Accretion in the Early Kuiper Belt

Scott Kenyon & Jane Luu 1998, AJ 115, 2136 Scott Kenyon & Jane Luu 1999, AJ 118, 1101

Rolf Jansen — Sep 4, 2009

Artist rendering of Eris (2003 UB₃₁₃) set against a background of the distant Sun and inner solar zodiacal disk — Robert Hurt (IPAC)

Outline

- Introduction to the Kuiper Belt
- Problem: Should Neptune not have prevented Pluto (and other 1000+ km objects) from forming in the outer Solar system?
- New simulations, isolating the key parameters: coagulation, fragmentation, tensile strength, nebula mass
- Discussion
- Conclusion: Pluto is not a figment of our imagination

Introduction to the Kuiper Belt (anno 1998)

- Kuiper Belt (Edgeworth 1943,1949; Kuiper 1951) is remnant of the solar nebula (circumsolar disk)
- Kuiper Belt stretches beyond Neptune: 30 ~50 (100?) AU, may have rather abrupt outer edge
- Estimated population of $\sim 10^5$ Kuiper Belt Objects (KBOs) with $r\gtrsim 50$ km; origin of short-period comets
- Pluto and Eris (2003UB₃₁₃) are merely largest known KBOs
 - $\blacktriangleright r \sim 1125 \ {\rm km} \ {\rm and} \ r \sim 1475 \ {\rm km}.$

Introduction (cont'd)

Cartoon representations of Kuiper Belt and Oort Cloud. (Courtesy: http://spaceguard.iasf-roma.inaf.it/NScience/neo/)

Introduction (cont'd)

Kuiper Belt is sufficiently populated for collisions to occur

both merging and collisionally produced dust likely important

Estimated total mass of Kuiper Belt is $\sim 0.1\,M_\oplus$

- > power-law size distribution, with r = 1 1500 km;
- > bulk density $\rho \sim 1 \text{ kg m}^{-3}$;
- \blacktriangleright and albedo $p_R = 0.07$

Important, because Kuiper Belt is closest connection to circumstellar disks around other stars

Problems?

- Mass is much smaller than expected from extrapolating the surface mass density of the inner solar system
- Mass is far too small to form the larger observed KBOs within the $\sim 10^8$ yr imposed by Neptune accreting nearby
 - Accretion models predict original Kuiper Belt $\sim 100 imes$ more massive than present-day one
 - Depletion via scattering by Neptune
 - \succ Collisional grinding of objects with r < 50 km \cdot
 - KBOs larger than 100 km should be original remnants from early solar system

Current state of models

Improve upon previous models that:

- follow coagulation of large dust grains into larger grains up to km-sized planetesimals
- follow collission-driven merging into larger bodies
- b do manage to produce a planet-sized object on time-scales roughly compatible with life-time of (proto)solar nebula
- b do not include velocity evolution
- bodies formed

Current state of models (cont'd)

 Available models have problems producing one 1000+ km planet (Pluto) within 100 Myr, let alone several.

Formation process and timescale for production and retention of KBOs still controversial

Relevant Dynamical Processes

- Gas drag (decreases particle velocities and causes particles to spiral inward; unimportant: too long a time-scale)
- Dynamical friction (transfers kinetic energy from larger to smaller bodies)
- Viscous stirring (taps Solar gravitational field to increase the velocities of all bodies)
- Collisional damping (inelastic collistions)

Relevant Dynamical Processes (cont'd)

Gravitational focusing (increases effective cross section of a body; important for all dynamical processes if $r \gtrsim 100$ km and $m \gtrsim 10^{19}$ kg) :

New simulations — Step 1: velocity evolution

Kenyon & Luu 1998, AJ 115, 2136 [Paper I]

- Sanity check of new code at 1 AU (Wetherill & Steward 1993)
 Model annulus at 35 AU with width of 6 AU
- Starting conditions based on observations of other stellar systems and models of the protosolar nebula
- Initial sizes of bodies of either 80 m, 800 m or 8 km
- Small eccentricities, $e \leq 0.01$, and equilibrium ratio of inclination to eccentricity, $\beta = \langle i \rangle / \langle e \rangle = 0.6$ (Barge & Pellat 1990,'91,'93)
- Fixed mass density of each body of 1.5 g cm $^{-3}$

Total $M_{dust} = 7-15 M_{\oplus}$ (from minimum-mass solar nebula)

New simulations (Step 1): Results

- 1000+ km objects can be produced at 35 AU on timescales of 10–100 Myr in a minimum-mass solar nebula, if *small* bodies with initial radii 80 < r < 800 m were already present and if orbital eccentricities were small ($e \sim 0.001$)
- When velocity evolution is taken into account, run-away growth occurs on a *wide range* of timescales (not just a linear process; not just one single object)

New simulations (Step 1): Results (cont'd)

- if larger bodies (\sim 8 km) were present in the protosolar nebula, then dynamical friction and viscous stirring would have *delayed* onset of run-away growth (>100 Myr) or required a much more massive solar nebula (\sim 100 M_{\oplus})
- if initial bodies were small (80 800 m), collisional damping dominates over dynamical friction and viscous stirring, resulting in *earlier* onset of run-away growth compared to previous models without velocity evolution

New simulations (Step 1): Caveats

But:

- Assumption of homogenous spatial distribution of planetesimals with small velocities relative to their keplerian orbital velocity breaks down in late stages of run-away growth [hence: simulation were ended at that stage]
 - Timescale to run-away is sensitive to the *minimum* radius/mass of objects, hence fragmentation/cratering might have a large impact [see: Paper II]
 - Treatment of low-velocity collisions is uncertain approximation, particularly in the later stages: massive bodies have low relative velocities and long gravitional ranges!

New simulations (Step 1): Caveats (cont'd)

Icy bodies in Kuiper Belt region may not be very strong: collisions at modest velocities may disrupt and prevent *any* growth! Only objects larger than 40–60 km can survive collisions and produce larger bodies.

New simulations — Step 2: fragmentation

Kenyon & Luu 1999, AJ 118, 1101 [Paper II]

- Essentially same initial conditions as in Paper I
- Collisions result in:
 - mergers: virtually no debris
 - cratering: bodies merge, ejected debris has much smaller mass than the merged object
 - rebounds: collision without merging, with some debris
 - Isruption: debris mass comparable to mass of the two initial bodies
 - (2 algorithms for treatment of cratering and disruption)

Maximum radius as a function of time for [LEFT] no or limited velocity evolution, and [RIGHT] full velocity evolution. The time to runaway growth decreases with increasing M_0 . Fragmentation delays onset of runaway growth, producing more 0.1–10 km objects during this delay, and then more rapidly grows 100–1000 km objects, by sweeping up the small debris.

[LEFT] Maximum radius as a function of strength of the KBOs for $M_0 = 10 M_{\oplus}$. Weak KBOs fail to grow to Pluto sizes. [RIGHT] Cumulative size distributions for a model with fragile KBOs $(S_0=100 \text{ ergs g}^{-1})$. Altough runaway growth produces 100 km objects, objects >400 km are catastrophically disrupted. Low-mass objects with $r \leq 0.1$ km are either ejected or ground to dust that is removed from the system on short timescales for $t \gtrsim 100$ Myr.

New simulations — Results

Fragmentation and velocity evolution are important components in the formation of present-day KBOs

- fragmentation produces a large reservoir of small bodies that damp the velocity dispersions of the larger objects through dynamical friction
- that reservoir allows a short and rapid late-stage runaway growth phase where 1 km objects grow into 100 km objects, sweeping up this small-sized material

New simulations — Results (cont'd)

- Continued fragmentation and velocity evolution damp early runaway growth by increasing the velocity dispersions of small objects [hence, the mass does not all wind up in the single object that happened to be the biggest early-on]
- unless KBOs are fragile, multiple 1000+ km size objects form the tip of the power-law size-distribution, even in a minimummass solar nebula.
- ➤ KBOs will form in the dusty disks around other pre-MS stars, where masses of 1–100 M_{\oplus} have been inferred at 30–100 AU distances.

New simulations — Conclusion

In a consistent simulation that includes both velocity evolution and the effects of fragmentation, it is:

- possible to form several Pluto-sized objects at 32–38 AU
- do so in only 30 40 Myr

for a minimum-mass solar nebula

> and still have most of the initial mass locked in $\sim 10^5$ objects with radius 0.1–10 km

> as long as the intrinsic tensile strength of these icy objects exceeds $S_0 \gtrsim 300$ ergs g⁻¹ and the initial orbits were close to circular.

New simulations — Conclusion (cont'd)

Kenyon & Luu, therefore, resolve the apparent paradox of *large* KBOs (e.g., Eris, Pluto, Makemake, Haumea, and Sedna are all larger than 1200 km in diameter) in a *small-mass* Kuiper Belt

The Kuiper Belt (anno 2009)

Largest known trans-Neptunian objects (TNOs)

The Kuiper Belt (anno 2009)

- Thousands of Kuiper Belt objects with $r \gtrsim 100$ km known (radii and masses often very uncertain; *Spitzer* mid-IR detections helped with mass/size/albedo estimates)
- Not just one or several Pluto's but possibly 104 objects of Plutolike sizes in Pluto-like orbits at Pluto-like distances (new minor planet sub-class: plutinos)
- Distribution of orbits non-homogenous → (Nice-model): the outer gas giants, particularly Neptune, did not form at their present distance from the Sun but migrated outward, trapping KBOs in resonances (2:1, 3:2, 4:3, 5:3 etc..), explaining Trojan populations of Neptune and also the capture of Triton.

The Kuiper Belt (anno 2009) (cont'd)

Many of the larger discovered KBOs have satellites

 Objects like Sedna may originate from outside our Solar system; or the Kuiper Belt and formation of large bodies may (somehow) extend all the way to the inner Oort Cloud.

Why were these papers important?

 Systematic step-by-step approach of isolating important parameters to arrive at a consistent picture

 Appendices! Not discussed in this presentation, but invaluable when interested in starting, say, a PhD project on this topic

> Kenyon & Luu 1998, AJ 115, 2136 Kenyon & Luu 1999, AJ 118, 1101 Luu & Jewitt 2002, ARA&A 40, 63

Artist impression of a collision, resulting in at least *some* debris, in the Kuiper Belt — Illustration credit: Dan Durda

