Cosmological Applications of Gravitational Lensing

R. D. Blandford and R. Narayan

Annu. Rev. Astron. Astrophys. 1992. 30: 311-58

Presented by Jim Haldenwang

AST 494 / 591 Spring 2007 Dr. Jansen

Why Study Gravitational Lenses?

- Determine mass of galaxy clusters, etc.
- Magnify distant objects (natural telescopes)
- Distance measurement (redshift)
- Probe stellar composition of lenses (microlensing)
- Dark matter studies (MACHOs, M/L ratio, mass distribution)

Observational Difficulties

- Rare
- Nature of source disguised by large magnification
- Uncertain lens distribution
- Different source regions magnified to different degrees
- Distortions due to perturbations along line of sight

Classes of gravitational lenses

- Multiple Quasars
 - double, triple, quadruple images
- Arcs
 - source: high redshift galaxy
 - lens: galaxy cluster
- Radio Rings
 - source: extended radio source
 - lens: galaxy

Q0957+561 - Double Quasar

First lens discovered - Walsh et al 1979 source: z = 1.41 quasar; lens: z = 0.36 galaxy

Q2237+030 - Einstein Cross

Quadruple quasar

source: z = 1.69 quasar; lens: z = 0.039 galaxy

Abell 370 - Arc

Lynds & Petrosian, 1986; Soucail et al, 1987 source: z = 0.72 galaxy; lens: z = 0.37 cluster

MG1131+0456 - Radio Ring

"Einstein ring" discovered by Hewitt et al, 1988 source: z = ? compact radio source

lens: z = ? galaxy

S, L, O - Source, Lens, Observer

 D_{ds} , D_{d} , D_{s} - angular diameter distances

 α - reduced deflection angle

 β - source position

 θ - image position

 \hat{q} - impact (or collision) parameter

- deflection angle (a two-vector)

In Euclidean geometry (for small angles),

$$\xi = D_A \cdot \Delta \theta$$

But what about the non-Euclidean geometry of the Friedmann-Robertson-Walker universe?

Consider the Robertson-Walker metric:

$$ds^{2} = -c^{2}dt^{2} + a(t)^{2} [dr^{2} + S_{\kappa}(r)^{2} d\Omega^{2}]$$

where

$$d\Omega^2 \equiv d\theta^2 + \sin^2\theta \ d\phi^2$$

and

$$S_{\kappa}(r) = \begin{cases} R \sin(r/R) & (\kappa = +1) \\ r & (\kappa = 0) \\ R \sinh(r/R) & (\kappa = -1) \end{cases}$$

Setting $dt = dr = d\phi = 0$ in the Robertson-Walker metric, we obtain

$$\xi = \Delta s = a(t_e) \cdot S_{\kappa}(r) \cdot \Delta \theta$$

For example, in a Euclidean universe, $a(t_e) = 1$ and $S_{\kappa}(r) = r$, so $\xi = r \cdot \Delta \theta$.

In the FRW universe,

$$\xi = a(t_e) \cdot S_{\kappa}(r) \cdot \Delta \theta$$

Now we define the angular diameter distance D_A as

$$D_A = a(t_e) \cdot S_{\kappa}(r) = \frac{S_{\kappa}(r)}{1+z}$$

Then $\xi = D_A \cdot \Delta \theta$, just like in the Euclidean universe.

$$\alpha = \frac{D_{ds}\hat{\alpha}}{D_s}$$

$$\hat{\alpha} \approx \frac{x}{D_{DS}}$$
 $\alpha \approx \frac{x}{D_{S}}$

$$\hat{\alpha} \approx \frac{x}{D_{_{DS}}} \qquad \quad \alpha \approx \frac{x}{D_{_{S}}}$$

$$x \approx \hat{\alpha}D_{DS} \approx \alpha D_{S}$$
, so $\alpha \approx \frac{D_{DS}\hat{\alpha}}{D_{S}}$

$$\hat{\alpha} = \frac{4GM}{c^2 \xi}$$

From Analytical Mechanics, 7th edition, by Fowles & Cassiday, eq (6.10.8):

$$\epsilon = \sqrt{1 + \frac{2EL^2}{G^2M^2m^3}} \qquad \text{where} \qquad E = \frac{1}{2}mv^2 - \frac{GMm}{\xi}$$
 and
$$L = \xi mv$$

$$\epsilon = \sqrt{1 + \frac{\xi^2 v^4}{G^2 M^2} - \frac{2\xi v^2}{GM}} = \sqrt{\left(1 - \frac{\xi v^2}{GM}\right)^2} = \frac{\xi v^2}{GM} - 1$$

$$\epsilon = \sqrt{1 + \frac{\xi^2 v^4}{G^2 M^2} - \frac{2\xi v^2}{GM}} = \sqrt{\left(1 - \frac{\xi v^2}{GM}\right)^2} = \frac{\xi v^2}{GM} - 1$$

$$\epsilon \approx \frac{c^2 \xi}{GM}$$
 since $\frac{c^2 \xi}{GM} >> 1$

$$cos(\phi) = \frac{1}{\epsilon} \implies \phi = cos^{-1} \left(\frac{GM}{c^2 \xi} \right)$$

$$\cos(\varphi) = \frac{1}{\varepsilon} \implies \varphi = \cos^{-1}\left(\frac{GM}{c^2\xi}\right)$$

$$\hat{\alpha} = \pi - 2\phi = 2\left(\frac{\pi}{2} - \phi\right) \approx 2\left[\frac{\pi}{2} - \left(\frac{\pi}{2} - \frac{GM}{c^2 \xi}\right)\right]$$

$$\hat{\alpha} = \frac{2GM}{c^2 \xi}$$

$$\hat{\alpha} = \frac{2GM}{c^2 \xi}$$

$$\hat{\alpha} = \frac{2GM}{c^2 \xi}$$

$$\hat{\alpha} = \frac{4GM}{c^2 \xi}$$

$$\Theta_{E} = \left(\frac{4GM}{c^{2}D}\right)^{1/2}$$

$$\alpha = \frac{D_{\text{ds}}\hat{\alpha}}{D_{\text{s}}} \implies \hat{\alpha} = \alpha \frac{D_{\text{s}}}{D_{\text{ds}}}$$

$$\alpha = \frac{D_{ds}\hat{\alpha}}{D_{s}} \implies \hat{\alpha} = \alpha \frac{D_{s}}{D_{ds}}$$

$$\hat{\alpha} = \frac{4GM}{c^2 \xi} \implies \alpha \frac{D_s}{D_{ds}} = \frac{4GM}{c^2 \xi}$$

$$\alpha = \frac{D_{ds}\hat{\alpha}}{D_{s}} \implies \hat{\alpha} = \alpha \frac{D_{s}}{D_{ds}}$$

$$\hat{\alpha} = \frac{4GM}{c^2 \xi} \implies \alpha \frac{D_s}{D_{ds}} = \frac{4GM}{c^2 \xi}$$

$$\xi = \theta D_{\text{d}} \implies \alpha \frac{D_{\text{s}}}{D_{\text{ds}}} = \frac{4GM}{c^2 \theta D_{\text{d}}}$$

When the source and deflector (lens) are perfectly aligned, an Einstein ring is seen by the observer. In this case, α and θ are equal. This angle is called the Einstein angle, θ_E . Then

$$\alpha \theta = \theta_{E}^{2} = \frac{4GM}{c^{2}} \frac{D_{ds}}{D_{d}D_{s}}$$

$$\alpha\theta = \theta_{\text{E}}^2 = \frac{4GM}{c^2} \frac{D_{\text{ds}}}{D_{\text{d}}D_{\text{s}}}$$

$$\theta_{\text{E}} = \left(\frac{4GM}{c^2D}\right)^{1/2} \text{ , where } D \equiv \frac{D_{\text{d}}D_{\text{s}}}{D_{\text{ds}}} \text{ is the effective lens distance.}$$

Expressing the mass in solar masses and the distance in Gpc leads to

$$\theta_{\rm E} = \left(\frac{4{\rm GM}}{{\rm c^2D}}\right)^{1/2} = 3\left(\frac{\rm M}{\rm M_{\odot}}\right)^{1/2} \left(\frac{\rm D}{\rm 1~Gpc}\right)^{-1/2} \mu ~{\rm arc\,sec}$$

For example, we can estimate θ_E by measuring the radius of curvature of an arc. Then we can use this formula to estimate the mass of the lens "enclosed" by the ring.

$$\theta_{\rm E} = \left(\frac{4\rm GM}{\rm c^2D}\right)^{1/2} = 3\left(\frac{\rm M}{\rm M_{\odot}}\right)^{1/2} \left(\frac{\rm D}{\rm 1~Gpc}\right)^{-1/2} \mu \text{ arc sec}$$

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08

HST • WFPC2

$$\theta_{\text{E}} = \frac{4\pi\sigma^2 D_{\text{ds}}}{c^2 D_{\text{s}}}$$

The above formula relates θ_E to the velocity dispersion σ .

Left panels: point source positions, with caustic lines

Right panels: image locations, with critical curves

Top panels: Xs mark location of Einstein cross

Bottom panels: Q0957+561 midway between O and +

Image multiplicities: 1, 3 and 5 (weak image near center)

Left panels: point source positions, with caustic lines

Right panels: image locations, with critical curves

Top panels: Xs mark location of Einstein cross

Bottom panels: Q0957+561 midway between O and +

Image multiplicities: 1, 3 and 5 (weak image near center)

Arc and ring images of resolved sources. Each set contains source plane on left and corresponding images on right.

Top right set: Abell 370.

Bottom left set: MG1131+0456.

<u>Cosmography</u> - large scale geometry of universe

Hubble constant can be estimated by measuring the time delay between the two images of Q0957+561, a variable source

Schild 1990 $\Delta t = 1.1 \text{ yr}$

Others (incorrect) $\Delta t = 1.48 \text{ yr}$

Falco et al model (1991a):

$$\Delta t = 1.48 \text{ yr}, \Omega_0 = 1, q_0 = 1/2$$

 $\Rightarrow H_0 = 61 \pm 7$

Cosmography - large scale geometry of universe

Redshift - distance relation: gravitational lenses <u>confirm</u> that high redshift sources lie <u>behind</u> lower redshift lenses

<u>Dark Matter Studies</u> - <u>Our Galaxy</u>

MACHOs? (MAssive Compact Halo Objects)

Examples: "comets," "asteroids," "Jupiters," brown dwarfs, cool white dwarfs, neutron stars, black holes

Microlensing - when a star in the LMC crosses a lens caustic, it will briefly brighten (flux amplification)

Ryden text: research indicates as much as 20% of halo mass could be MACHOs. Typical mass > 0.15 solar masses, perhaps cool white dwarfs.

<u>Dark Matter Studies</u> - <u>External Galaxies</u>

Lensing galaxies - estimate mass, M/L ratio

Schneider et al 1988 - not much dark matter in galactic cores

Narasimha et al 1986 - evidence of compact masses ~ 10¹⁰ solar masses in center of lenses

Galactic halos - models can give mass distribution as well as mass of lenses

Existence of lens candidates with no detected lensing galaxy - possibility of galaxy-sized condensations of dark matter

<u>Dark Matter Studies</u> - <u>Galaxy Clusters</u>

Advantages of lensing clusters vs. lensing galaxies:

- larger angular area of sky, so greater cross-section for lensing
- sources are faint galaxies, more numerous than quasars
- sources are resolved, not point-like
- can study mass distribution in clusters

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08

HST • WFPC2

<u>Dark Matter Studies</u> - <u>Galaxy Clusters</u>

Mass models can estimate velocity dispersion, M/L ratio, core radius, ellipticity, mass distribution

Arc radius of curvature $\sim \theta_E \Rightarrow$ estimate σ , M/L ratio

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

<u>Dark Matter Studies</u> - <u>Galaxy Clusters</u>

Distribution of arclets gives information on mass distribution, therefore information on dark matter distribution in lensing cluster

Source near caustic ⇒ large magnification (tangential elongation)

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

<u>Dark Matter Studies</u> - <u>Galaxy Clusters</u>

Findings:

- $M/L \ge 100$ solar units
- core radius < 100 kpc (smaller than their images)
- Abell 370 appears to have elliptical mass distribution

<u>Dark Matter Studies</u> - <u>Large Scale Structure</u>

Inhomogeneities up to 50 - 100 Mpc \Rightarrow elliptical distortions in images of distant sources and changes in apparent luminosities

Discovery of faint blue galaxy population provides a potential way to study these effects

If cold dark matter cosmology is correct, should see 1 - 3 % ellipticity

Possibility of studying lensing by cosmic strings

Magnification of Very Distant Objects - Quasars

Microlensing ⇒ constraints on quasar size, because the flux variation is significant only if angular size of source is less than Einstein radius of lens.

Q2237+030 (Einstein cross) - first direct estimate of quasar size

Size < 10¹⁰ km, but inconsistent with accretion disk model (nonthermal component?)

Magnification of Very Distant Objects - Galaxies, Radio Sources

Resolved sources - high resolution information from parts of the source near caustic (high magnification)

Spectroscopy possible at 3 magnitudes fainter than normal, so

arc redshifts can be determined

CL1358+62 (HST image)

Lens: galaxy cluster, z = 0.33

Source: galaxy pair, z = 4.92

Summary

- Gravitational lenses have many applications in astronomy, including:
 - Cosmography (large scale geometry of universe)
 - Dark Matter Studies
 - Magnification of Very Distant Objects

Thanks, everybody!