbits. In
order to mitigate contamination of galaxy spectra that may (partially) overlap at
any given dispersion direction, each pointing was visited at three different position
angles (PAs), except for 2 fields in GOODS-S which were observed at four PAs. Direct
images through the ACS/WFC F606W filter were taken to astrometrically align the
G800L grism exposures and to provide the zeropoint of the grism wavelength solution.

For more details about slitless spectroscopy with the ACS/G800L grism and its
data reduction the reader is referred to N. Pirzkal et al. 2004 and Pasquali et al. 2006.
I refer to Nor Pirzkal et al. 2013 for a description of the reduction and analysis specific
to PEARS data. Pasquali et al. 2006 describe the basics of ACS grism observations

and the strategy used to calibrate grism observations in orbit.
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3.3 4000A Break Measurement and Sample Selection

3.3.1 D4000 Measurement

I measure the 4000A break in the rest-frame of the galaxies that were in the PEARS
survey, and which also had measured photometry from the 3D-HST and CANDELS
surveys. The galaxies are distributed over the redshift range 0.600 < z < 1.235. In this
work, the 4000A break is measured by the D4000 (Bruzual A. 1983; Hamilton 1985),
as opposed to the D,4000 index (Balogh et al. 1999; see below). The D4000 index (see,
e.g., Bruzual A. 1983; Hamilton 1985) measures the ratio of the integrated continuum
flux density (in f, units) in the bandpass from 4050A to 4250A to the integrated
continuum flux density in the bandpass from 3750A to 3950A (Eq. 3.1). The D,4000
index, where the n stands for “narrow”, measures the ratio of the integrated continuum
flux density in the bandpass from 4000A to 4100A to the flux in the bandpass from

3850A to 3950A (Eq. 3.2).

4250A 3950A
DA000 — / fd\/ £d (3.1)
4050A 3750A
4100A 3950A
D, 4000 :/ fyd)\/ fudA (3.2)
4000A 3850A

The narrower definition, D,4000, is less sensitive to reddening effects, and is used
relatively more in recent literature (e.g, Li et al. 2015; Zahid and Geller 2017). Because
I am using low-resolution grism spectra, the measurement of D,4000 is more likely
to be less accurate. This is because the break must fall in a relatively narrower
wavelength range (as compared to D4000) for the measurement to be accurate. Since

the spectrum must also be deredshifted before measuring the break strength, this
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“narrow” constraint also requires the redshift estimate to be more accurate in order for
the D,4000 measurement to be robust. Furthermore, there are fewer flux measurements
within each wavelength bin to integrate over while using D,4000 compared to D4000,
which could again lead to the D,4000 to be less robust than D4000. Therefore, when
comparing the accuracy of spectrophotometric redshifts with photometric redshifts
for different 4000A break strengths, I prefer to measure these break strengths in the
grism spectra of our galaxies using the D4000 index rather than the D,4000 index.

Appendix A provides details on the error analysis for the D4000 measurement.

3.3.2 Sample Selection

The sample of galaxies used in this paper comes from the public master catalog of
galaxies and their grism spectra released by the PEARS survey'. This catalog contains
9551 galaxies (4082 in GOODS-N and 5469 in GOODS-S). I matched the PEARS
master catalogs (using a matching radius of (/3) with photometry catalogs from the
3D-HST survey (Skelton et al. 2014) and our catalog of ground-based spectroscopic
redshifts in the GOODS regions. This gives us all galaxies which have measured
photometry, grism spectra, and ground-based spectroscopic redshifts. The matching
with the ground-based spectroscopic redshift catalog is done so that I can check
the accuracy of our redshifts (see §3.5). The 3D-HST photometry catalog contains
photometry from multiple ground and space-based surveys. I use 12-band photometry
from u-band (ground-based) to 8um (Spitzer IRAC). I refer the reader to the 3D-HST
photometry paper for details on the imaging sources (Table 3 in Skelton et al. 2014).

This matching results in a sample of 1863 galaxies.

Thttps://archive.stsci.edu/prepds/pears/
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Table 3. Summary of sample selection cuts

Selection cut Number of galaxies
remaining after cut
1. PEARS master catalog 9551
2. Matching with 3D-HST photometric 1863

catalog and ground-based spectroscopic
redshift catalog

3. Redshift cut i.e., 0.600 < zgpe. < 1.235 790
4. Combined cuts: 602
a) N> 10
b) Contamination < 33%
5.  Final sample for which I measured pho- 497

tometric, grism, and spectrophotomet-
ric redshifts.

a) 1.1<D4000<2.0

b) None/incomplete flux measurements
within D4000 bandpass

¢) Remove worst quality spectroscopic
redshifts

I then applied a redshift cut of 0.600 < z < 1.235 to the ground-based spectroscopic
redshifts to get galaxies which could contain a 4000A break in their grism spectra.
This results in a sample of 790 galaxies. A note on GOODS-N astrometry is in order
here: because the PEARS catalogs were made with pre v2.0 ACS GOODS images,
before matching the PEARS catalog with 3D-HST and ground-based spectroscopic
redshift catalogs, I also corrected for the known offset in the declination of pre v2.0
ACS images for GOODS-N. This offset is ~0.3 arcsec (see the readme file for v2.0
ACS images?).

I also apply a cut on the Net Spectral Significance, N' > 10. Briefly, the Net
Spectral Significance is a proxy for the useful information content within a spectrum.

For example, from N. Pirzkal et al. 2004, N > 8.5(n;,/100)'/2 corresponds to the

Zhttps://archive.stsci.edu/pub/hlsp/goods/v2/h _goods v2.0 rdm.html
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detection of at least a 30 signal in the grism data; where ng;, is the number of
independent spectral elements. In our case, I typically have np;,~88, which implies
that a value of N' > 8 corresponds to at least a 30 detection of signal in the grism
data. I refer the reader to appendix B for the definition and also to N. Pirzkal et al.
2004 for details. I also reject galaxies with excessive contamination (as measured by
the PEARS pipeline reduction) — defined here as any galaxy which has more than 33%
of its continuum flux contaminated i.e., likely coming from its line-of-sight neighbors
(N. Pirzkal et al. 2004; Nor Pirzkal et al. 2013; Norbert Pirzkal et al. 2017). I also
reject an additional 5 galaxies that have a D4000 error larger than 0.5. These cuts
give us 602 galaxies. Finally, before I run the code to estimate the three types of
redshifts (i.e., photometric, grism, and spectrophotometric), I restrict the range to
D4000>1.1. This “color” cut is used to remove grism spectra of galaxies that would
not be useful in determining redshifts, since they do not contain a discernible 4000A
break. This brings the final sample of galaxies for which I estimate redshifts to 497
galaxies. Table 3 summarizes our selection cuts. Figure 16 shows the distribution
of D4000 in our sample (note that this figure includes galaxies with D4000<1.1 to

clearly show the distribution).

3.4 SED Fitting Procedure
3.4.1 Template Library
[ use the Bruzual and Charlot (2003; hereafter BC03) library of stellar population

synthesis (SPS) models (Bruzual and Charlot 2003) to compare with the observed

grism and photometric data of a galaxy to infer its redshift. The synthetic spectra
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Figure 16. The distribution of D4000 for all 602 galaxies within our redshift range and
which also passed our Net Spectral Significance and contamination cuts. The light
blue shaded area shows the D4000 range for galaxies included in our final sample, i.e.,
D4000>1.1. The overlaid blue histogram shows the distribution of those galaxies that
have a 30 or better measurement of D4000, i.e., (D4000 — 1.0) /0 pagoo > 3.0 (see §3.5).
include models with 3 different star formation histories (SFHs): 1) instantaneous
burst also referred to as Simple Stellar Populations (SSPs); 2) exponentially declining
SFH also referred to as Composite Stellar Populations (CSPs); and 3) constant SFH,
where the upper limit of the time scale (1) on our exponentially declining models is
~63 Gyr. This is much older than the current age of the Universe, so that this model
effectively has a constant SFH.

[ generate a grid of templates with the age, metallicity, dust extinction (as measured

by Ay) and SFH as parameters. All the models are normalized to form a total stellar
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mass of 1 Mg. The models are restricted to an age range of 10 Myr to 7.95 Gyr. This
upper limit is decided by the age of the Universe at the lowest value in our redshift
range, i.e., this is the oldest possible age for any galaxy in our sample. However, while
fitting each individual galaxy, the age of the model is restricted to be less than the age
of the Universe, depending on the redshift of the galaxy under consideration. The SSP
models have 6 metallicity values: 0.005Zq), 0.02Z¢, 0.2%Zq, 0.4%¢, Ze, and 2.5 7.
The CSP models, however, are restricted to solar metallicity values for the sake of
computational efficiency. For the exponentially declining SFHs I use a grid for the
e-folding time 7 (in Gyr) that has a range of —2 < log 7 < +2 and a step-size A log(7)
of 0.02. For a screen of dust, the optical depth, 7y, is related to visual dust extinction,
Ay, by Ay = 1.0867y. For 7y I adopt a grid with a range of 0.0 < 7, < 2.9 and a
step size of 0.2. The BC03 models use the prescription given by Charlot and Fall 2000
to include the effect of dust extinction on the stellar light. The wavelength range for
all the models generated by BC03 is 91A to 160pum. The total number of templates
used is 37761.

Since the BC03 templates do not contain emission lines, I manually add emission
lines to the model spectra. Following the prescription given by Anders and Fritze-
v. Alvensleben 2003, I relate the number of Lyman continuum photons (Ni.) and

the strength of non-Hydrogen emission lines to the HS line strength.
f(HB) = 4.757 x 107" . Np 5. (3.3)

For each template, the BCO3 code gives Ny as one of its output parameters, and this
allows us to get the HB and metal emission line fluxes. The ratios of the Hydrogen
recombination lines are related to the HS flux as given by Hummer and Storey 1987,
assuming ISM conditions of n, = 10?cm ™ and 7, = 10*°K and Case B recombination.

For the sake of computational efficiency I only include typically observed optical
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emission lines such as Ho, HB, Hy, Ho, [MgII|A2800, [OIT|A\3727, [OIII]AN4959,5007,
INTI|ANG548,6583, and [SIT]ANGT16,6731.

3.4.2 Fitting and Error Estimation

The procedure I follow to arrive at the best fit BC03 model is a x? minimization
method which accounts for correlated data in the grism spectrum. For every galaxy, I
compare the entire model set to the observed data of the galaxy to get a x? value for

each model. The x? statistic is defined by,

2= (F—aM)" C' (F—aM), (3.4)

where F' and M are the flux and model SED vectors, respectively, which are in flux
density units (i.e., ergs~'cm™2A~1), and C~! denotes the inverse of the covariance
matrix. There is only a single free parameter for each model, the vertical scaling
factor «, the value of which is found by finding where the first order derivative of 2

vanishes:

2
a_Xz 0= = Zij(EMj—f_}?jMiQ)/O_ij

(3.5)

Here, 1/ a?j is the ‘ij’th element in the inverse of the covariance matrix. On the
diagonal of the covariance matrix this corresponds to the variance on each individual
flux point in the observed data. Details on the covariance matrix estimation (to
account for correlated data in the extracted slitless spectra) and a brief explanation
for Eq. 3.5 are given in Appendix C. To arrive at the redshift estimate I choose the
redshift corresponding to the best-fit model which has an age that does not exceed

the age of the Universe at that redshift.
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This procedure remains the same in essence regardless of the redshift that is being
computed, i.e., photometric, grism, or spectrophotometric. To estimate photometric
redshifts, one needs to (i) redshift the high-resolution model spectra, and (ii) compute
fluxes for the redshifted models through all filters for which photometry is available,
before the comparison with the photometric data is performed. The only simplification
in the case of photometric redshifts is that the covariance matrix is taken to be
diagonal for photometric data, since the CANDELS/HST filters are all essentially non-
overlapping and therefore largely independent. In the case of grism redshift estimates,
one must (i) redshift the high-resolution model spectra, (ii) convolve the models with
the Line Spread Function (LSF), and (iii) resample the redshifted, convolved model
spectra to the grism spectral dispersion of 40A per pixel. Finally, when estimating
spectrophotometric redshifts from the combination of grism and photometric data, I
apply all these modifications to the models before performing the x? minimization.

I consider a range of possible redshifts for each galaxy within 0.30 <z < 1.50 with
a step size of Az = 0.01. I experimented with Az = 0.005 and found no significant
improvement in the redshift estimates at significant cost of computing time. The larger
redshift range is required to properly sample the redshift probability distribution, p(z)
curve, in cases where the galaxy redshift is at the edge of the redshift range over which
the 4000A break is visible, i.e., 0.600 < z < 1.235. The redshift in step (i) above
comes from iterating over all the redshifts in this range, i.e., for each redshift in this
range I carry out the three steps mentioned above, and construct a map of y? values.

The convolution of the models with the LSF of the galaxy is done to take into
account the effects of the morphology of an object on its spectrum. Because of the
absence of a spectroscopic slit in grism data, the orientation of the object with respect

to the dispersion direction can cause the LSF and hence the resulting spectrum to be
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Figure 17. Example spectra and fit residuals from our SPZ fitting procedure for four
galaxies in our sample at various D4000 values. The black solid line is the grism
data with error bars shown in gray. The observed photometry is shown as red points
with error-bars. The light gray line is the best fit high-resolution BC03 model at
the estimated redshift. The light green solid line and points are the best fit BC03
model downsampled to the grism redshift and the model photometry. The “best”
spectrophotometric redshift from our code, which is the redshift corresponding to the
minimum Y2, is shown on the plot legend along with the ground-based spectroscopic
redshift as well as the photometric redshift. The p(z) curve for the galaxy is shown in
the upper right corner as an inset figure with the ground-based redshift shown as a
red dashed line. The plot legend also shows the galaxy ID, Net Spectral Significance
(NV), D4000 (based on the ground-based spectroscopic redshift), and other derived
parameters from the fitting routine. The bottom panels show the residuals for the
fit, i.e., (fbs — fmodely/ 0 yovs. Note that the flux axis is plotted here in fy units for
visual clarity since the 4000A break is more prominent in f, units, but that the D4000
measurement is done in f, units.
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quite different at different position angles. This knowledge of the LSF is important
because the LSF will cause any absorption or emission features that might be present
— like the 4000A break — to be diluted, and therefore cause a significant variation
in the measurement of indices such as D4000. This effect is even more pronounced
for an index with narrower wavelength bandpasses, such as D,4000. In our case,
for the PEARS data, I evaluate the Net Spectral Significance, N (appendix B), for
the spectrum at each position angle and select the spectrum with the highest N to
compare to the BC0O3 SPS models.

Apart from the LSF convolution, it is also necessary that the SED models and
the grism data are sampled to the same spectral resolution before being compared
to find a best fitting model. The spectral resolution of the BC03 models is 3A in
the range 3200 < A[A] < 9500, and lower outside this range (Bruzual and Charlot
2003). A mismatch in resolution would lead to an improper comparison between the
high-resolution model and the low-resolution data, because spectral features in the
model would remain much sharper than in the data yielding larger values of the y?
statistic that I am attempting to minimize. The models are therefore re-sampled to
the wavelength resolution of the grism spectrum. This re-sampling of the model is
done simply by taking the average flux of all points in the model that fall within the
wavelengths of two adjacent points on the grism spectrum. This is done for all points
within the grism spectrum wavelength coverage. For the purposes of finding a best-fit
model, I only consider the part of the model spectrum that has the same wavelength
range as the grism spectra.

I derive redshift uncertainties analytically, by first deriving errors on the reduced
x? (see, e.g., Andrae, Schulze-Hartung, and Melchior 2010; Hogg, Bovy, and Lang

2010), and then deriving the corresponding error on the redshift. The error on the
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Figure 18. Photo-z (z,), grism-z (z,), and SPZ (zs,,) redshift accuracy for different
D4000 bins by comparing to ground-based spectroscopic redshifts (zs). Each row on
this figure contains galaxies that fall in the D4000 range shown in the middle subplot.
Within each row are three subplots: photo-z on the left, grism-z in the middle, and
SPZ on the right. The top panels within each subplot show each of the three redshifts
vs. the ground-based spectroscopic redshift. The bottom panels show the residuals,
ie., (z, —25)/(1+2s), where z, is either z,, z,, or zs,,. The D4000 bins sizes are steps
of 0.1, except at the two bins with largest D4000 (in Figure 19), where I have a larger
bin size to get a comparable number of galaxies in each bin. The gray solid line in the
top panels is the 1:1 line. The blue and red dashed lines are the mean and +1oxvap
spread, respectively. The gray open circles are >30 outliers.
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Figure 19. Same as Figure 18 but for the two larger D4000 bins (top and middle) and
the entire D4000 range (bottom).
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Table 4. Redshift statistics

D4000 N Outlier fraction Photo-z residuals Grism-z residuals  SPZ residuals

range Photo-z Grism-z SPZ Mean  oxmaD Mean  oxmaAD Mean  onmAD
1.1 < D4000 < 1.2 83 0.13 0.59 0.12 +0.010 0.031 —0.040 0.179 —0.002 0.021
1.2 < D4000 < 1.3 115 0.07 0.35 0.07 —0.003 0.034 —0.098 0.107 —0.010 0.027
1.3 < D4000 < 1.4 108 0.05 0.35 0.04 +0.014 0.039 —0.001 0.088 +0.014 0.025
1.4 < D4000 < 1.6 94 0.06 0.22 0.04 -+0.003 0.027 +0.025 0.040 +0.002 0.023
1.6 < D4000 < 2.0 97 0.11 0.11 0.13 +0.004 0.013 +0.006 0.008 +0.005 0.010
Full D4000 range:
1.1 < D4000 < 2.0 497 0.08 0.36 0.07 +0.006 0.029 —0.024  0.057 +0.002 0.022

Quantifying the accuracy of the three different redshifts while stepping through D4000
bins.

reduced x? is given by \/W , where d.o.f. is the number of degrees of freedom.
Our model has one free parameter, the vertical scaling factor «, and the d.o.f. is given
by the difference between number of observed flux points (Ngat.) and the number of
parameters in fit which gives d.o.f. = (Ngata — 1). This also allows us to accurately

estimate asymmetric uncertainties in cases where the x? minimum is asymmetric.

Figure 17 shows four example spectra and photometry, with varying D4000 values,
to show results from our SED fitting routine. It can be seen that our fitting process
gives decent results for both 4000A (top row) and Balmer breaks (bottom row).
Although it does not appear to affect the fitting results, I note that the y? values for
SPZ and photo-z are much larger than the optimal value of 1.0. This is likely due to
systematic errors in the absolute photometric calibration, because our photometric
data come from multiple different instruments and observatories. It can also be seen
that the residuals for the grism data are scattered tightly around zero, whereas the
photometric points can have much larger residuals. As another visual check, I also
compute the p(z) curves for each galaxy. This is done by first converting the x? map
to a likelihood map, £ ~ e X/2, which is then marginalized over all model parameters

to convert it to a redshift probability distribution, i.e., a p(z) curve. In Table 5 I
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provide our redshift estimates and their uncertainties along with the other relevant

parameters.

3.5 The Dependence of Redshift Accuracy on D4000

I now investigate the dependence of the accuracy of the three types of redshifts on
the 4000A break strength, D4000. Our derived redshifts are compared to ground-based
spectroscopic redshifts which are often based on emission lines.

Figures 18 and 19 show this comparison of accuracy between the photometric
(broad-band), grism (only), and spectrophotometric (broad-band plus grism) redshifts
while stepping through bins of increasing D4000. I quantify the outlier fraction and
the mean and spread of our sample for our three types of redshifts, for different bins
of D4000, in Table 4. The mean of the residuals is given by (Az/(1 + z)), where Az
is (Zpig:sps — 2s). The spread in the distribution of redshift residuals is measured by
using the Normalized Median Absolute Deviation (onmap; see, for e.g., Brammer,

van Dokkum, and Coppi 2008). The oxmap is given by:

(3.6)

onvap = 1.48 x median (AZ - medlan(Az))

1+ 2z
A redshift value is defined as an outlier when its |Az/(1 + z)| value is greater than
30nmaDp away from the mean. For the sake of consistency I use the o%ho ., for
photometric redshifts, as the oxyap in the definition of outlier. The entire sample of
497 galaxies over the D4000 range of 1.1 < D4000 < 2.0 is shown in the bottom three
panels in Figure 19.

It can be seen that the grism redshifts at values D4000<1.3 show a Az/(1 + zs)

offset at the level of < —0.1. This is due to a significant number of outliers toward
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the blue end of the redshift range. This occurs because, for galaxies with a relatively
weaker 4000A /Balmer break — and therefore lower significance (see following discussion
and Figure 20b) on the measured value of D4000 — our fitting routine is driven to
the blue edge of the redshift grid. This is also the reason why the middle subplot
in the first two rows, of Figure 18, has somewhat fewer points than the other two
subplots. For D400021.3 this offset is significantly diminished, and is similar for all
three types of redshifts. From Figures 18 and 19 and Table 4, it can be seen that
the SPZ improves over the photo-z, as measured by the spread in the residuals, i.e.,
onMAD, for all D4000 values by ~17-60%. In the D4000 bin with the largest values,
1.6<D4000<2.0, the SPZ improves over the photo-z by 30%.

A general trend for lower or similar SPZ outlier fractions as compared to photo-z
outlier fractions can also be observed. For the bin with the largest D4000 values the
outlier fraction for SPZs is ~2% higher than photo-z (i.e., the SPZ method has 2
additional objects which are counted as outliers). The photo-z method is expected
to work well with the largest breaks and therefore shows a roughly equivalent outlier
fraction for the largest D4000 bin. It therefore appears that the outlier fractions are
less dependent on the method than the adopted definition of outlier.

The dependence of redshift accuracy on D4000 also prompted us to attempt to
quantify the value of D4000 at which the measurement of the break strength is
significant enough for a redshift to be accurately estimated in Figure 20b. For this,
I quantify the D4000 measurement significance by (D4000 — 1.0)/opaooo, which is
plotted vs. redshift in Figure 20b, where the points are colored with their D4000 value
(0paooo is the error in our D4000 measurement). In Figure 20a, I show the average
error for all our D4000 measurements as the point with red error-bars. This average

error is ~0.1. I define the significance threshold then as the level of 30 above the flat
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spectrum line of D4000=1.0, shown as the pink dash-dot line at D4000~1.3. This
agrees well with the decreased offset in the grism redshifts which occurs at D4000>1.3
(Figures 18 and 19). Figure 21 shows this dependence between D4000 measurement
significance and the redshift accuracy more explicitly. It can be seen that at larger
D4000 values and larger significance of the D4000 measurements, the redshift accuracy
improves dramatically, while at lower D4000 values and lower D4000 measurement
significance, there exists a larger scatter in the redshift accuracy.

In Figure 22 I investigate the effect of source brightness on the significance of the
D4000 measurement. The figure shows a strong correlation between 745 mag and
(D4000—1.0)/0paono- It can be seen that at fluxes fainter than i 45 ~ 23-24 mag, there
are far more galaxies with lower D4000 significance, i.e., (D4000 — 1.0)/0paooo < 3.0
than with higher D4000 significance.

This idea of D4000 significance is analogous to the measurement of the significance
of emission lines when determining redshifts based on emission lines. Essentially,
for an accurate redshift to be measured, the emission line must be measured at a
significance of at least 30 above the continuum level. I conclude here that a similar
requirement is needed on the D4000 measurement for accurate redshifts based on
absorption features. Therefore, using the robustness of D4000 measurements will be a

useful tool for future WFIRST and Euclid redshift surveys.

3.6 Estimates of Object Number Densities for Future Surveys

The Wide Field Infrared Survey Telescope (WFIRST) was ranked as the highest
priority space mission in the Astro2010 decadal survey, “New Worlds New Horizons”

(National Research Council 2010). One of the primary drivers of both WFIRST and
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Figure 20. (a) The distribution of D4000 values with spectroscopic redshift. The black
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the European Space Agency’s Euclid mission is to measure the growth of structure
and cosmic expansion over a large period of cosmic history. To achieve this, accurate
redshift measurements are necessary — within 0.1% accuracy for baryon acoustic
scale measurements (BAO) and ~1-3% for weak lensing and galaxy overdensity
measurements. In this section, I estimate the expected number density of objects by
future redshift surveys that will achieve a redshift accuracy of ~2% or better based
on the 4000A /Balmer breaks.

As a first step to estimate the number density for future redshift surveys, I
investigate any possible evolution of the 4000A break strength, D4000, with redshift
at intermediate redshifts. Figure 20a shows the distribution of D4000 vs. redshift for
all galaxies in our sample that had ground-based spectroscopic redshifts, and that
passed our Net Spectral Significance and contamination cuts. Figure 20a shows that
the strength of the 4000A break remains roughly constant between 0.600 < z < 1.235.
It can also be seen that most of the galaxies at these redshifts have a red slope
at ~4000A, since they lie above the value of 1.0 (red dashed horizontal line) that
represents a flat spectrum (in f,) between 3750A and 4250A (equal integrated flux
density in the two bandpasses used in the D4000 definition).

The method presented in this work relies on the presence of a discernible 4000A
break. Hence, the number density of galaxies with accurate 4000A break redshifts
observable by WFIRST and Euclid will depend on the fraction of galaxies that contain
a discernible 4000A break at the redshifts being probed. For WFIRST and Euclid
(Laureijs et al. 2011), the wavelength coverage of the grism is 1.0 to 1.93 pm (for the
WFIRST Wide Field Instrument, WFI)?, and 0.92 to 1.85 um (for the Euclid Near

3https://wfirst.ipac.caltech.edu/sims /Param__db.html
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Figure 21. The significance of the D4000 measurement vs. the D4000 value. The
points are colored according with the accuracy of their spectrophotometric redshifts.
The horizontal dashed line is the null-measurement level of D4000, and the vertical
dashed line is D4000=1.0 i.e, a flat spectrum. The gray points are galaxy spectra
with D4000<1.1 for which I did not estimate a spectrophotometric redshift with our

routine. This shows that the signal-to-noise of D4000 can indicate the quality of
redshift.

Infrared Spectrometer and Photometer, NISP)?, respectively. These grism wavelength
coverages translate to redshift ranges that are sensitive to the 4000A break, i.e.,
1.67 < 2z < 3.45 and 1.45 < z < 3.35 for WFIRST and Euclid, respectively. These
ranges are derived from wavelength coverage for the grisms and the D4000 definition

(see Eq. 3.1).

4https://www.euclid-ec.org/?page id=2490
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Figure 22. Significance of the D4000 measurement vs. 745 magnitude. The horizontal
dashed line is at (D4000 — 1.0)/0pagoo = 3.0. This plot includes all the 497 galaxies
in our sample with 1.1 < D4000 < 2.0.

Given the results from Figure 20a — the absence of a strong trend in D4000 with
redshift for the intermediate redshift values I consider — and also for simplicity, I
assume that the fraction of galaxies with a 4000A or Balmer break available to provide
accurate redshifts is roughly constant between the WFIRST and Euclid redshift ranges.
I am allowing for the possibility that the abundance of 4000A break galaxies should
drop at higher redshifts, but the abundance of Balmer break galaxies (due to post
starburst populations dominated by A-type stars) should increase due to the increased
overall star formation activity in the Universe (e.g., Madau and Dickinson 2014).

Based on the results from Figure 22, for the remainder of this work, I will only

consider the subsample of galaxies within our sample that are brighter than i,5=24

78



mag. There are 464 galaxies, representing ~72% of all galaxies in the PEARS area
(464 out of 646 galaxies), that are within 0.600 < z < 1.235 and contain a discernible
4000A/Balmer break, i.e., D4000>1.1, and also have 145<24 mag. I assume that
this is the fraction of galaxies within any given area that will contain 4000A /Balmer
breaks available to determine accurate redshifts.

I estimate the number density of objects with accurate 4000A/ Balmer break
redshifts by integrating measured luminosity functions (LFs) over the WFIRST and
Euclid redshift ranges covering the 4000A break. The measured LFs come from
Kelvin et al. 2014, who report LFs measured for elliptical galaxies (among others) at
local redshifts, using data from the GAMA survey (S. P. Driver et al. 2011). The
LFs are assumed to follow a Schechter form (Schechter 1976) parameterized by the
characteristic magnitude M*, the characteristic number density ¢* [Mpc—3mag~!|, and
the faint-end slope a. While the choice of LF does impact the predicted number counts,
the effects of LF-evolution will be minor, and the largest uncertainty is currently the
unknown survey completeness.

Following the prescription in Gardner 1998, I integrate the adopted LF and
differential volume element, giving the number density out to the specified magnitude
limit. The BC0O3 SED I used has the following stellar population parameters: age,
t = 4 Gyr, exponential SFH timescale, 7 = 0.1 Gyr, Ay = 0, and solar metallicity. To
predict the number density of galaxies that contain a discernible 4000A break and also
allow for a redshift estimate with accuracy |Az/(1 + zs)| < 0.02, I multiply the number
densities obtained from the LF integration with the fraction of galaxies with D4000>1.1
(denoted fpsooo) and the fraction of galaxies with |Az/(1+ z)| < 0.02 (denoted

face) determined from our sample. These fractions are fpigo = 0.72 (see preceding
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SPZ = 0.575 (286 out of 497 galaxies) for spectrophotometric redshifts

discussion) and f.

or f29 = 0.36 (180 out of 497 galaxies) for grism-only redshifts.

Therefore, based on the calculation described above, I predict a total of ~700-4400
galaxies/degree? which can be used to obtain redshifts accurate to |Az/(1 + z)| < 0.02,
within the WFIRST and Euclid redshift ranges to a limiting depth of 745=24 mag.
Our predicted number density of galaxies with accurate continuum derived redshifts is
comparable to the expected number density of emission line redshifts. For example, our
expected number density agrees reasonably well, at the higher end of our prediction,
with the expected number density of Ha emitting galaxies predicted by Merson et al.
2018, who find a number density between 3900 and 4800 galaxies/degree? for a Euclid-
like survey, and a number density between 10400 and 15200 galaxies/degree? for a
WEFIRST-like survey. Our expected number density also agrees well with estimates of
line-emitting galaxies from the WFC3 Infrared Spectroscopic Parallels (WISP) survey
collaboration (see for e.g., Colbert et al. 2013; Mehta et al. 2015) and also with the

number counts of line emitters at 0.9 < z < 1.8 estimated by Valentino et al. 2017.

3.7 Conclusion

I note three important aspects of our continuum derived redshifts relevant to future
redshift surveys —
(i) Complementarity with emission line redshifts: As I have shown, the expected
number density of galaxies with redshifts derived from the 4000A /Balmer breaks is
comparable to that of galaxies with Ha based redshifts. Our redshift fitting method
relies on absorption features in the continuum to minimize x?, while also accounting

for the effects of correlated data in the grism spectra and galaxy morphology. Since
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the two methods rely on very different features present in galaxy spectra, these
methods individually access very different galaxy populations. Therefore, the two
methods combined can comprehensively sample the galaxy population. I have also
shown, that the D4000 measurement significance can be used as a proxy for expected
continuum-based redshift accuracy.
(ii) Redshifts based on grism data alone: For galaxies that contain strong
emission lines, using grism data alone, a redshift accuracy of ~0.1% can be achieved,
by employing 2-dimensional grism spectra to detect individual emission line regions in
galaxies (Norbert Pirzkal et al. 2018). T have shown that continuum-based redshifts
derived using only grism data, for galaxies without strong emission lines, can still
achieve an accuracy of ngz\%‘lgz)w6% (Table 4), down to iap~23-24 mag. This is
when using ACS/G800L spectra that have R~100 and a typical rest-frame coverage
around the 4000A break of ~1500A. This is especially important, given that much of
the area covered by WFIRST and Euclid will not have supporting 12-band (or more)
photometry, and therefore must rely on grism-based redshifts alone.
(iii) Grism redshifts for fainter continua: Accurate grism continuum redshifts
can be achieved for continua that are fainter (i,p=24 mag for this paper) than those
that can be done from the ground. Given the steep slope in the luminosity function
at the faint end (e.g., Finkelstein et al. 2015), this is particularly important because
sampling fainter magnitudes will allow for obtaining continuum-based redshifts for
much larger numbers of galaxies.

While programs targeting Ha and [OIII]A5007 lines are being planned for both
the WFIRST (see e.g., High Latitude Survey, Spergel et al. 2015) and Euclid missions,
I show that redshifts obtained with the 4000A /Balmer breaks can also be accurate to

at least <2%. I argue that — (i) since the expected number densities of objects with
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redshifts based on the 4000A /Balmer breaks and objects with emission line redshifts
are comparable, and (ii) since grism continuum redshifts can be done from space to
fainter continuum levels compared to continuum-based redshifts from the ground (e.g.,
this work goes as faint as i45=24 mag) — continuum-based redshifts can thus provide
redshifts for galaxies which will not have emission line based redshifts from grism
observations with WFIRST and Euclid, and therefore contribute additional redshifts

which would otherwise not be available.
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Chapter 4

CONSTRAINING AGN FEEDBACK THROUGH THE THERMAL
SUNYAEV-ZEL’'DOVICH EFFECT WITHIN STACKED CMB DATA

Note to the reader: This chapter is based on work I did as part of Spacek
et al. 2016 and Spacek et al. 2017, with permission from the co-authors. I suggest
reading Spacek et al. 2016 in its entirety for a more complete description of the sample
selection, the stacking process, and a discussion of the final results; particularly the

analysis of the South Pole Telescope data.

4.1 Background

The cosmic microwave background (CMB) is radiation released ~380,000 years
after the Big Bang (z~1100) when the Universe had cooled down enough to allow free
protons and electrons to form neutral Hydrogen in an event known as recombination
(Dicke et al. 1965; Penzias and Wilson 1965). Prior to recombination the Universe was
opaque (i.e., the mean free path of a CMB photon is shorter than the horizon length)
because there are enough photons (even in the tail of the CMB blackbody) with
energies above the Hydrogen ionization potential of 13.6eV to keep the Universe ionized.
Although the CMB radiation is extremely close to an isotropic blackbody, temperature
anisotropies on the order of 1 part in 10° exist (Peebles and Yu 1970; Smoot et al.
1992; Mather et al. 1994; White, Scott, and Silk 1994; Hu and Dodelson 2002) which
are seeded by quantum density fluctuations occurring before the inflationary phase

(ie., at t < 10730 seconds) (Guth 1981; Linde 1982).
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Galaxies, galaxy clusters, and the cosmic web forming the large scale structure
in the Universe condense at the locations of these density fluctuations (Peebles 1965;
Sachs and Wolfe 1967; Silk 1968; Press and Schechter 1974). CMB temperature
fluctuations also have a dependence on angular scale which is encoded in the CMB
temperature power spectrum shown in figure 23. The angular scale in the figure goes
from angles much larger than a degree at the largest scales to fractions of a degree at
the smallest scales (angle on sky ~ 180/1). The locations and the relative strengths of
the peaks in the power spectrum are key to measuring the amounts of the baryon and
dark components of the Universe, the Hubble constant, and the spectral index of the
initial density perturbations, among other standard model observables. Measurements
of the primary anisotropies of the CMB radiation have now helped precipitate the
standard model of cosmology (see, for e.g., Hinshaw et al. 2013; Planck Collaboration

et al. 2018b).

The utility of the CMB radiation reaches beyond providing the parameters of
the concordance model of cosmology. Within the context of galaxy evolution, the
interaction of the CMB with ionized gas along its path from the surface of last
scattering to z=0, produces secondary anisotropies that can encode information about
the thermal and kinematic properties of the ionized gas. The inverse Compton-
scattering of CMB photons to higher energies due to high energy electrons is termed
the thermal Sunyaev-Zel’dovich (tSZ) effect (Sunyaev and Zeldovich 1970, 1972).

The tSZ effect showing the distortion in the CMB blackbody spectrum is shown
in figure 24. This figure shows the change in the CMB spectrum as it passes through
hot intracluster gas. In the direction of the cluster, the CMB energy density decreases

(relative to the blackbody) below a frequency of ~218 GHz, and increases above it.

106



6000
5000 1
4000

3000 ]

D" K]

2000

1000 ]

600 F 200
] Tl o S e ST 00
Q 0 1 IIT TI Ui - y ‘W‘.““‘? et v Seeny b .v‘v’ 0
T w0 { “ I H f £ -100

-600 - | : F -200
- 10
E --------
I N S S - 1020 ag 00000 % o°% ° __________e-——-t-c
S I./ ______________ PSR . e faiates e 0
b
-10
T T [ B B L e s S S B B S S R S
2 10 30 500 1000 1500 2000 2500

Figure 23. The temperature power spectrum of the CMB based on results from the
Planck mission (Planck Collaboration et al. 2019). The top panel shows the power
spectrum computed based on the 2018 data, the middle panel shows the residuals with
respect to the model, and the bottom panel is a comparison to the 2015 data from
Planck. The grey (red) points are the unbinned (binned) data points. The ACDM
model is shown in blue. The green data points in the bottom panel are differences
between the 2018 and the 2015 data. Note that the horizontal axis changes from
logarithmic to linear at multipole values [ > 30.
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Figure 24. The SZ effect from Sunyaev and Zeldovich 1980, showing the change (solid
line) in the CMB spectrum due to Compton scattering from interaction with hot gas
within a galaxy cluster. The CMB blackbody spectrum is shown as the dashed line.

It is expected that feedback from supermassive black holes at the centers of active
galaxies should contribute significant amounts of energetic input (kinematically and
through radiation) into the surroundings of the galaxies, resulting in reservoirs of
ionized gas around quiescent galaxies. The tSZ effect causes a distortion to the CMB
spectrum that is uniquely identifiable (see figure 24), and therefore a convenient probe
for the properties of the ionized gas and active galactic nuclei (AGN) feedback. The
above mentioned reservoirs of ionized gas should then, in principle, be detectable via

the tSZ effect. However, the signal from the tSZ effect is too small to be directly
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detected for individual galaxies, therefore, stacks of CMB data are employed in Spacek
et al. 2016 and Spacek et al. 2017 to quantify the energetic input from AGN feedback,
and place constraints on models of galaxy evolution.

Below in section 4.2, I describe the method used to constrain contaminating
emission from dusty sources, using CMB data from the Planck mission (Planck

Collaboration et al. 2016), along with a brief description of the results.

4.2 Stacking Method and Final Result

The sample selection process is described in detail in Spacek et al. 2016 and Spacek
et al. 2017. Briefly, massive quiescent elliptical galaxies are chosen from pre-existing
survey data (Desai et al. 2012; McMahon 2012, Blanco Cosmology Survey and VISTA
Hemisphere Survey). These galaxies are chosen for their high stellar masses and
passive natures, i.e., the circumgalactic medium around a massive galaxy is likely to
be correspondingly massive, the lack of star-formation implying the occurrence of
past quenching event(s), and the lack of an AGN providing a cleaner signal without
contaminating emission from the AGN. Also, these galaxies are chosen because they
are more numerous than AGN, and therefore a stack of massive quiescent ellipticals
offers a better chance of detecting the faint SZ signal.

I stack Planck data from the high-frequency bands at 857, 545, 353, and 217
GHz from the 2015 public data release of the Planck mission (Planck Collaboration
et al. 2016) at the locations of galaxies in the sample. The effective full width at
half maximum (FWHM) beam size for this data is ~5 arcmin (varies between ~4.6
to ~5 arcmin for the aforementioned frequencies). Unfortunately, these beam sizes

cannot spatially resolve the tSZ signal. This data does, however, provide useful
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information about dusty sources which should be brighter at these frequencies. These
measurements can therefore distinguish between contaminant models of dust. A
modified blackbody with a free emissivity index § and dust temperature T}, was
considered by Spacek et al. 2016.

I convolve each map, corresponding to the high-frequency Planck bands, with a
7 arcmin FWHM Gaussian beam which filters out the primary CMB signal. This
filtered map is then subtracted from the original. The Planck data at each of the
source locations is then coadded to generate a separate final stack for each frequency
band.

Since the Planck maps are normalized to an average value of 0, and the sample
selection process excluded any galaxies close to potential contaminating sources, a
negative bias gets introduced (since all contaminants only add positive signal; see
section 7.2 of Spacek et al. 2016). Therefore, to account for this bias, I also stacked
Planck data at 3000 random points on the sky in order to determine the offset value
required to be added to each band to rescale it to an average of zero.

In the low-z bin of 0.5 < z < 1.0, with the Planck data taken into account,
Spacek et al. 2016 detected a tSZ signal at a significance of 3.6, while in the high-z
bin of 1.0 < z < 1.5 a hint of an excess tSZ signal at 0.90 is detected. Based on
these detections, Spacek et al. 2016 inferred thermal energies of 7.6755 x 10%° erg and

6.075% x 10% erg within the low-z and high-z bins, respectively.
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Chapter 5

STAR-FORMATION HISTORIES OF MASSIVE GALAXIES AT INTERMEDIATE
REDSHIFTS

This chapter is reproduced from a manuscript in preparation for submission to The

Astrophysical Journal, with permission from the co-authors.

5.1 Introduction

Over most of cosmic history (the last ~12 Gyr), galaxies show a bimodal distribu-
tion in their colors, star-formation rates (SFRs), morphologies, colors, and other key
parameters (see, for e.g., Kauffmann, Heckman, White, Charlot, Tremonti, Brinch-
mann, et al. 2003; Baldry et al. 2004; Faber et al. 2007). These two distinct populations
of galaxies are the “blue-cloud” (blue+actively star-forming) and the “red-sequence”
(red+passively evolving), while the transitional population in between the two peaks,
containing fewer galaxies, is the “green-valley”. Deep observations have confirmed the
existence of a red-sequence, containing massive quiescent galaxies, as far back as z~2
(e.g., Franx et al. 2003; Cimatti et al. 2004; Labbé et al. 2005; Arnouts et al. 2007).
There are also indications that a population of massive quiescent galaxies could exist

as early as z~4 from photometric data (Straatman et al. 2014).
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5.1.1 Cosmic Downsizing and a-Element Enhancement in Massive Galaxies

Several lines of observational evidence support the paradigm of cosmic downsizing
by which massive galaxies form their stars at higher redshifts and are also quenched
relatively earlier than less massive galaxies (see Cowie et al. 1996, for the original
definition of “downsizing”; also see, e.g., Fontanot et al. 2009 for a detailed discussion
of the different types of downsizing). It is also well known that massive galaxies are
enhanced in a-elements relative to lower mass galaxies in the local Universe. For
example, some of the early studies like Worthey, Faber, and Gonzalez (1992) and
Faber, Worthey, and Gonzales (1992) reported that local elliptical galaxies have larger
[Mg/Fe| ratios than the most metal-rich stars in the solar neighborhood. Later studies
confirmed these observed trends (e.g., Davies, Sadler, and Peletier 1993; Thomas,
Greggio, and Bender 1999; Trager et al. 2000; Thomas et al. 2005; Renzini 2006;
Thomas et al. 2010; Johansson, Thomas, and Maraston 2012).

An enhancement of a-elements relative to Iron typically implies shorter star-
formation timescales due to their different synthesis pathways (Matteucci and Greggio
1986): a-elements are predominantly synthesized within Type-II core-collapse super-
novae (SNe), while Iron (along with a small fraction of a-elements) is predominantly
synthesized in Type-Ia SNe caused by white-dwarf explosions. Type-II SNe occur on
a timescale of tens of Myr with progenitor masses >8 M, whereas Type-Ia SNe are
caused by a slowly accreting white dwarf exploding after exceeding the Chandrasekhar
limit of ~1.4 Mg, which occur on timescales of ~Gyr.

Another piece of evidence for cosmic downsizing comes from the observations of
quiescent, massive galaxies at high-redshifts (e.g., Kriek et al. 2008; Williams et al.

2009; Whitaker et al. 2013; Man et al. 2016), which suggest faster quenching timescales
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Figure 25. Comparing the stellar masses within the 3D-HST survey and PEARS.
The red dashed line is the 1:1 line. The PEARS stellar masses are derived based
on multi-wavelength SED fits to 12-band photometric data (this photometric data
is the same as in chapter 3). A Chabrier initial mass function was assumed for the
models used in the SED fitting. The 3D-HST stellar masses are from Skelton et al.
(2014). The inset figure shows the histogram for the distribution of stellar masses
within PEARS.

for the most massive galaxies in the Universe. In this work, I will present an analysis

of the [Mg/Fe| ratio for massive galaxies at intermediate and high-redshifts.
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Figure 26. Showing the distribution of stellar masses in the PEARS catalog vs redshift.
The green and black points are the PEARS and 3D-HST galaxies, respectively. The
vertical dashed red lines indicate the redshift range for the sample in this paper. The
horizontal dashed red lines indicate the stellar mass ranges of 10%° < M[Mg] < 100
and 1019 < M[Mg] < 10'? considered in this paper.

5.2 Data and Sample Selection

Similar to chapter 3, the data for this chapter come from the PEARS survey.
Please refer to section 3.2 in chapter 3 for details on the observed grism data from
PEARS. To recap briefly, the PEARS survey is a 200 orbit HST grism survey with the
ACS/G800L grism. It covers 8 pointings within the GOODS regions (4 in GOODS-N

and 4 in GOODS-S) with 20 orbits per pointing and 3-4 roll angles per pointing. An
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Figure 27. Left panel: (u — r) restframe color vs stellar mass for all the galaxies in
the PEARS sample within 0.16 < z < 0.96. This panel also shows the stacking grid I
used for the right panel overlaid. Right panel: Shows stacked spectra on the same
grid. They show the individual spectra in light blue and the median stacked spectrum
in blue. The numbers along the top are the average stellar masses for galaxies in
that column and the numbers along the right are average (u — r) restframe colors
for galaxies in those rows. The number at the bottom right of each cell is the total
number of individual galaxies in the stacked spectrum. The number at the bottom
left of each cell is the median of the values (in cgs units) that were used to rescale
spectra in that cell. The Y-axis tick labels are suppressed for clarity.

additional 40 orbits cover the HUDF in GOODS-S with 4 roll angles. Multiple roll
angles serve the significant purposes of disentangling overlapping spectra, identifying
localized emission/absorption sources within a source, and to a lesser extent of yielding
higher spectral resolution relative to a single roll angle (see, e.g., Norbert Pirzkal et al.
2018; Ryan, Casertano, and Pirzkal 2018). I also use data from the 3D-HST survey
(Brammer et al. 2012; Skelton et al. 2014) for comparing the stellar masses derived in
this work. The 3D-HST survey is 248 orbit HST grism survey with the WFC3 /G102
grism covering all CANDELS fields (except GOODS-N which is covered by a separate

survey) at a depth of 2 orbits per pointing with a single roll angle.
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5.2.1 Stellar Mass Completeness

Prior to selecting my sample, I conduct a preliminary check for the consistency
of the stellar masses (i.e., comparing stellar masses obtained by two independent
methods — by the 3D-HST collaboration and by my pipeline introduced in chapter 3),
along with checking of the mass limits for completeness is done. Figure 25 shows a
comparison between the stellar masses within the 3D-HST survey and the PEARS
survey. It can be clearly seen that the stellar masses within both surveys agree quite
well. Figure 26 shows the distribution of stellar masses vs redshift within PEARS
and 3D-HST. It can be seen that both distributions follow each other reasonably
well especially at Mg > 10%5M, and z < 2.5. Therefore, for this work I will consider

galaxies which satisfy those limits.

5.2.2 Sample Selection

To analyze [Mg/Fe| I divide the mass range into two bins, a less massive bin
of 1095 < Mg[Mg] < 10'%5 and a more massive bin of 10'%5 < M[Mg] < 102, along
with requiring (4 — 7)restframe > 1.8. For the more massive bin, the aforementioned
selection criteria give me 157 galaxies within 0.16 < z < 0.96. The redshift range
is chosen to ensure coverage of the HS, Mgb and Fe absorption features at 4861A,
5175A, and 5270A + 5335A + 5406A, respectively, within the PEARS wavelength
coverage of 6500 < A[A] < 9000, which are the absorption features I am considering
in this chapter.

Although currently not used for analysis, it is also worthwhile to look at figure

27, which shows a color vs stellar mass diagram (left panel) and spectra stacked
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on a superimposed grid as shown (right panel), for all 2182 PEARS galaxies within
0.16 < z < 0.96. On the left panel, the separation between the blue-cloud and
red-sequence is clearly visible. It can also be seen that my mass and color selection

mentioned above does indeed select red-sequence and green-valley galaxies.

5.3 Stacking Method

Since the individual spectra can be quite noisy, to increase signal-to-noise I employ
a median stacking procedure. The final measurement of [Mg/Fe| is done on the stacked
spectrum. The individual grism spectra to be stacked are first fit by a fifth-degree
polynomial. A polynomial is chosen because I am interested in measuring the emission
and absorption features within the spectra of massive galaxies, therefore the slope
of the continuum is accounted for before stacking. The polynomial fit is done while
the expected emission and absorption features are kept masked. The original grism
spectrum is then divided by the best-fit polynomial, and de-redshifted, leaving a
residual spectrum which is then stacked. The median stacking is done over a restframe

wavelength range of 3400 < A[A] < 7600 within bins of A\ = 25A.

5.4 Discussion and Results
The resultant stack for my sample of massive galaxies is shown in figure 28. The

Mg, and Mgb absorption features at ~5175A along with HS and Fe absorption features
at 5270A, 5335A, and 5406A can clearly be observed. Many other absorption features
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Figure 28. The final stack (blue) of 156 massive galaxies with Mg > 10'°°M,, within
0.16 < z < 0.96. 1-0 errors on the stack are shown in gray. The grism spectra
for all the individual galaxies in the stack are shown in teal. The legend shows the
redshift and stellar mass ranges for the galaxies in the stack. Individual absorption
and emission features are also marked.

can also be seen, such as, the Ca H & K lines (i.e., the 4000A break), the G-band,
NaD-+TiO at ~59004, and TiO at ~6230A.

It is worth noting that the absorption profile centered approximately on 5175A
appears unusually broad even for low-resolution grism data. This large line width is
likely a combination of broadening caused by uncertainties in redshift estimates for
galaxies in the stack along with broadening due to the line spread function (LSF). To
asses the broadening caused by these effects, I approximate this broadening simply by
adding the uncertainties in quadrature, i.e., Aw? = (|Az/(1 + 2)|)* + Al2, where w is
the observed width of an individual absorption line in the stack and Al is the effective

LSF broadening. If T consider a typical 2.9% error in redshifts (see section 3.5) and
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Figure 29. Simultaneous fit of three Gaussian absorption features to the stack between
4600A to 5650A. The blue, light-green, and red curves are fits to HS3, Mgy+Mgb,
and Fe absorption features, respectively. The orange curve is the sum of the three
individual Gaussians. The inset figure shows the broadening of an absorption line at
5175A due to uncertainties in the redshift estimates and the line spread function. The
legend shows the parameters of the galaxies in the stack and the final [Mg/Fe| value.
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the size of a typical galaxy in the stack to be 3 ACS pixels, then the two effects appear
to contribute equally to final observed width. For reference, I assume an absorption
line centered on 5175A and simulate a Gaussian absorption line broadened by the
above mentioned two effects. This simulated absorption line is shown by the inset
figure in figure 29. It can be clearly seen that the width of the simulated line matches
the width of the observed line quite well.

The [Mg/Fe| value is obtained by simultaneously fitting an absorption model of
three Gaussians to represent H3, Mg, + Mgb, and the Fe lines. This fit is shown in
figure 29. The value of [Mg/Fe| I obtain is 0.26 & 0.11. This value is consistent with
that obtained by other studies (see, for e.g., Onodera et al. 2015), and provides further

evidence for early formation and short quenching timescales for massive galaxies.
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Chapter 6

CONCLUSION

Here I summarize the conclusions from each of the chapters in this dissertation.

In Chapter 2, Using visible IFU data from the VIRUS-P instrument on 2.7 m
telescope at McDonald Observatory for the Taffy system, I have shown the results
listed below.

a. I detect widespread ionized gas within the disks of the Taffy galaxies and the
bridge which exhibit very disturbed kinematics, including many regions with double
line profiles and emission regions that do not follow regular rotation.

b. An analysis of the excitation of the ionized gas through diagnostic line ratios
shows that a significant fraction of the emission shows a mix of HIl-region and
LINER-type emission, especially in the areas where two velocity components can be
clearly distinguished. I observe emission line ratios in the high-velocity component, for
the east bridge and the low-velocity component of the west bridge, that are consistent
with the gas being excited by shocks with velocities of ~175-200 km/s, and a range of
pre-shock densities.

c. Balmer absorption lines are strongest in regions where the ionized and molecular
gas distributions are weak, suggesting that parts of the Taffy system have experienced
a burst of star formation in the past, perhaps from a previous close passage of the

two galaxies.
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In Chapter 3, I note three important aspects of our continuum derived redshifts
relevant to future redshift surveys —
a. SPZs improve over the photo-zs for all D4000 values by ~17-60%.
b. 1 predict a total of ~700-4400 galaxies/degree® which can be used to obtain
redshifts accurate to |[Az/(1 + z,)| < 0.02, within the WFIRST and Euclid redshift
ranges to a limiting depth of 745=24 mag.
c. I argue that — (i) since the expected number densities of objects with redshifts
based on the 4000A /Balmer breaks and objects with emission line redshifts are
comparable, and (ii) since grism continuum redshifts can be done from space to fainter
continuum levels compared to continuum-based redshifts from the ground (e.g., this
work goes as faint as i4p—24 mag) — continuum-based redshifts can thus provide
redshifts for galaxies which will not have emission line based redshifts from grism
observations with WFIRST and Euclid, and therefore contribute additional redshifts

which would otherwise not be available.

In Chapter 4, I describe the motivation for constraining AGN feedback around
quiescent elliptical galaxies, and the process used to stack the Planck data. The stacks
were used to characterize contaminating emission from dusty galaxies. I stacked CMB
data at the locations of galaxies in two redshift bins — a “low-z" 0.5 < 2z < 1.0 and a

“high-z" 1.0 < z < 1.5 stack.

And in Chapter 5, I describe the motivation for studying the star-formation
histories (SFHs) of massive galaxies. I also describe the stacking process used to
create a coadded spectrum of 156 massive galaxies with stellar masses My > 101%-5M,

within 0.16 < z < 0.96. Analysis of the coadded spectrum clearly shows several
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important absorption features — Call H & K, G-band, Mg, + Mgb, Fe, and NaD.
These absorption features serve as useful constraints on the SFHs of massive galaxies

through the [Mg/Fe| ratio along with other Lick indices.
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We use a simple trapezoidal rule to estimate the definite integrals to measure the
continuum flux within the two bandpasses employed in the measure of D4000. The
error on the D4000 measurement is obtained analytically using equation A.2, where
f_ and f, are the measurements of integrated flux in the bluer and red bandpasses in
the definition of D4000, respectively. The flux measurements, f_ and f,, are given by
equations A.3 and A.4, respectively, and o_ and o, are their respective errors which
are given by equations A.5 and A.6. In the equations below, f\ and o) are the values
of the flux and its corresponding error respectively at the stated \:

D4000 = ;i (A1)
1
D100 = 73 i f2 + o2 f1 (A.2)
3950 — 3750
f = (8950 — 3750) (f3750 + f3950 + 2f5_) (A.3)
2N_
4250 — 4050
f, = Q (f4050 + f4050 + 2 fm) (A4)
N,
(3950 — 3750)2
0- = \/ (2N_)2 <U§750 + 03950 + 40%,> (A.5)
(4250 — 4050)2
0+ = \/ (2N, )? (‘72050 + Odoso 4U%+> (A.6)

In the above equations, there are N_+1 and N, +1 spectral points in the blue and red
wavelength intervals, respectively, over which the continuum flux is measured. In most
spectra, where a flux measurement at the exact wavelengths of the bandpass limits
did not exist, we used a simple linear interpolation to compute the flux measurement
at the exact wavelength, using the flux measurements on either side of it. These flux
points are referenced by their exact wavelengths in the above equations, i.e. f3750,
f3050, fa050, fa250. Also, fs; and fy, are flux measurements excluding the end points in
the blue and red wavelength intervals, respectively.
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The Net Spectral Significance (N) is a way of measuring the amount of useful
information in a spectrum (N. Pirzkal et al. 2004). It is defined as the maximum
cumulative signal to noise ratio (SNR) in a spectrum.

The Net Spectral Significance is measured in the following way. The SNR at each
flux point is measured and then sorted in descending order. This sorted array is used
to create signal and noise arrays, with the first element in these arrays corresponding
to the signal and noise from the highest SNR point in the spectrum. The second
element in the signal array would then be the sum of the signals from the point with
the highest SNR and the point with the second-highest SNR. The second element in
the noise array are the noise values summed in quadrature for the same two points.
The rest of the arrays are filled similarly.

The signal and noise arrays are divided element-wise to make the final cumulative
SNR array (shown in Eq. B.1 as a sequence). The Net Spectral Significance is then
the maximum value in this cumulative SNR array.

Sy S1+ 5 Sl+SQ+S3
) ) 7e
VN /N + N2 /NP + N2+ N?

N = max (Cumulative SNR) (B.2)

Cumulative SNR :

tc ... (B.1)
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The covariance matrix is estimated using a squared exponential kernel (see for
example the brief pedagogical introduction given by Gibson et al. 2012, appendix A1),
We estimate individual elements of the inverse of the covariance matrix directly. The
‘ij’th element of the inverse of the covariance matrix ‘C~!" is given by,

1 1 P — A2
Cgl :5ij0—§+(1—5ij)e—oexp <—%) (C.1)

In the above equation, ¢y is the maximum covariance which is used as a normaliza-
tion constant. We simply used the square of the maximum of errors on all flux points
within a given spectrum. The effective correlation length is given by £, and depends
on the galaxy size along the dispersion direction. The wavelength corresponding to the
‘I’th flux point and the variance on the data is given by )\; and o2, respectively. Here
d;; is the Kronecker delta function which populates elements only on the diagonal of
the matrix. In the ideal case of each grism data point being completely uncorrelated
to any other data point in the grism spectrum, the inverse of the covariance matrix is
a diagonal matrix containing only the reciprocals of the variances on the individual
data points.

To arrive at the effective correlation length, £, we fit the measured LSF of each
galaxy with a Gaussian and set £L = 3o0.9r, Where o5p is the best-fit Gaussian
standard deviation for the LSF. This takes into account the correlation induced by the
morphology of each galaxy along the dispersion direction. The above measure of the
effective correlation length essentially indicates that the data becomes uncorrelated
+3 0p5r away from any individual data point in the grism spectrum.

Below we provide a short derivation for the vertical scaling factor given in equation
3.5. The x? statistic is defined by x? = (F —aM)" C~! (F — aM) which can be
written as,

N
1
ij ij
In the above equation, the ‘i’th flux and model elements are denoted by F; and

M, respectively. The ‘ij’th element of C~! is denoted by 1/ 0'2-2]- which is the result of

evaluating equation C.1. For example, C};' = 1/0%, where 02, is the variance on the
‘i’th flux point and C," = 1/0%, = (1/6p) exp(—(A\1 — X2)?/(2 L)). The size of the flux
and model vectors is ‘N’ elements and the size of C~! is N x N. We can now evaluate,

%_f -y (iQ) [(Fy — al;) . — Mj + (F; — aM;) . — M;) =0, (C3)

ij Tij

for the o that minimizes y2. This then gives us,
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N
1
Z <_2) [—F;M; — F;M; + 2aM; M;] = 0.

ij 945

Which directly leads to the « given by equation 3.5.
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