Simulating cosmic reionization at large scales

I.T. Iliev, G. Mellema, U.-L. Pen, H. Merz, P.R. Shapiro and M.A. Alvarez

> Presentation by Mike Pagano Nov. 30th 2007

Simulating cosmic reionization at large scales:

- 1. The geometry of reionization
 - Trying to understand the size and spatial distribution of the ionized and neutral patches and their evolution
- 2. The 21-cm emission features and statistical signals
 - Approach for direct detection of the epoch of reionization

1. Geometry of reionization

- Previous reionization simulations only small volumes, not exceeding 20 h⁻¹ commoving Mpc.
- Need to resolve small galaxy which dominate at early times
- Most methods are based on ray-tracing radiative transfer method, which grows proportionally to number of ionizing sources, limiting size.

New Simulation

- They create the first large-scale radiative transfer simulation with a volume of (100 h⁻¹ Mpc)³
- Use codes PMFAST and C²-RAY to do a N-body simulation that can resolve down to dwarf galaxies
- New Ray-tracing radiative transfer method, correctly track ionization fronts

Assumptions

- Gas closely follows dark matter distribution
- Flat ACDM with:
 - $\Omega_{\rm m} = 0.27$ $\Omega_{\Lambda} = 0.73$ $\Omega_{\rm b} = 0.044$ $- {\rm h} = 70 {\rm ~km~s^{-1}~Mpc^{-1}}$ $\sigma_8 = 0.9$ $- {\rm n} = 1$

N-body Simulation

- Resolution: 1624³ = 4.28 billion dark matter particales and 3248³ computational cells.
- Particle mass: 2.5 x $10^7 M_{\Theta}$
- Only deal with haloes of 100 or more particles

Early structure formation at z = 10

N-body Simulation

- Minimum halo mass of 2.5 x $10^9 M_{\Theta}$, which would be a dwarf galaxy
- The first haloes form at $z \approx 21$, reaching 85,000 haloes by $z \approx 11$, and 0.8 million by z = 6.

Halo Mass Functions

- At lower redshifts (z≤10) it agrees with Sheth-Tormen (ST) mass function, but overestimates number of haloes at high redshift
- The Press-Schechter (PS) approximation underestimates the number of rare haloes in the exponential tail

Blue - Halo mass function

Black - PS Red - ST

Simulation

- Assume a fixed temperature of 10⁴ K everywhere.
- Ionizing sources are based on haloes from simulation. Sources falling within the same cell of the radiative transfer grid are combined together.

Ionizing Flux

$$\dot{N}_{\gamma} = f_{\gamma} \frac{M\Omega_{\rm b}}{\Delta t_i \Omega_0 m_{\rm p}}$$

$$f_{\gamma} = f_* f_{\rm esc} N_i$$

- f_{γ} is the efficiency factor
- N_γ is the number of ionizing photons emitted by source per unit time
- N_i is the total photon production per stellar baryon
- f_{*} is the star formation efficiency
- f_{esc} is the ionizing photon escape fraction

Ionizing Flux

- They adopt a $f_{\gamma} = 2000$
 - = either top-heavy initial mass function of $N_i = 50,000$, $f_*=0.2$ and $f_{esc}=0.2$
 - or Salpeter IMF with $N_i = 10,000$, $f_*=0.4$ and $f_{esc}=0.5$

Geometry of Reionization

• Slices through simulation volume at z = 18.5, 16.1, 14.5, 13.6, 12.6, and 11.3,neutral = green, ionized = yellow, H_{II} = red

Geometry of Reionization

- First H_{II} regions appear at z~21.5, and expand to a few comoving Mpc by z~18
- Highly clustered and quickly merge into larger regions
- Early ionization is dominated by local source clustering.
- http://www.cita.utoronto.ca/~iliev/xy _f2000_406_5mpc_thick_thin.gif

Geometry of Reionization

- As reionization progresses regions become less clustered and have local overlap
- Whole box ionized by z~11.3

Volume with H_{II} regions at redshifts z=14.74 and z=13.62

Density and Ionization

- No simple relation between mean density of a region and its reionization history, but most overdense regions become ionized first.
- Graph of mass-weighted ionized fraction vs. average density at different redshifts

Density and reionization

- Blue = Evolution of mass-weighted ionized fraction in nonoverlapping cubical subregions of different sizes.
- Red = Mean density
- Cyan = global evolution of mass ionized fraction

Power Spectra

Dotted = Variance of 3D power spectra of neutral gas denisty

Solid = Total density

Dashed = ionized gas density

"Friends-of-Friends"

- To find individual ionized regions used a "Friends-of-friends" algorithm
 - 2 cells are linked together if their ionized fractions are larger than 0.5
 - This lets them catalogue the H_{II} bubbles and their merger history

Size Distribution

- Total bubbles
- At higher redshifts, no large bubbles, and more smallmedium sized
- At lower redshifts, mostly dominated by large bubbles

Top - number of H_{II} bubbles of that size Bottom - volume filling factor of the bubbles

Size Distribution

- By redshift z~14.2 there are three H_{II} regions larger than 10⁴ (h⁻¹ Mpc)³ and each occupies a few percent of the total volume
- By z~13.6 they become one large bubble which occupies half the total volume
- By z~11.5, one big large bubble

Non-Gaussian nature of Reionization

- Probability
 Distribution Functions
- Left: density in mean density
- Middle: mass ionized fraction
- Right: density in mean ionized density

2. The 21-cm emission features

- Observations of 21-cm line of hydrogen could be a good approach for direct detection of the epoch of reionization
- The 21-cm radio line is due to a spin-flip transition of neutral hydrogen.
- Needs to be decoupled from the CMB

Models

Table 1. Simulation parameters and global reionization history results.

	f2000	f2000_406	f250	f2000C	f250C
Mesh	203^3	406 ³	203 ³	203^3	203^3
f_{γ}	2000	2000	250	2000	250
Csuborid	1	1	1	C(z)	C(z)
^Z 50 per cent	13.6	13.5	11.7	12.6	11.0
^Z overlap	11.3	~11	9.3	10.15	8.2
τ _{es}	0.145	~0.14	0.121	0.135	0.107

- f2000- model from paper 1
- f250 efficiency factor of 250
- C add subgrid gas inhomogeneities with clumping factors improved small scale clumping

Comparing the models

- Top f2000, bottom f250
- Observationally they correspond to slices through and image-frequency volume
- Reionization occurs at higher redshifts for f2000

- Sky map as seen at redshifted 21 cm line
- With 3-arcmin FWHM compensated Gaussian beam and 0.2-MHz bandwidth
- Large H_{II} regions are apparent as holes in the radiation map.

Sky Maps

- Although obtaining images of 21-cm emission would be ideal, its unlikely in the near term because of sensitivity limits and dominate foregrounds.
- Can approximate foregrounds with a slowly varying power law in frequency, subtract signal over a bandwidth, they use 5 MHz

Sky Maps

- Top sky map
- Bottom sky map with subtracted a wide 5Mhz band to remove foreground

δT (mK) at z=11.68 5 MHz band subtracted (Beam=0.3 arcmin, Bandwidth=0.2 MHz)

δT (mK) at z=10.14 (Beam=0.3 arcmin, Bandwidth=0.2 MHz)

δT (mK) at z=10.14 5 MHz band subtracted (Beam=0.3 arcmin, Bandwidth=0.2 MHz)

Rms Fluctuations

- Top rms fluctuations of the differential brightness temperature versus observed frequency
- Could be something to be observed and see which model is closest
- Peak univserse is 50% ionized by mass

Blue - f2000 Red - f2000C Magenta - f250C Green - f250

Non-Gaussianity

• 21-cm signal is also non-Gaussian

Upcoming missions

• PAST

- Primeval Structure
 Telescope
- MWA
 - Murchison Widefield Array
- LOFAR
 - Low Frequency Array
- SKA
 - Square Kilometre Array
- GMRT

MWA

Summary

- First large-scale radiative transfer simulation, showing final overlap at z~11
- Denser/clumpier gas has shorter recombination times\
- Complex relation between density of a region and its ionization state.
- Probability distribution functions are Non-Gaussian, for all models

Summary

- Gradual transition in the 21-cm signal from neutral gas being ionized
- The large-scale geometry of reionization is well resolved in the 21-cm sky map, especially if you subtract out a largefrequency band to eliminate foreground
- Rms fluctuations hit a maximum at 50% ionization by mass.

- http://www.cita.utoronto.ca/~iliev/xy0_evol
 .gif
- http://www.cita.utoronto.ca/~iliev/dokuwiki /doku.php?id=simulations