Pair-Instability Black Hole Formation and You!

Simon Porter
September 21, 2007
Hyper-Large Pop III Stars

- Population III may have been home to a number of ridiculously large stars (100-10,000 M☉)
- Such stars would have practically zero metalliclicity, and thus loose little mass during main sequence
- Internal pressures high enough to create pair-instability
Pair Instability

Main Sequence Fusion

Increased Gamma Emission

Pair Production

Increased Fusion

Feedback Loop

Neutrinos

Feedback Loop

Neutrinos
Pair Instability

Initial Stellar Mass > 100 M☉

\[e^- / e^+ \text{ Pair Instability} \]

\(\text{ISM} < 260 \text{ M}_☉\)

Pair Instability Supernova

\(\text{ISM} > 260 \text{ M}_☉\)

Neutrino Burst and Black Hole Formation
Science Objective

• Goal of Nakazato et al. was to model the spherically symmetric gravitation collapse of Pop III massive stars

• From this, a relic neutrino background flux can estimated, providing a direct measurement of Population III
Pop III Stars Modeled

- 18 ISMs modeled
- ISM > 260 M_\odot (Black hole formation)
- ISM < 1600 M_\odot (GR < Pair Instability)

<table>
<thead>
<tr>
<th>M_i (M_\odot)</th>
<th>M_{He} (M_\odot)</th>
<th>M_O (M_\odot)</th>
<th>s_O (kB)</th>
<th>s_{Fe} (kB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>159</td>
<td>143</td>
<td>14.54</td>
<td>15.98</td>
</tr>
<tr>
<td>375</td>
<td>201</td>
<td>181</td>
<td>16.06</td>
<td>17.50</td>
</tr>
<tr>
<td>470</td>
<td>254</td>
<td>228</td>
<td>17.73</td>
<td>19.17</td>
</tr>
<tr>
<td>585</td>
<td>319</td>
<td>287</td>
<td>19.53</td>
<td>20.96</td>
</tr>
<tr>
<td>730</td>
<td>400</td>
<td>360</td>
<td>21.54</td>
<td>22.97</td>
</tr>
<tr>
<td>915</td>
<td>504</td>
<td>454</td>
<td>23.81</td>
<td>25.25</td>
</tr>
<tr>
<td>1145</td>
<td>633</td>
<td>570</td>
<td>26.33</td>
<td>27.77</td>
</tr>
<tr>
<td>1430</td>
<td>794</td>
<td>714</td>
<td>29.10</td>
<td>30.54</td>
</tr>
<tr>
<td>1800</td>
<td>1001</td>
<td>901</td>
<td>32.29</td>
<td>33.74</td>
</tr>
<tr>
<td>2250</td>
<td>1254</td>
<td>1129</td>
<td>35.74</td>
<td>37.19</td>
</tr>
<tr>
<td>2800</td>
<td>1563</td>
<td>1407</td>
<td>39.51</td>
<td>40.96</td>
</tr>
<tr>
<td>3500</td>
<td>1956</td>
<td>1760</td>
<td>43.79</td>
<td>45.24</td>
</tr>
<tr>
<td>4350</td>
<td>2434</td>
<td>2191</td>
<td>48.44</td>
<td>49.89</td>
</tr>
<tr>
<td>5500</td>
<td>3080</td>
<td>2772</td>
<td>54.04</td>
<td>55.50</td>
</tr>
<tr>
<td>6800</td>
<td>3810</td>
<td>3429</td>
<td>59.70</td>
<td>61.16</td>
</tr>
<tr>
<td>8500</td>
<td>4765</td>
<td>4288</td>
<td>66.32</td>
<td>67.78</td>
</tr>
<tr>
<td>10500</td>
<td>5889</td>
<td>5300</td>
<td>73.29</td>
<td>74.75</td>
</tr>
<tr>
<td>13500</td>
<td>7574</td>
<td>6817</td>
<td>82.59</td>
<td>84.06</td>
</tr>
</tbody>
</table>
The Numerical Model

- Model uses spacetime metric from Misner & Sharp (1964):

\[ds^2 = e^{2\phi(t,m)} c^2 dt^2 - e^{2\lambda(t,m)} \left(\frac{G}{c^2} \right)^2 dm^2 - r^2(t,m)(d\theta^2 + \sin^2 \theta d\phi^2), \]

- Energy equation:

\[e^{-\phi} \left(\frac{\partial \varepsilon}{\partial t} \right)_m = - \frac{p}{\Gamma} \frac{\partial}{\partial m} (4\pi r^2 U), \]

\[U = e^{-\phi} \frac{\partial r}{\partial t}, \]

\[\Gamma = e^{-\lambda} \frac{\partial r}{\partial m}, \]
Neutrino Reactions

\[\nu_e + n \leftrightarrow e^- + p, \]
\[\bar{\nu}_e + p \leftrightarrow e^+ + n, \]
\[\nu + N \leftrightarrow \nu + N, \]
\[\nu + e^- \leftrightarrow \nu + e^-, \]
\[N + N' \leftrightarrow N + N' + \nu + \bar{\nu}, \]
\[\gamma^* \leftrightarrow \nu + \bar{\nu}, \]
\[e^- + e^+ \leftrightarrow \nu + \bar{\nu}, \]
\[\nu + A \leftrightarrow \nu + A, \]
\[\nu_e + A \leftrightarrow A + e^-, \]
Core Collapse

• Start with a reference hydrodynamic/GR model for density and temperature
Core Collapse

- Core is divided into two parts:
 - Subsonic inner core ($U \sim r$)
 - Supersonic outer core ($U \sim r^{-1/2}$)
Apparent Horizon

• To chart black hole formation, the model tracks the trapped surfaces described by:

\[U + \Gamma < 0,\]

• Which is satisfied by:

\[r < r_g \equiv 2\tilde{m},\]

\[\Gamma^2 = 1 + U^2 - \frac{2\tilde{m}}{r}. \]
Importance of Neutrino Cooling

- Neutrino cooling has a massive effect on core collapse
Importance of Neutrino Cooling

- With neutrino cooling, core shock disappears and entropy drops.

![Graph showing the relationship between baryon mass and entropy before and after neutrino cooling.](image-url)
Electron Fraction

• The high entropy in the core prevents the core from reaching electron degeneracy pressure.
• The positron capture rate is slower than electrons.
• Equilibrium is reached where β / inverse β reaction rates equal out
Electron Fraction

![Graphs showing electron fraction (Y_e) and proton fraction (Y_p) as a function of baryon mass (M_\odot).]
Neutrino Luminosity

- Because of the high reaction rates, the neutrino luminosity peaks near $\sim 10^{54}$ erg/s, 10 times higher than a normal supernova.
- But the apparent horizon closes within 100 ms, so total energy emitted is only $\sim 10^{53}$ erg, comparable to a supernova.
Neutrino Luminosity

e- neutrino

\tau, \mu neutrino

e+ neutrino

Total neutrino
Neutrino Luminosity

e^− neutrino,
\(t = -12.3 \text{ ms} \)

\(\tau, \mu \) neutrino,
\(t = -12.3 \text{ ms} \)

e^+ neutrino,
\(t = -12.3 \text{ ms} \)

\(\tau, \mu \) neutrino,
\(t = -1.52 \text{ ms} \)
Neutrino Spectrum

• Because of the high reaction rates, the neutrino luminosity peaks near $\sim 10^{54}$ erg/s, 10 times higher than a normal supernova
• But the apparent horizon closes within 100 ms, so total energy emitted is only $\sim 10^{53}$ erg, comparable to a supernova
Neutrino Energy Spectrum

e^- neutrino

e^+ neutrino

τ, μ neutrino

Total neutrino
Initial Mass Dependence
(or lack thereof)

<table>
<thead>
<tr>
<th>M_i</th>
<th>s_{Fe}</th>
<th>s_{core}</th>
<th>M_{core}</th>
<th>M_{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M⊙)</td>
<td>(k_B)</td>
<td>(k_B)</td>
<td>(M⊙)</td>
<td>(M⊙)</td>
</tr>
<tr>
<td>300</td>
<td>15.98</td>
<td>7.33</td>
<td>13.6</td>
<td>4.17</td>
</tr>
<tr>
<td>375</td>
<td>17.50</td>
<td>7.37</td>
<td>14.1</td>
<td>4.08</td>
</tr>
<tr>
<td>470</td>
<td>19.17</td>
<td>7.70</td>
<td>15.8</td>
<td>4.53</td>
</tr>
<tr>
<td>585</td>
<td>20.96</td>
<td>7.88</td>
<td>16.8</td>
<td>4.84</td>
</tr>
<tr>
<td>730</td>
<td>22.97</td>
<td>8.07</td>
<td>18.2</td>
<td>5.18</td>
</tr>
<tr>
<td>915</td>
<td>25.25</td>
<td>8.28</td>
<td>19.5</td>
<td>5.39</td>
</tr>
<tr>
<td>1145</td>
<td>27.77</td>
<td>8.50</td>
<td>21.0</td>
<td>5.82</td>
</tr>
<tr>
<td>1430</td>
<td>30.54</td>
<td>8.77</td>
<td>23.4</td>
<td>6.33</td>
</tr>
<tr>
<td>1800</td>
<td>33.74</td>
<td>8.90</td>
<td>24.7</td>
<td>6.46</td>
</tr>
<tr>
<td>2250</td>
<td>37.19</td>
<td>9.24</td>
<td>26.5</td>
<td>6.96</td>
</tr>
<tr>
<td>2800</td>
<td>40.96</td>
<td>9.64</td>
<td>30.0</td>
<td>7.60</td>
</tr>
<tr>
<td>3500</td>
<td>45.24</td>
<td>10.10</td>
<td>33.5</td>
<td>8.42</td>
</tr>
<tr>
<td>4350</td>
<td>49.89</td>
<td>10.35</td>
<td>36.0</td>
<td>8.44</td>
</tr>
<tr>
<td>5500</td>
<td>55.50</td>
<td>10.56</td>
<td>39.0</td>
<td>9.11</td>
</tr>
<tr>
<td>6800</td>
<td>61.16</td>
<td>10.41</td>
<td>37.6</td>
<td>9.10</td>
</tr>
<tr>
<td>8500</td>
<td>67.78</td>
<td>10.58</td>
<td>40.1</td>
<td>9.40</td>
</tr>
<tr>
<td>10500</td>
<td>74.75</td>
<td>10.48</td>
<td>39.5</td>
<td>9.26</td>
</tr>
<tr>
<td>13500</td>
<td>84.06</td>
<td>11.20</td>
<td>44.5</td>
<td>9.91</td>
</tr>
</tbody>
</table>
Initial Mass Dependence (or lack thereof)

375 M⊙

10,500 M⊙
Initial Mass Dependence (or lack thereof)

- The spectrum does not change drastically over the mass range
Relic Neutrino Flux

• The net flux is an integral over the number density of Pop III stars and their redshift:

\[
\frac{dF_\nu}{dE_\nu} = c \int_{z_i}^{z_f} \int_{M_0}^{M_N} \frac{dN(m, E'_\nu)}{dE'_\nu} (1 + z) R_{\text{PopIII}}(z, m) dm \frac{dt}{dz} \, dz,
\]

• Substituting for redshift and adding a normalizing factor \(\Psi(z)\):

\[
\frac{dF_\nu}{dE_\nu} = c \int_{M_0}^{M_N} dm \frac{dn(m)}{dm} \times \int_{z_f}^{z_i} dz \frac{\psi(z)}{H_0(1+z)\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}} \frac{dN(m, E'_\nu)}{dE'_\nu} (1 + z).
\]
Relic Neutrino Flux

• Using a Pop III mass distribution from Nakamura & Umemura (2001)

\[
\begin{aligned}
 \frac{dn}{dm} &= B m^{-\beta - 1}, & m &\geq M_{\text{min}}, \\
 n &= 0, & m &< M_{\text{min}}.
\end{aligned}
\]

\[B = (\beta - 1) M_{\text{min}}^{\beta - 1} n_b m_N \epsilon (1 - \kappa).\]

• So,

\[
\int_{M_{k-1}}^{M_k} \frac{dn(m)}{dm} \, dm = \frac{\beta - 1}{\beta} n_b m_N \epsilon (1 - \kappa) M_{\text{min}}^{\beta - 1} \left(M_{k-1}^{-\beta} - M_k^{-\beta} \right),
\]
Relic Neutrino Flux

• Putting it all together:

\[
\frac{dF_\nu}{dE_\nu} = \frac{\beta - 1}{\beta} c n_b m_N \epsilon (1 - \kappa) M_{\text{min}}^{\beta - 1} \sum_{k=1}^{N} \left(M_{k-1}^{-\beta} - M_k^{-\beta} \right)
\times \int_{z_f}^{z_i} \frac{\psi(z)}{H_0(1+z)\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}} \frac{dN(M_k, E'_\nu)}{dE'_\nu} (1+z),
\]

• But we still need a $\Psi(z)$!
Relic Neutrino Flux

• Model A assumes reionization at $z = 17 \pm 5$ based on WMAP data (Spergel 2003)

\[
\psi(z) = \psi_A(z) \\
\equiv \frac{1}{5\sqrt{2\pi}} \exp\left[-\frac{(z - 17)^2}{20}\right] H_0(1+z)\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}.
\]

• Model B assumes reionization at $z \sim 10$ (Scannapieco et al., 2003)

\[
\psi(z) = \psi_B(z) \equiv \delta(z - 10)H_0(1+z)\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}.
\]

• Model C just assumes continuous Pop III formation across $z = 4-12$ (Yonetoku, 2004)

\[
\psi(z) = \psi_C(z) \propto (1+z)^{1.7} \quad \text{for} \quad 4 < z < 12,
\]
Results!

- Assuming Model A (WMAP):
Results!

- Anti-electron neutrino flux is relatively high!
Detection?

- Solar neutrinos will overwhelm electron neutrinos below 18 MeV, and ordinary supernovas above 10 MeV
- Terrestrial nuclear reactors will dominate anti-electron neutrinos below 10 MeV
- So, no possible detection, *yet*...
Summary

• Pop III stars greater than 260 M_\odot would form black holes due to pair instability.
• Such a process would produce an intense neutrino burst, with an energy distribution independent of initial mass.
• These neutrinos would create a relic background source.
• But which is below current limits of detection.