Dynamic modelling of luminous and dark matter in 17 Coma early-type galaxies

Presentation by: William Gray

Journal Club Spring 2008
A Little Background

• Elliptical Galaxies
 – Numerous among bright galaxies
 – Harbor significant fraction of stellar mass in the Universe

• Key Parameters for Elliptical Galaxy Formation
 – Central dark matter density
 – Scaling radius of dark matter
 – Stellar mass-to-light ratio
 – Distribution of stellar orbits
Purpose of Dynamic Modelling

- Allows for reconstruction of mass structure and orbital state of galaxy
 - Requires high quality Line-of-Sight Velocity Distributions (LOSVDs) out to several Reff (1/2 light radius)
- What has been done:
 - Only large non-rotating Ellipticals have been probed with spherical models.
 - Authors will look at nonsymmetrical, rotating and nonrotating models.
 - Looking for evidence of dark matter
- Goal: Analyze the luminous and dark matter distributions and orbital structure of flattened Coma galaxies
Observations

• Coma Sample: 17 early-type galaxies
 – 2 cD, 9 ordinary giant elliptical, and 6 lenticular galaxies
 • -20.30 < Mb < -22.56
 • H0 = 69 km/(s*Mpc)
 • 3.3 < reff < 18.4 (arcsec)

• Data obtained from HST (inner parts) and ground based (outer parts)
 – Data obtained along 2 position angles
 • Apparent Major and Minor Axes.
Table 1. Summary of observational data. Columns (1) and (2): galaxy ID (GMP from Godwin, Metcalfe & Peach 1983); column (3): morphological type (from Mehlert et al. 2000); columns (4) and (5): HST and ground-based photometry (L97 = HST/WFPC2 R-band data, Principal Investigator: John Lucey, Proposal ID: 5997; H98 = HST/WFPC2 R-band data, Principal Investigator: William Harris, Proposal ID: 6104; W07 = HST/WFPC2 R-band data, Principal Investigator: Gary Wegner, Proposal ID: 10884; M00 = Kron–Cousins Rc-band photometry from Mehlert et al. 2000; J94 = Gunn r photometry from Jørgensen & Franx 1994); column (6): absolute B-band magnitude (from Hyperleda; \(\text{H}_0 = 69 \text{ km s}^{-1} \text{ Mpc}^{-1} \)); columns (7) and (8): effective radius \(r_{\text{eff}} \) and ellipticity \(\epsilon_e \) at \(r_{\text{eff}} \) from Mehlert et al. (2000); column (9): rms \((\mu_{\text{grd}} - \mu_{\text{HST}}) \) between shifted HST surface brightness \(\mu_{\text{HST}} \) and corresponding ground-based \(\mu_{\text{grd}} \); columns (10)–(13): radius of the outermost kinematic data point along various slit positions: maj/min/dia = position angle of \(0^\circ/90^\circ/45^\circ \) relative to major axis; off = parallel to major axis (in case of GMP5568: two offset-slits). The offsets are quoted in the captions of Figs A1–A17.

<table>
<thead>
<tr>
<th>GMP id</th>
<th>Galaxy id</th>
<th>type</th>
<th>HST source</th>
<th>Ground-based source</th>
<th>Photometry</th>
<th>Kinematics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(M_B) (mag)</td>
<td>(r_{\text{eff}}) (arcsec)</td>
</tr>
<tr>
<td>0144</td>
<td>4957</td>
<td>E</td>
<td>L97</td>
<td>M00</td>
<td>-21.07</td>
<td>18.4</td>
</tr>
<tr>
<td>0282</td>
<td>4952</td>
<td>E</td>
<td>L97</td>
<td>M00</td>
<td>-20.69</td>
<td>14.1</td>
</tr>
<tr>
<td>0756</td>
<td>4944</td>
<td>S0</td>
<td>W07</td>
<td>M00</td>
<td>-21.77</td>
<td>11.7</td>
</tr>
<tr>
<td>1176</td>
<td>4931</td>
<td>S0</td>
<td>W07</td>
<td>M00</td>
<td>-20.32</td>
<td>7.4</td>
</tr>
<tr>
<td>1750</td>
<td>4926</td>
<td>E</td>
<td>L97</td>
<td>J94</td>
<td>-21.42</td>
<td>11.0</td>
</tr>
<tr>
<td>1990</td>
<td>IC 843</td>
<td>E/S0</td>
<td>W07</td>
<td>M00</td>
<td>-20.52</td>
<td>9.45</td>
</tr>
<tr>
<td>2417</td>
<td>4908</td>
<td>E/S0</td>
<td>L97</td>
<td>J94</td>
<td>-21.06</td>
<td>7.1</td>
</tr>
<tr>
<td>2440</td>
<td>IC 4045</td>
<td>E</td>
<td>W07</td>
<td>J94</td>
<td>-20.30</td>
<td>4.37</td>
</tr>
<tr>
<td>2921</td>
<td>4889</td>
<td>D</td>
<td>L97</td>
<td>J94</td>
<td>-22.56</td>
<td>33.9</td>
</tr>
<tr>
<td>3329</td>
<td>4874</td>
<td>D</td>
<td>H98</td>
<td>J94</td>
<td>-22.50</td>
<td>70.8</td>
</tr>
<tr>
<td>3510</td>
<td>4869</td>
<td>E</td>
<td>L97</td>
<td>J94</td>
<td>-20.40</td>
<td>7.6</td>
</tr>
<tr>
<td>3792</td>
<td>4860</td>
<td>E</td>
<td>L97</td>
<td>J94</td>
<td>-20.99</td>
<td>8.5</td>
</tr>
<tr>
<td>3958</td>
<td>IC 3947</td>
<td>E</td>
<td>L97</td>
<td>J94</td>
<td>-18.79</td>
<td>3.3</td>
</tr>
<tr>
<td>4928</td>
<td>4839</td>
<td>E/S0 (D)</td>
<td>L97</td>
<td>J94</td>
<td>-22.26</td>
<td>29.5</td>
</tr>
<tr>
<td>5279</td>
<td>4827</td>
<td>E</td>
<td>L97</td>
<td>M00</td>
<td>-21.36</td>
<td>13.6</td>
</tr>
<tr>
<td>5568</td>
<td>4816</td>
<td>S0</td>
<td>L97</td>
<td>M00</td>
<td>-21.53</td>
<td>55.7</td>
</tr>
<tr>
<td>5975</td>
<td>4807</td>
<td>E</td>
<td>L97</td>
<td>M00</td>
<td>-20.73</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Deprojection and inclination

- Surface photometry is deprojected to form 3D luminosity function (ν)
- Inclinations
 - 3 different inclinations are used
 - $I = 90^\circ$ (edge on)
 - A minimum inclination that is found by requiring the deprojection to be as flattened as an E7
 - Intermediate inclination for which the deprojection looks like an E5
 - In many galaxies, inclination is poorly constrained
NGC 4624. E7 in Virgo

NGC 4621. E5 in Virgo
Mass Model

\[\rho = \gamma v + \rho_{\text{DM}} \]

- Trial mass density, combination of stellar mass to light ratio and dark matter density.

- Two different density functions are used to fit the kinematic data. NFW distribution and a LOG distribution.

\[
\rho_{\text{NFW}}(r, r_s, c) \propto \frac{1}{(r/r_s)(1 + r/r_s)^2} \\
 r_s^3 \propto 10^{(A-\log c)/B} \left(\frac{4\pi}{3} \frac{c^3}{200} \right)^{-1} \\
r \rightarrow r \sqrt{\cos^2(\vartheta) + \sin^2(\vartheta)/q^2} \\
A = 1.05 \text{ and } B = 0.15
\]

\[
\rho_{\text{LOG}}(r) \propto v_c^2 \frac{3r_c^2 + r^2}{(r_c^2 + r^2)^2}
\]
Orbital Superposition

\[\dot{S} \equiv S - \alpha \chi^2_{\text{LOSVD}} \rightarrow \max \]

\[f_i \equiv \frac{w_i}{V_i} \]

\[S \equiv -\int f \ln(f) \, d^3r \, d^3v = -\sum_i w_i \ln \left(\frac{w_i}{V_i} \right) \]

\[\chi^2_{\text{LOSVD}} = \sum_{j=1}^{N_L} \sum_{k=1}^{N_{vel}} \left(\frac{L_{j,k}^{\text{mod}} - L_{j,k}^{\text{dat}}}{\Delta L_{j,k}^{\text{dat}}} \right)^2 \]

\[\beta_\theta \equiv 1 - \frac{\sigma_\theta^2}{\sigma_r^2} \]

\[\beta_\varphi \equiv 1 - \frac{\sigma_\varphi^2}{\sigma_r^2} \]

- \(S \) -> Boltzmann entropy
- \(f \) -> phase-space distribution function
- \(W_i \) -> total amount of light on the orbit
- \(V_i \) -> orbital phase-space volume
- \(\alpha \) -> regularization
- \(\chi^2_{\text{LOSVD}} \) -> deviations between data and mode
- Betas -> Anisotropy
What is this α?

- Controls the relative weight of data fit and entropy maximization.
- The higher α the better the fit, but noisier the DF becomes.
- $\alpha = 0.02$ for all modelling
Goodness-of-fit

\[\chi^2_{GH} \equiv \sum_{j=1}^{N_C} \left[\left(\frac{v^j_{\text{mod}} - v^j_{\text{dat}}}{\Delta v^j_{\text{dat}}} \right)^2 + \left(\frac{\sigma^j_{\text{mod}} - \sigma^j_{\text{dat}}}{\Delta \sigma^j_{\text{dat}}} \right)^2 \right. \\
\left. + \left(\frac{H^j_{3,\text{mod}} - H^j_{3,\text{dat}}}{\Delta H^j_{3,\text{dat}}} \right)^2 + \left(\frac{H^j_{4,\text{mod}} - H^j_{4,\text{dat}}}{\Delta H^j_{4,\text{dat}}} \right)^2 \right] \]

- Best fit is determined by above eqn

\[\chi^2_{\text{SC}} = \min \left\{ \chi^2_{GH}(\nu, \gamma, i)/N_{\text{data}} \right\}, \]
\[\chi^2_{\text{LOG}} = \min \left\{ \chi^2_{GH}(r_c, \nu_c, \gamma, i)/N_{\text{data}} \right\}, \]
and
\[\chi^2_{\text{NFW}} = \min \left\{ \chi^2_{GH}(c, q, \gamma, i)/N_{\text{data}} \right\} \]
\[\chi^2_{\min} = \min \left\{ \chi^2_{\text{LOG}}, \chi^2_{\text{NFW}}, \chi^2_{\text{SC}} \right\} \]

- Most fits are better than \(\chi^2_{\min} < 0.1 \)
Table 2. Summary of modelling results. Column (1): galaxy id (cf. Table 1); columns (2) and (3): best-fitting stellar $Y_{SC} [M/L]\ (R_{C}-band)$ and achieved goodness-of-fit χ_{SC}^2 (per data point) without dark matter; columns (4)–(7): the same as columns (2) and (3), but for LOG haloes with parameters r_c (kpc) and v_c (km s$^{-1}$); columns (8)–(11): the same as columns (2) and (3), but for NFW haloes with concentration c and flattening q; columns (12) and (13): best-fitting halo profile with significance $\Delta \chi^2_{halo} = (\chi^2_{NFW} - \chi^2_{LOG}) \times N_{data}$; column (14): evidence for dark matter $\Delta \chi^2_{DM} = (\chi^2_{SC} - \chi^2_{min}) \times N_{data}$; column (15): inclination of best fit with minimum and maximum in the 68 per cent confidence region of calculated models (where no range is quoted, only edge-on models were calculated).

<table>
<thead>
<tr>
<th>GMP</th>
<th>Y_{SC}</th>
<th>χ^2_{SC}</th>
<th>Y_{LOG}</th>
<th>χ^2_{LOG}</th>
<th>Y_{NFW}</th>
<th>χ^2_{NFW}</th>
<th>Halo</th>
<th>$\Delta \chi^2_{halo}$</th>
<th>$\Delta \chi^2_{DM}$</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0144</td>
<td>7.0</td>
<td>0.400</td>
<td>5.0</td>
<td>4.4</td>
<td>212</td>
<td>0.383</td>
<td>NFW</td>
<td>-2.45</td>
<td>3.3</td>
<td>50</td>
</tr>
<tr>
<td>0282</td>
<td>6.5</td>
<td>0.436</td>
<td>5.0</td>
<td>17.0</td>
<td>502</td>
<td>0.244</td>
<td>LOG</td>
<td>1.01</td>
<td>16.9</td>
<td>60</td>
</tr>
<tr>
<td>0756</td>
<td>3.0</td>
<td>1.253</td>
<td>2.6</td>
<td>12.7</td>
<td>215</td>
<td>0.930</td>
<td>LOG</td>
<td>1.57</td>
<td>41.3</td>
<td>90</td>
</tr>
<tr>
<td>1176</td>
<td>2.5</td>
<td>1.353</td>
<td>2.0</td>
<td>3.4</td>
<td>200</td>
<td>0.724</td>
<td>LOG</td>
<td>0.72</td>
<td>67.2</td>
<td>90</td>
</tr>
<tr>
<td>1750</td>
<td>7.0</td>
<td>0.540</td>
<td>6.0</td>
<td>18.7</td>
<td>500</td>
<td>0.452</td>
<td>LOG</td>
<td>0.81</td>
<td>4.2</td>
<td>65</td>
</tr>
<tr>
<td>1990</td>
<td>10.0</td>
<td>0.301</td>
<td>10.0</td>
<td>13.1</td>
<td>105</td>
<td>0.291</td>
<td>LOG</td>
<td>0.72</td>
<td>1.0</td>
<td>90</td>
</tr>
<tr>
<td>2417</td>
<td>8.5</td>
<td>0.244</td>
<td>8.0</td>
<td>23.8</td>
<td>500</td>
<td>0.206</td>
<td>LOG</td>
<td>0.46</td>
<td>1.8</td>
<td>90</td>
</tr>
<tr>
<td>2440</td>
<td>7.0</td>
<td>0.579</td>
<td>6.5</td>
<td>10.9</td>
<td>482</td>
<td>0.453</td>
<td>LOG</td>
<td>1.69</td>
<td>9.6</td>
<td>60</td>
</tr>
<tr>
<td>2921</td>
<td>9.0</td>
<td>0.112</td>
<td>6.5</td>
<td>8.2</td>
<td>425</td>
<td>0.073</td>
<td>NFW</td>
<td>-0.47</td>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3329</td>
<td>12.0</td>
<td>0.325</td>
<td>7.0</td>
<td>3.6</td>
<td>400</td>
<td>0.307</td>
<td>LOG</td>
<td>0.22</td>
<td>1.4</td>
<td>90</td>
</tr>
<tr>
<td>3510</td>
<td>6.0</td>
<td>0.425</td>
<td>5.5</td>
<td>11.6</td>
<td>287</td>
<td>0.398</td>
<td>LOG</td>
<td>0.67</td>
<td>2.5</td>
<td>90</td>
</tr>
<tr>
<td>3792</td>
<td>9.0</td>
<td>0.370</td>
<td>8.0</td>
<td>15.3</td>
<td>550</td>
<td>0.339</td>
<td>LOG</td>
<td>0.54</td>
<td>1.7</td>
<td>60</td>
</tr>
<tr>
<td>3958</td>
<td>6.0</td>
<td>0.229</td>
<td>5.0</td>
<td>6.8</td>
<td>274</td>
<td>0.162</td>
<td>LOG</td>
<td>0.42</td>
<td>2.4</td>
<td>90</td>
</tr>
<tr>
<td>4928</td>
<td>10.0</td>
<td>0.232</td>
<td>8.5</td>
<td>29.1</td>
<td>507</td>
<td>0.109</td>
<td>LOG</td>
<td>0.66</td>
<td>6.4</td>
<td>90</td>
</tr>
<tr>
<td>5279</td>
<td>7.0</td>
<td>0.132</td>
<td>6.5</td>
<td>28.4</td>
<td>482</td>
<td>0.099</td>
<td>LOG</td>
<td>0.71</td>
<td>2.3</td>
<td>90</td>
</tr>
<tr>
<td>5568</td>
<td>7.0</td>
<td>0.162</td>
<td>6.0</td>
<td>66.7</td>
<td>650</td>
<td>0.103</td>
<td>LOG</td>
<td>0.12</td>
<td>5.2</td>
<td>90</td>
</tr>
<tr>
<td>5975</td>
<td>4.0</td>
<td>0.580</td>
<td>3.0</td>
<td>1.7</td>
<td>200</td>
<td>0.333</td>
<td>NFW</td>
<td>-1.37</td>
<td>19.1</td>
<td>90</td>
</tr>
</tbody>
</table>
Model Inclinations

• Most of the best fits are edge on
 – Does this mean there is a bias in model?
• Possible biases
 – Using the same α for all galaxies
 – For face on galaxies, noise in kinematics
 – Non random inclinations
 – Bias due to extreme cases
Model Inclinations 2

- Top: Axial ratio from data (apparently)
- Bottom: Axial ratio from models
- If biased, we would see most galaxies at 1.

Figure 3. Top panel: histogram of apparent short-to-long axial ratios at r_{eff}. Bottom panel: intrinsic best-fitting short-to-long axial ratio b/a (averaged over $r/r_{\text{eff}} \in [0.5, 2.5]$). Black/solid line: whole sample; red/dashed line: without S0s.
Luminous and Dark Matter

• Does mass follow light?
 – Best fitting models include a dark matter halo.

• All galaxies fall into 3 categories
 – Inconsistent with a constant mass to light ratio (8/17)
 – Models with and without dark matter differ but, evidence for DM is less than 2σ (5/17)
 – Evidence for DM is generally weak (4/17)
Circular velocity curves
• Polar region
 – $\beta_v = \beta_\varphi$ due to axial symmetry
 – Center is not constrained
 – Galaxies differ in amount of anisotropy
Velocity Anisotropy

- Equatorial Plane
 - Meridional
 - All have $\beta_\nu > 0$ over sampled range.
 - Average β_ν is related to flattening of galaxy
 - Poorly constrained
 - Azimuthal
 - Much more diverse than Meridional
Phase-Space Distribution
Function of the Stars

• Stationary systems
 – DF is function of the isolating integrals
 – Constant along an orbit
 • Look at: Energy, Lz, 3rd integral, be positive
 – Since the Schwarzschild model exists, it ensures that the luminous component of the model is stationary and physically meaningful

\[\langle r_{\text{orb}} \rangle_i \equiv \sum \frac{\Delta t_i^k}{T_i} r_i^k, \]
Phase Space Distribution Function of Dark Matter

- Without baryons, DF’s for halo profiles are known. But with baryons it is not so.
- To find DM DF, solve: \[\hat{S} = S - \alpha \chi_{\text{LOSVD}}^2 \rightarrow \text{max} \]
- But, with alpha = 0
- Use dark matter profile as boundary condition
- Turns out that there does exist a DF for the DM.
LOG vs NFW

• 13 of 17 best fit haloes are LOG
• Significance of fit between profiles is low. No clear distinction can be made.
• With kinematic data, one or the other halo type cannot be rules out.
• Shape and structure of LOG halo DFs do make them unlikely
• Dark Matter phase space densities
Regularization

- $\alpha = 0.02$ was chosen for all Coma Galaxies.
Influence on Model Kinematics

- Minor Axis
 - Max entropy fits (α->0) yield isotropy
 - Lowering the weights (w) increases anisotropy
- Major Axis
 - No trend as seen in minor axis
 - Variations in intrinsic velocity anisotropies with alpha are weaker than along minor axis
- Bottom Line: No clear trend of velocity anisotropies with α is notable
Summary I

• 17 Coma Early-type galaxies surveyed
 – Axisymmetric Schwarzschild models used to fit LOSVDs out to 1-4 Reff.
 – 2 Different profiles used
 – Models regularized towards maximum entropy
Summary II

- Models with dark matter fit better than those without.
- NFW haloes fit 4/17 best
- LOG haloes fit 13/17 best
- Central Dark matter densities are at least 1-2 orders of magnitude lower than mass densities
- Between 10-50 % of mass inside Reff is dark matter
- Circular velocities is fairly constant over observed region
- All dark haloes are supported by at least 1 phase space DF
Summary III

- Rotation comes from overpopulation of prograde orbits and underpopulation of retrograde orbits
- Strong tangential anisotropy along minor axis
- \(\alpha \) does not matter!
Ok. Now I am done.

• Questions? Comments? Rude Remarks?

• Thanks!