Searching for the First Stars

Evan Scannapieco Kavli Insitute for Theoretical Physics- UCSB

Searching for the First Stars I: Searching for Primordial Galaxies w/Raffaella Schneider (Arcetri), Andrea Ferrara (SISSA) II: Searching for the first SNe

w/ Alex Heger (Los Alamos), Stan Woosley (UC Santa Cruz), Piero Madau (UC Santa Cruz), Andrea Ferrara

III: Searching for Their Signatures Today w/ Daisuke Kawata (Carnegie) Chris Brook (Laval), Brad Gibson (Lancashire), Andrea Ferrara, Raffaella Schneider

Little bit of notation **Primordial** \Rightarrow **Z**=0 Population III ? = ? 1. Z = 02. $Z < Z_{crit} = 10^{-4}$ solar 3. Cool via Molecular Hydrogen

"First Galaxies"

 $T_{vir} \ge 10^4$ K, masses $> ~ 10^8 M_{sun}[(1+z)/5]^{-3/2}$

Oh & Haiman 2002: Such large primordial halos with first cool by Lyα into a disk, but would begin to form H₂, thus a similar story may hold as in the smaller objects.
Going to assume that the same story holds for all primordial (Z < Z_{crit}) objects, regardless of mass.

Method I: Search for Primordial Galaxies ES, R. Schneider, A. Ferrara (2003)

Primordial, typical IMF Primordial, VMS 0.4 0.4 EIII=10-4.0 $E^{III} = 10^{-2.5}$ z_=20 $z_{-}=10$ 0.3 0.3 r/Mpc 0.2 0.2 0.1 0.1 -2 -2 $og_{10}(Z_{wind}/Z_{\odot})$ 2.5 -2.5-3-3-3.5 -3.5 10 5 20 8 10 15 2 a redshift redshift

E_g = Kinetic Energy / Baryon Mass into Stars

 $\frac{10^9 \text{ M}_{\text{sun}} 10^8 \text{ M}_{\text{sun}}}{10^7 \text{ M}_{\text{sun}} 10^6 \text{ M}_{\text{sun}}}$

 $Z/10^{51}$ erg ~ 2, SNeII, SNeyy

Chemical Feedback

ES, Schneider, Ferrara (2003)

Observability

Lyman-Alpha Detection Probability

Primordial, VMS

Primordial, typical IMF

Very massive or not, Z=0 stars are hot

High EWs

HeII lines

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Tumlinson, Shull, Venkatesan (2003), See also Schaerer (2003), Oh, Haiman, & Rees (2001)

ES, Schneider, Ferrara (2003)

Method II: Search for their SNe ES, P. Madau, S. Woosley, A. Heger, A. Ferrara (2005)

Pair Production Supernovae

He/C/O

E_{kin}: 10-100x10⁵¹ ergs Mass: 140-260 M_© v: ~5,000 km/s Mass Metals: 20-200 M_© Large Odd-Even Effect

C,O->Mg,Si,S,Ni⁵⁶

What do PPSNe look like?

ES, P. Madau, S. Woosley, A. Heger, A. Ferrara (2005)

Kepler, implicit (1-D) hydrodynamic code

Single-temperature radiative diffusion, grey opacity. Includes radioactive decay.

PPSN Evolution

Breakout
 Adiabatic Expansion

 + H recombinations

 Ni⁵⁶ decay
 Becomes optically thin

PPSN Evolution

PPSN Lightcurves

V-band, B-band, U-band

 Not Always Brighter
 Long Evolution Times
 Hydrogen

Visible PPSNe: I-band

0.01 $M_{sun}/yr/Mpc^3$ 0.01 x SFR_{obs} IfA Deep Survey: $I_{AB} > 26, 2.5 deg^2$ COSMOS: $I_{AB} > 27, 2 deg^2$ (general survey)

Visible PPSNe: NIR

JWST Detections

0.01 M_{sun}/yr/Mpc³ 0.01 x SFR_{obs}

Method III: Search for Their Signatures Today

ES, D. Kawata, C. Brook, R. Schneider, A. Ferrara, B. K. Gibson (2006)

Although the oldest stars should be near the center of the galaxy, does extended primordial SF history change spatial distribution?

•ACDM "zoom in" sim. of $8 \times 10^{11} M_{\odot}$ galaxy.

- DM simulation with $7 \times 10^5 M_{\odot}$ particles.
- Pick out all objects above 10⁴ K limit.
- Use 1D model (varying wind efficiency) to find positions of metal-free stars.

Lots of 1st stars end up in the solar Neighborhood

Full SPH calculations DM: $8 \times 10^6 M_{\odot}$

first

10

kpc

100

Limits on Mass function: **No Metal free observed stars:** M_{min} ≍ 0.8 M_☉

Limits for nucleosynthesis: Odd even effect not observed <1/2 Fe from Pop III is from PPSN Metallicity distribution function of halo stars, etc... have important implications for PopIII star formation.

Conclusions

I First Galaxies:

- The transition from metal-free to normal is **definitely** extended
- Thus metal-free galaxies are **probably** observable at z < 5
- the smallest emitters, high equivalent widths, HeII

II Pair-production Sne

Distinguished by: Hydrogen lines, slightly brighter than Ia, long evolution times -- possibly with 2 local maxima
Detectable in I band in present SNe searches out to z ~ 2
~ 1 deg, 3 year, NIR surveys can set limits out to z~6 or beyond

III Searches in the Galactic Halo

- Metal-free stars and their products end up everywhere
- The Halo is a great place to look
- Lack of metal-free stars argues for high mass, lack of odd even

effect constrains PPSNe

Conclusions

I First Galaxies:

- The transition from metal-free to normal is **definitely** extended
- Thus metal-free galaxies are observable with JWST/TMT at z <10 $\,$
- the smallest emitters, high equivalent widths, HeII

II Pair-production Sne

Distinguished by: Hydrogen lines, slightly brighter than Ia, long evolution times -- possibly with 2 local maxima
Detectable in I band in present SNe searches out to z ~ 2
~ 1 deg, 3 year, NIR surveys can set limits out to z~6 or beyond

III Searches in the Galactic Halo

- Metal-free stars and their products end up everywhere
- The Halo is a great place to look
- Lack of metal-free stars argues for high mass, lack of odd even

effect constrains PPSNe

Number of Sneyy in our models

Assume 1 Sne $\gamma\gamma$ per 1000 M_{sun} of stars

 $1/100 \text{ M}_{sun}/\text{yr}$ Fiducial $\text{E}_{g} = 10^{-3}$

The 1st Objects: Why Massive?

Abel, Byran, Norman (2001)

Tegmark, Silk, Rees, Blanchard, Abel, & Palla (1997)

Critical Metallicity

V. Bromm & A. Loeb (2004)

At typical density of 10⁴ cm⁻³ & T of 100 K OI and CII are the primary coolants

~ 10⁻⁴ Z_{sun} " Critical Metallicity" WE DON'T SEE THEM