

Entropy in nearby galaxy clusters

Meredith Reitz 3/9

XMM-Newton observations of three poor clusters: Similarity in dark matter and entropy profiles down to low mass

[Pratt, G. and Arnaud, M., 2005]

Structure and scaling of the entropy in nearby galaxy clusters
[Pratt, G., Arnaud, M., & Pointecouteau, E., 2006]

XMM-Newton

NASA-ESA

Launched 12 / 1999, still active

Observes

x-rays of

0.2-12 keV

First paper:

XMM-Newton observations of three poor clusters: Similarity in dark matter and entropy profiles down to low mass

[Pratt, G. and Arnaud, M., 2005]

Second paper:

Structure and scaling of the entropy in nearby galaxy clusters

[Pratt, G., Arnaud, M., & Pointecouteau, E., 2006]

Motivation

- Better understanding of cluster formation / evolution
- See to what degree non-gravitational processes are significant
- Mass profile M(r)
 - Information about gravitational collapse
- Entropy is generated in shocks as gas is drawn into the potential well of the cluster
- Entropy profile S(r)
 - ICM accretion, thermodynamic history
 - Non-gravitational processes

These x-rays

- Intracluster medium (ICM) hot gas
- Two quantities define x-ray properties
 - Entropy profile of the gas, S(r)
 - Shape of the gravitational potential well; M(r)

- Low-mass clusters
 - Non-gravitational, gravitational comparable

This paper

- Sample: A1991, A2717, MKW9
 - Three low-mass, cool clusters
 - $0.04 \le z \le 0.06$
 - kT = 2.65, 2.53, 2.58 keV
 - Combine with previous results for cool A1983 (kT = 2.2 keV) and hot A1413 (kT = 6.5 keV)
- Assumptions
 - Λ CDMH70: H₀=70 km s⁻¹ Mpc⁻¹, Ω m=0.3, $\Omega \Lambda$ =0.7
 - Some SCDMH50: H₀=50 km s⁻¹ Mpc⁻¹, Ω m=1.0, $\Omega \wedge = 0.0$

Sample of clusters

- 10 systems
 - Temperatures:

 $kT = 2 \text{ keV} \dots 8.5 \text{ keV}$

■ Redshifts: $0.03 \le z \le 0.15$

■ // CDMH70

Cluster	Z	T
		(keV)
A1983	0.0442	2.18 ± 0.09
A2717	0.0498	2.56 ± 0.06
MKW9	0.0382	2.43 ± 0.24
A1991	0.0586	2.71 ± 0.07
A2597	0.0852	3.67 ± 0.09
A1068	0.1375	4.67 ± 0.11
A1413	0.1427	6.62 ± 0.14
A478	0.0881	7.05 ± 0.12
PKS0745	0.1028	7.97 ± 0.28
A2204	0.1523	8.26 ± 0.22

Overview

- Expectations from models of cluster formation, discrepancies
 *Mass and entropy
- Surface brightness profiles
 - Emission measure profiles
 - Gas density profiles
- Hardness ratio images
 - Temperature structure dynamical state
- Annular spectral analysis & surface brightness profiles
 - Abundance profiles
 - Temperature profiles
 Correct for projection, PSF effects (gas density profiles)
- Mass and entropy profiles
 - From gas density, temperature profiles
 - And scaled

Overview

- Larger sample size, scaling parameters
- Entropy-temperature relation
 - At different fractions of virial radius
 - R200: radius within which density is 200 times ρ c (z): $\rho_{\rm c}(z) = 3h(z)^2 {\rm H_0}/8\pi {\rm G} \quad h^2(z) = \Omega_{\rm m}(1+z)^3 + \Omega_{\Lambda}$
- Entropy-mass relation
- Entropy profiles, S(r)
 - Scaled with best-fitting S T, S M relations

Self-similar models

- Predict universal shape for dark matter distribution from ~0.01r₂₀₀ to ~0.7r₂₀₀, high and low mass clusters
- Predict central cusp
- X-ray observations can confirm
- Cluster formation governed solely by gravitational processes
- Imply that properties S, Lx would scale with powers of T, M
- Scaling is somewhat inconsistent with observations

Self-similar models

- Entropy (pseudoentropy) defined as $S = kT/n_z^{2/3}$ scales theoretically with temperature as $S \propto h(z)^{-4/3}T$
- But scales empirically closer to $S \propto T^{0.65}$
 - {second paper: 0.64±0.11}
- With radius, in model, scales as $S \propto r^{1.1}$
- But scales empirically like (with T^{0.65} scaling)
 - {1.08±0.04}

Self-similar models

Entropy scales with mass:

$$S \propto h(z)^{-2/3} M^{2/3}$$

Find:

$$S_{2500} \propto h(z)^{-2/3} M_{15}^{0.44}$$

Possible non-gravitational processes

- Preheating of gas before accretion
 - Early supernovae
 - 'seems too localized to have a significant effect in smoothing the accreting gas'
 - Early AGN activity
 - Only is unlikely for lack of observed isentropic cores
- Internal heating after accretion
- Cooling
 - Predicts higher stellar mass fraction than observed
- Likely
 - Interplay between cooling and feedback, combined with some preheating

X-ray morphologies 50:00 MKW 9 A 1991 46:00 52:00 42:00 44:00 54:00 Declination String Section Sec 56:00 36:00 38:00 -36:00:00 34:00 36:00 32:00 Right ascension Right ascension Right ascension

X-ray morphologies

- A1991 and A2717: symmetric x-ray isophotes → relatively relaxed
- MKW9 asymmetrical
 - A2717 centered on central galaxy ACO 2717 BCG
 - A1991 somewhat off-center from central galaxy ACO 1991A
 - MKW9 centered on central galaxy UGC 9886

Surface brightness profiles

- /\ emissivity of the hot gas depends sensitively on gas abundance / temperature
- Data reduction
 - Masking of point sources
 - Looking at 0.3 3.0 keV bands
 - Corrected for emissivity variations temperature / abundance profiles fitted to functional forms
 - \(\alpha\) (radius) estimated with a MEKAL model (a thermal equilibrium plasma emission model), normalized to its value at large radius

Surface brightness profiles

- Directly proportional to emission measure profile, EM(r)
- Can be fitted from parametric model for the gas density profile, n_e(r) (incorporating XMM-Newton PSF)
- Double isothermal β model (BB)
 - Pratt & Arnaud, 2002
 - Assumes that both the inner and outer gas density profiles can be described by β models, but with different parameters

Gas density profile - double isothermal β model

- n_H(r) = the gas density radial profile
- Rcut = free parameter

$$r < R_{\text{cut}} \ n_{\text{H}}(r) = n_{\text{H,0}} \left[1 + \left(\frac{r}{r_{\text{e,in}}} \right)^2 \right]^{-\frac{3S_{\text{in}}}{2}}$$

$$r > R_{\text{cut}} \ n_{\text{H}}(r) = N \left[1 + \left(\frac{r}{r_{\text{e}}} \right)^2 \right]^{-\frac{3S}{2}} \cdot$$

$$\beta_{\rm in} = \beta \frac{1 + \left(\frac{r_{\rm c,h}}{R_{\rm cut}}\right)^2}{1 + \left(\frac{r_{\rm c}}{R_{\rm cut}}\right)^2}$$

$$\beta_{\rm in} = \beta \frac{1 + \left(\frac{r_{\rm e,in}}{R_{\rm eut}}\right)^2}{1 + \left(\frac{r_{\rm e}}{R_{\rm eut}}\right)^2}$$

$$N = n_{\rm H,0} \frac{\left[1 + \left(\frac{R_{\rm eut}}{r_{\rm e,in}}\right)^2\right]^{\frac{-3\beta_{\rm in}}{2}}}{\left[1 + \left(\frac{R_{\rm eut}}{r_{\rm e}}\right)^2\right]^{-\frac{3\beta}{2}}}$$

Surface brightness profiles

Solid line – best-fitting double & model

Temperature distributions – hardness ratio images

- Hardness ratio: ratio of counts in different wave bands a measure of the spectral slope of a source – an indirect measure of temperature
- Source / background images subtracted, smoothed images with smoothing scale of 2.5 σ 4 σ
- Not corrected for difference between local cluster backgrounds and blank-sky backgrounds at low energies
 - HR values cannot be converted directly, reliably into temperatures
 - HR decline toward outer regions an artifact
- Valuable for understanding the temperature structure

Temperature distributions – hardness ratio images

- Again, A1991 and A2717 symmetrical
- MKW9 asymmetrical not entirely relaxed

Projected abundance / radial temperature profiles

- Annular spectral analysis
 - Spectra of circular annuli
 - Fitted with parameters of temperature (→),
 abundance (rel to '89 Anders and Grevesse)
- Projected abundance profiles →

- Correction for projection, PSF effects
- Unreal cooling in center of clusters
- Use modeling method, annular spectra modeled with a linear combination of absorbed isothermal MEKAL models

$$S_i^{O}(E) = \text{WABS}(N_H^i) \sum_{j=1}^n a_{i,j} \text{MEKAL}(T_j, Z_j).$$

(PSF) / projection correcting – the a_{i,j} redistribution coefficients are the EM contributions of (ring j to ring i) / shell j to ring i.

- Outer regions of deprojected, PSFcorrected profiles
 - Subject to unphysical jumps which would lead to mass discontinuities
- Now use a temperature profile composed of the inner three annuli, + projected temp profiles thereafter

Solid lines are best fit to:

$$T = T_0 + T_1[(r/r_c)^{\eta}/(1 + (r/r_c)^{\eta})].$$

With parameters:

Cluster	T0	T1	rc	n
	(keV)	(keV)		
A1991	1.54	1.12	0:52	5.
A2717	1.57	0.88	0:52	2.28
MKW9	1.76	0.72	1:00	5.

Global temperature

- Spectra of events in 0.1 r_{200} ≤ r ≤ 0.3 r_{200}
 - Higher than 0.4 r200, very little emission
 - Lower than 0.1 r200, cooler gas
- r200 from best-fit NFW mass model later
- Temperature and abundance values:
 - A1991, MKW 9 in agreement
 - A2717 higher than previous, probably better

Cluster	kT	Z
	(keV)	(^{Z₀})
A1991	2.65 ^{+0.05}	0.33+0.03
A2717	2.53+0.05	0.34+0.02
MKW9	2.58+0.15	0.37+0.07

Calculating mass profiles

- Combine gas density and temperature profiles
- total gravitational mass profile
- Mass calculated at each radius of temp profile using an adapted Monte Carlo method
 - Assumptions hydrostatic equilibrium, spherical symmetry

Mass profile modeling

- Fitted to density distribution by Navarro et al. (NFW) $\rho(r) \propto [(r/r_s)(1+r/r_s)]^{-1}$
 - Parameters: normalization factor, scaling radius rs;
 - Or, mass M_{200} and concentration parameter $c_{200} = r_{200}/r_s$
 - M200: mass contained within virial radius

Mass profile modeling.. fits

Parameter	A1991	A2717	MKW9
ACDMH70			
C ₂₀₀	5.7 ^{+0.4} -0.3	4.2 +0.3	5.4 ^{+0.7} -0.7
rs (kpc)	191+19	261+27	186+45 -34
r ₂₀₀ (kpc)	1105	1096	1006
M_{200} ($10^{14} M_{\odot}$	1.63	1.57	1.20
χ^2/v	9.98/9	15.8/10	4.0/8
SCDMH50			
С	5.6 ^{+0.4} -0.3	4.1 +0.3	5.3+0.7
rs (kpc)	260+26 -23	358 ⁺³⁷	255+61 -46
r ₂₀₀ (kpc)	1466	1466	1358
M_{200} ($10^{14} M_{\odot}$	2.17	2.12	1.63
χ^2/v	9.98/9	15.8/10	4.0/8

Results from the NFW fits to the mass profiles

Integrated total gravitating mass profiles, 1σ errors

NFW mass profiles & cluster dynamical states

- A2717 not a great NFW fit
 - Maybe halo unrelaxed
- MKW9
 - Unrelaxed.
- Also: use relation between M₂₀₀ and dark matter velocity dispersion

$$\sigma_{\rm DM} = 1075[h(z) M_{200}/(10^{15} h_{100}^{-1} M_{\odot})]^{1/3} \,\mathrm{km \ s^{-1}},$$

and compare with optically-derived velocity dispersions

NFW mass profiles & cluster dynamical states

- Agreement good
- Esp. for A2717
- So total mass estimates from NFW fits are trustworthy.
- And no cluster is very far from equilibrium.

Cluster	σ_{DM} km/s		Reference
A1991	526	631+147	Girardi et al. (1997)
A2717	520		Girardi et al. (1997)
MKW9	474	579+331	Beers et al. (1995)

Dark matter velocity dispersions calculated from the $\sigma_{\rm DM}-M_{\rm 200}$ relation vs. the optically-derived galaxy velocity dispersions

 Differences in dynamical states don't seem to affect the NFW fit values

Scaled mass profiles

Relative dispersion

Entropy profiles

S vs. T

S vs. M

S vs. r, scaled with S-T, S-M

Entropy – temperature relation

- Self-similar expectation: $S \propto h(z)^{-4/3}T$
- Data fitted with power law

$$h(z)^{4/3} S_{x} = A[T_{\text{spec}}/5 \text{ keV}]^{\alpha}$$

using three regression methods

S vs. T

- At 0.3 R₂₀₀:
 - Gas density / T
 measurements well
 constrained least affected
 by PSF, projection effect
 correction problems
 - Outside cooling cores
 - Known from Chandra no significant T gradients

$$S_{0.3} \propto T^{0.64\pm0.11}$$

- Slope stable after 0.2 R200
- Intrinsic scatter largest at 0.1 R200

Radius			σ_{log}	
R_{200}	а	raw	stat	int
WLS				
0.1	0.58 ± 0.05	0.079	0.030	0.073
0.2	0.73 ± 0.06	0.058	0.035	0.047
0.3	0.71 ± 0.07	0.074	0.043	0.060
0.5	0.68 ± 0.12	0.070	0.078	-/ \
BCES				
0.1	0.49 ± 0.15	0.082	0.030	0.076
0.2	0.62 ± 0.11	0.063	0.034	0.052
0.3	0.64 ± 0.11	0.078	0.043	0.065
0.5	0.62 ± 0.08	0.074	0.078	-
WLSS				
0.1	0.47 ± 0.14	0.083	0.030	0.077
0.2	0.67 ± 0.10	0.059	0.035	0.048
0.3	0.69 ± 0.12	0.075	0.043	0.061
0.5	0.68 ± 0.12	0.070	0.078	-

S – M relation

- Self-similar prediction:
- Best fit is shallower
- Consistent with S T,M T relations

$$h(z)^{2/3} S_{\delta} = B_{\delta} \times (M_{200}/5.3 \times 10^{14} M_{\odot})^{\beta}$$

 M₂₀₀ the total mass obtained from NFW fits to the mass profiles

S vs. M

 $S_{2500} \propto h(z)^{-2/3} M_{15}^{0.44}$

Consistent with S – T, S – M relations

δ	В	eta		σ_{\log}	
	keV cm ⁻²		raw	stat	int
Full	sample				
5000	471 ± 18	0.36 ± 0.10	0.058	0.034	0.046
2500	765 ± 30	0.37 ± 0.10	0.059	0.041	0.043
1000	1460 ± 47	0.36 ± 0.06	0.059	0.065	
Excl.	MKW9				
5000	459 ± 37	0.43 ± 0.10	0.039	0.035	0.017
2500	741 ± 43	0.44±0.08	0.035	0.041	-
1000	1430 ± 46	0.41 ± 0.04	0.042	0.063	-

Raw entropy profiles

- $S = kTne^{-2/3}$
- Analytic model gas density profile
- Solid analytic temp distribution model
- Dotted observed temp profile

Raw entropy profiles

- All profiles increase monotonically with radius
- None have isentropic core

- T₁₀ = global temperature in units of 10 keV
- Self-similar scenario: clusters form at constant density contrast, gas follows dark matter

$$\overline{n_{\rm e}} \propto \overline{\rho_{\rm DM}} \propto \rho_{\rm c}(z) \propto h^2(z)$$

Then $S \propto h(z)^{-4/3}T$ and

the scaled entropy profiles of all clusters should coincide

Radius	∕\CDMH70		SC	SCDMH50		
	σ/m	S _{BI} /C _{BI}	σ/m	$S_{\rm BI}/C_{\rm BI}$		
Scaled En	tropy: T					
0.05 <i>r</i> ₂₀₀	0.30	0.28	0.28	0.26		
0.1 <i>r</i> ₂₀₀	0.30	0.29	0.29	0.28		
0.3 <i>r</i> ₂₀₀	0.30	0.29	0.28	0.26		
0.5 <i>r</i> ₂₀₀	0.34	0.33	0.31	0.31		
Scaled En	tropy: T					
0.05 r ₂₀₀	0.22	0.22	0.21	0.20		
0.1 <i>r</i> ₂₀₀	0.22	0.24	0.21	0.21		
0.3 r ₂₀₀	0.20	0.26	0.18	0.20		
0.5 <i>r</i> ₂₀₀	0.24	0.29	0.21	0.19		

Better as $S \propto T^{0.65}$

 Region 0.05 – 0.1 r₂₀₀ well approximated by power law

$$h(z)^{4/3}T_{10}^{-0.65}S(r) = 470 \left(\frac{r}{0.1r_{200}}\right)^{0.94\pm0.14} h_{70}^{-1/3} \text{ keV cm}^2,$$

Slope close to but shallower than the $S \propto r^{1.1}$

expected from analytical models of shock heating in spherical collapse

• (scaled by the best S - M, S - T fits)

 \square $S \stackrel{\infty}{\sim} r^{1.1}$

expected for shock heating in spherical collapse

Consistent

Discussion

The gravitational collapse of the dark matter – qualitative check

- Simulations predict a universal form with a central cusp seen
- NFW best fit; King model –rejected
- Mass profiles similar for cool clusters and the hot cluster A1413 – shape near universal

The gravitational collapse of the dark matter – quantitative check

- Concentration
 parameters c200
 (= r200/rs) should
 increase for lower
 mass systems
- Clusters + literature
- Solid line: z = 0.0
- Dashed: z = 0.15

Dark matter collapse

- Dark matter profiles of local clusters nearly universal, w/ central cusp as expected from NFW model
- Concentration parameters in very good agreement with theory → physics of collapse is understood

Entropy profiles v. theory

- Departures from self-similar picture non-gravitational processes
 - Or, due to a flaw in the gravitational collapse model?
 - This study says no.
- Pure cooling / simple preheating models insufficient
 - Spherical preheating predict a break in S T
 relation and large isentropic cores rule out
 - Pure cooling models predict overcooling at odds with observed mass fraction of the stellar component
 - rule out

Entropy profiles v. theory

- Beyond core region (r > 0.1 R200): profiles self-similar; shape consistent with model but with shallower temperature / mass scaling than expected
- In core region:
 Break of similarity dispersion increases with decreasing radius

- Modified scaling: excess of entropy in low mass objects relative to more massive systems, as compared to the expectation from pure shock heating
- Quantify absolute value of excess, see if an excess is also present for more massive systems
- Adiabatic numerical simulations Voit, '05

- Richer systems:
 - Entropy in good agreement with pure gravitational collapse prediction
 - Only ~20% higher
 - Can be accounted for by the difference in observed M
 T relation and modeled
- Poorer systems:
 - S ~2.5 times higher at 0.2 R₂₀₀ for A1983 than gravitational heating prediction
 - Excess density of ICM is affected at lower mass
- Entropy boosted at accretion shock

- ICM entropy highly sensitive to the density of the incoming gas
- A smoothing of the gas density by preheating in filaments and/or infalling groups would boost entropy production at the accretion shock
- Affects low-mass systems more accrete smaller halos more affected by smoothing due to preheating
- No isentropic core because the amount of initial preheating is substantially less than the characteristic entropy of the final halo
- Result in self-similarity down to low mass, with modified scaling

Similarity break in core

- Entropy dispersion ~60% at 0.02 R₂₀₀
- Six clusters strong radiative cooling
 - Very self-similar power law profiles, dispersion
 ~13% between 0.01 and 0.1 R₂₀₀
 - Consistent with quasi-steady-state models that include radiative cooling
- Four clusters shallower entropy profiles
 - AGN energy input
 - Strong bursts / weak shocks
 - Old merging events mixing high / low S gas

Conclusion

- Confirmed physics of dark matter collapse is understood
- Entropy profiles in 0.05 r₂₀₀ ≤ r ≤ 0.5 r₂₀₀, self-similar but scale with T, r shallower than gravity-only, pure shock heating model

$$S(r) \propto T^{0.65\pm0.05} (r/r_{200})^{0.94\pm0.14}$$

Large dispersion in r ≤ 0.05 r₂₀₀ – variety of cooling core histories

Conclusion

Entropy scales with temperature:

$$S_{0.3} \propto T^{0.64\pm0.11}$$

With radius:

$$S \propto r$$
1.08±0.04

- Modified scaling thought due to smoothing of accreted gas density by preheating
 - Would affect low-mass systems more, as seen
- Large dispersion in core thought due to
 - Some clusters are cooling flow clusters
 - Some energy coming from weak shocks from AGN activity, effects of old mergers

The end

