Accretion Rates of the Very Small (But extremely numerous)

Michael V. Lesniak III AST 591 6 April 2006

The Paper

"Accretion in Young Stellar/Substellar Objects" James Muzerolle, Lynne Hillenbrand, Nuria Calvet, Cesar Briceno, and Lee Hartmann 2003 ApJ, 592, 266

Outline

- Why study these objects?
- Data set & observations
- How to determine whether accretion is occurring
- Modeling to ascertain mass accretions
- Results & discussion

Why So Small?

- Understanding of accreting protoplanetary disks limited to T Tauri stars thus far (M \sim 0.5 M $_{\odot}$)
 - Finding accretion rates of smaller objects should lead to better understanding of how disks work
- Stellar mass functions predict that more low mass stars form than high mass stars
- Problem: small YSOs and brown dwarfs are difficult to detect

Anatomy of a Sample

- Selected very low mass (VLM) objects from various star forming regions
 - Taurus, IC 348, σ Ori, Upper Sco, ρ Oph
- Target
 - Spectral type M5 or later
 - Ages no more than ~10 Myr old
- Actual selection (45 objects)
 - Spectral types: M4-M8.5
 - Ages < 10 Myr

object	Spec. Type	$\log L_{bol} (L_{\odot})$	Ι	J-H	H-K	K	A_V	$\Delta(H-K)$	$\log~{\rm age}~({\rm yr})$	${\rm mass}\;({\rm M}_{\odot})$
CIDA 13	M3.5	-1.47	13.95	0.61	0.20	11.85	0.35	-0.08	6.94	0.19
CIDA 14	M_{5}	-0.64	12.24	0.67	0.33	9.41	0.34	-0.01	5.10	0.12
FN Tau	M_{2}	-0.30		0.95	0.50	8.25	1.35	0.10	$<\!5.00$	0.11
FP Tau	M2.5	-0.49	11.33	0.69	0.25	8.97	0.24	0.00	5.88	0.22
Haro 6-28	M2.5	-0.82		1.07	0.74	9.27	1.77	0.39	6.23	0.23
LkCa 1	M4	-0.44	11.07	0.77	0.24	8.69	0.00	0.01	5.79	0.21
LkHa 358	K7-M0	0.88	16.05	2.09	1.21	9.69	13.6	0.19	$<\!5.00$	0.23
MHO-4	M7	-1.14	14.32				0.97		5.06	0.06
MHO-5	M6	-1.18	13.72	0.63	0.48	10.05	0.11	0.11	5.63	0.09
MHO-6	M4.75	-1.16	13.80	0.71	0.42	10.63	0.86	0.06	6.31	0.13
MHO-7	M5.25	-0.97	13.18	0.65	0.29	10.15	0.40	-0.06	5.62	0.12
MHO-8	M6	-1.02	13.63	0.74	0.38	9.74	0.62	-0.02	5.42	0.09
MHO-9	M5	-0.47	12.95				2.22		< 5.00	0.11
V410Anon 13	M5.75	-1.45	16.59	1.24	0.71	10.95	3.83	0.12	6.51	0.08
V410 Xray-3	M6	-1.20	14.18	0.71	0.39	10.39	0.80	-0.02	5.66	0.09
V410 Xray-5a	M5.5	-1.29	15.37	1.24	0.61	10.14	2.57	0.11	6.33	0.10
V927 Tau	M3.5	-0.46	11.46	0.86	0.31	8.68	0.38	0.02	5.17	0.15
IC348-165	M5.25	-0.98	16.07	0.81	0.50	11.77	2.41	0.02	5.64	0.12
IC348-173	M5.75	-0.95		0.72	0.53	11.85	1.42	0.09	5.40	0.10
IC348-205	M6	-1.11		0.69	0.65	12.15	1.21	0.21	5.52	0.09
IC348-336	M5.5	-1.40	17.61	0.91	0.63	13.27	3.12	0.10	6.42	0.10
IC348-363	M8	-2.12	17.95	0.64	0.69	13.50	0.00	0.24	5.37	0.02
IC348-382	M6.5	-1.91	18.92	0.87	0.76	13.72	2.77	0.20	5.69	0.04
IC348-407	M7	-2.01	19.71	0.88	1.41	13.97	3.55	0.78	5.37	0.03
IC348-415	M6.25	-2.00	18.23	0.67	0.12	14.03	1.35	-0.34	6.07	0.04

Table 1. (Sub)Stellar Properties of the Observed Sample

Table 1—Continued												
object	Spec. Type	$\log L_{bol}~({\rm L}_{\odot})$	Ι	J-H	H - K	Κ	A_V	$\Delta(H-K)$	$\log\mathrm{age}\;(\mathrm{yr})$	${\rm mass}~(M_\odot)$		
IC348-454	M5.75	-2.19	17.82	0.88	0.31	14.31	0.11	-0.04	6.84	0.05		
IC348-478	M6.25	-1.92	18.58	1.13	0.40	14.64	2.27	-0.11	5.98	0.04		
SOri-12	M6	-1.51	16.47	0.56	0.36	13.28	0.00	0.00	6.31	0.07		
SOri-17	M6	-1.70	16.95	0.58	0.40	13.79	0.00	0.04	6.46	0.06		
SOri-25	M6.5	-1.75	17.16	0.51	0.40	13.76	0.00	0.02	5.62	0.04		
SOri-29	M6	-1.81	17.23	0.53	0.34	13.96	0.00	-0.02	6.54	0.05		
SOri-40	M7	-2.09	18.09	0.54	0.36	14.59	0.00	-0.05	5.39	0.02		
SOri-45	M8.5	-2.62	19.59	0.65	0.37	15.66	0.00	-0.09	5.98	0.02		
SOri-46	M8.5	-2.71	19.82	0.65	0.37	15.66	0.00	-0.09	6.09	0.02		
UScoCTIO-66	M6	-1.55	14.85	0.60	0.38	11.92	0.00	0.02	6.34	0.07		
$UScoCTIO_{-75}$	M6	-1.64	15.08				0.00		6.41	0.06		
UScoCTIO-85	M6	-1.70	15.23	0.58	0.39	11.95	0.00	0.03	6.46	0.06		
UScoCTIO-100	M7	-1.78	15.62	0.62	0.40	11.83	0.00	-0.01	5.31	0.03		
UScoCTIO-109	M6	-2.03	16.06				0.00		6.71	0.04		
UScoCTIO-121	M6	-2.19	16.46	0.61			0.00		6.79	0.04		
UScoCTIO-128	M7	-2.37	17.09	0.63			0.00		5.47	0.02		
UScoCTIO-132	M7	-2.59	17.63	0.77			0.00		6.07	0.02		
GY 5	M7	-0.96		1.13	0.66	10.91	5.00	-0.06	$<\!5.00$	0.07		
GY 37	M6	-1.94		1.31	0.95	11.99	3.30	0.38	6.64	0.05		
GY 141	M8.5	-2.59		0.76	0.50	13.87	0.00	0.04	5.93	0.02		

Mass and Age Ranges

- Ages range from
 0.1 Myr to 8 Myr
- Masses range from 0.02 to 0.14 M_{\odot}
 - Spans
 stellar/substellar
 boundary

Figure 1:

M. V. Lesniak

Observations

- Keck II ESI echellette spectrograph
 - Wavelengths covered: 3900-11000 Å
 - Resolution: 37.5 km s⁻¹
- Keck I HIRES echelle spectrograph
 - Wavelengths covered: 6320-8730 Å
 - Resolution: 8.8 km s⁻¹

Radial & Rotational Velocities

- vsin ivalues found from HIRES data (Keck I)
 - Rotational velocities range from 8 to 35 km s⁻¹
- Radial velocities determined from both data sets
 - Range: -38.9 to 55.8 km s⁻¹

Are they really VLMYSOs?

- Membership in respective clusters verified
 - Color magnitude diagrams
 - Lithium abundances
 - Radial velocities
- 6 stars with questionable resumes tossed out
 - Also have weakest $H\alpha$ emission
 - Emission lines resemble main-sequence dwarfs

Table 2. Velocities & Lithium

object	\mathbf{V}_r	$v \sin i$	EW(Li $\lambda 6708)$
CIDA 13	15.9 ± 0.5		< 0.1
CIDA 14	14.0 ± 0.7	11.8 ± 1.8	0.51
FN Tau	14.9 ± 0.4	8.5 ± 0.8	0.52
FP Tau	16.8 ± 2.0	$34.2^a \pm 0.8$	0.58
Haro 6-28	16.8 ± 0.9		0.6
LkCa 1	9.0 ± 1.8	$34.4^a\pm0.6$	0.55
LkHa 358 (ESI)	8.9 ± 4.6		0.4
LkHa 358 (HIRES)	17.9 ± 3.1	20.4 ± 1.1	0.58
MHO-4	19.1 ± 0.8		0.5
MHO-5	12.3 ± 1.2		0.5
MHO-6	13.6 ± 0.7		0.5
MHO-7	16.9 ± 0.8		0.5
MHO-8 (ESI)	15.9 ± 0.9		0.5
MHO-8 (HIRES)	15.3 ± 1.5	16.7 ± 2.4	0.57
MHO-9	13.8 ± 0.5		0.6
V410 Anon 13 (ESI)	20.4 ± 0.9		0.5
V410 Anon 13 (HIRES)	15.1 ± 1.3	9.8 ± 3.0	0.65:
V410 Xray 3	14.6 ± 0.9		0.5
V410 Xray 5	14.7 ± 0.4		0.6
V927 Tau	16.5 ± 0.6	13.3 ± 1.3	0.33
IC348-165	8.8 ± 0.6		0.5
IC348-173	13.9 ± 2.4		0.5
IC348-205	15.7 ± 3.4		0.8
IC348-336	13.5 ± 3.0		
IC348-363	9.5 ± 1.7		
IC348-382	9.1 ± 0.6		
IC348-407	7.9 ± 2.6		
IC348-415	14.7 ± 2.5		1.1:
IC348-454	10.5 ± 1.8		0.6
IC348-478	10.8 ± 1.4		
SOri-12	29.8 ± 0.7		0.6

Table 2—Continued										
object	V_r	$v\sin i$	EW(Li $\lambda 6708)$							
SOri-17	19.66 ± 1.7		0.8:							
SOri-25 (ESI)	30.06 ± 2.5		0.6							
SOri-25 (HIRES)	29.6 ± 2.3	9.4 ± 1.0								
SOri-29	27.1 ± 1.6		0.6							
SOri-40	32.5 ± 3.3		0.5							
SOri-45	22.4 ± 5.3									
SOri-46	55.8 ± 2.9									
UScoCTIO 66	-4.4 ± 0.6		0.6							
UScoCTIO 75	-5.6 ± 1.1		0.6							
UScoCTIO 85	-24.6 ± 0.7		< 0.1							
UScoCTIO 100	-8.9 ± 0.6		0.6							
UScoCTIO 109	-3.8 ± 0.7		0.6							
UScoCTIO 121	-38.9 ± 1.0		<0.3							
UScoCTIO 128	-3.0 ± 1.6		0.5:							
UScoCTIO 132	-8.2 ± 1.1		<0.4:							
GY 5	-6.3 ± 1.9	16.8 ± 2.7	0.5							
GY 37										
GY 141										

Emission Lines

- A number of emission lines' strengths are listed for each object in sample
- 2 main-sequence dM stars included for comparison (GI 406 & LHS 2351)
- Most VLM objects have emission line profiles that tend to be narrow, resemble dMe stars and WTTS
- 13 have broader $H\alpha$ emission resembling CTTSs
- Active VLM objects have emissions characteristic of 0.5 M_{\odot} CTTS

Table 3. Emission Lines													
object	${ m H}lpha$ 10% width	$H\alpha$	${\rm H}\beta$	$H\gamma$	Нδ	He I λ5876	[OI] λ6300	[OI] λ6363	Ca II $\lambda 8498^{a}$	Ca II $\lambda 8542^a$	Ca II $\lambda 8662^a$	accretor?	instrument
CIDA 13ª	77	-1.6	-2.0	-2.0	-2.0	-0.4	<-0.1	< -0.1	<-0.1	<-0.6	<-0.6	n	ESI
CIDA 14	289	-34						<-0.1	<-0.2		<-0.1	у	HIRES
FN Tau	195	-22						<-0.2	-0.9		-0.7	n	HIRES
FP Tau	418	-32						<-0.1	-0.1		-0.1	у	HIRES
Haro 6-28	347	-48	-30	-25	-25	-2.2	-1.2	-0.3	-0.2	-0.3	-0.1	y	ESI
LkCa 1	178	-3.9						<-0.1	-0.1		<-0.1	n	HIRES
$LkH\alpha$ 358	502	-63	-22^{b}			-1.9	-15	-4.1	-6.3	-6.6	-5.1	у	ESI
$LkH\alpha$ 358	477	-62						-2.2	-9.1		-7.8	у	HIRES
MHO-4	116	-43	-56	-35	-25	-4.3	1.2:	<-0.1	-0.4	-0.5	-0.1	n	ESI
MHO-5	154	-60	-44	-29	-19	-3.3	-4.0	-0.9	-0.4	-0.5	-0.1	у	ESI
MHO-6	309	-25	-13	-11	-8.6	-1.7	-1.4	-0.3	<-0.1	< -0.1	<-0.1	у	ESI
MHO-7	116	-9.0	-7.5	-3.6	-3.0	-0.5	<-0.1	<-0.1	<-0.1	< -0.1	< -0.1	n	ESI
MHO-8	115	-18	-17	-11	-5.5	-1.4	< -0.1	<-0.1	<-0.2	< -0.1	<-0.1	n	ESI
MHO-8	128	-14						<-0.1	<-0.2		<-0.2	n	HIRES
MHO-9	116	-3.5	-4.3	-2.8	-2.4	-0.5	<-0.2	<-0.1	<-0.1	<-0.3	<-0.2	n	ESI
V410 Anon 13	270	-29	-20^{b}	-9°		-12.8^{b}	-0.8	<-0.5	<-0.1	<-0.1	<-0.1	у	ESI
V410 Anon 13	248	-27						<-0.4	<-0.3		<-0.1	y	HIRES
V410 Xray-3	116	-20	-23	-18	-10	-2.4	<-0.2	<-0.1	<-0.1	<-0.2	<-0.1	n	ESI
V410 Xray-5a	154	-19	-22	-15°		-2.1	<-0.5	<-0.2	-0.2	-0.3	<-0.1	n	ESI
V927 Tau	290	-7.0						<-0.1	<-0.1		<-0.1	n	HIRES
IC348-165	347	-54	-28	-24°		-2.4	-0.3:	-0.2	-0.3:	-0.4	-0.4:	у	ESI
IC348-173	347	-86	-50	-10°	-35 ^b	-7.5	-2.2:	-0.4	-0.8	-1.6	-0.7	y	ESI
IC348-205	270	-105	-74^{b}			$< -1.5^{b}$	<-0.5	<-0.7	-1.1	-1.8	-0.9	y	ESI
IC348-336	309	-121	-42^{b}	-20°		-6.4^{b}	<-2.8:	<-1.1:	-0.2	-0.4	<-0.1	y	ESI
IC348-363	117	-13					<-21:	<-1.0	<-0.1	<-0.1	<-0.1	n	ESI
IC348-382	232	-70							-0.6	-0.9	-0.3:	у	ESI
IC348-407	155	-24							<-0.7	-0.7:	<-1.1	n	ESI
IC348-415	272	-152	-40^{b}				<-4.0: ^b	<-1.3	-2.8	-4.7	-2.6	у	ESI

Table 3—Continued													
object	${ m H}lpha$ 10% width	$H\alpha$	${ m H}eta$	${\rm H}\gamma$	$H\delta$	He I $\lambda 5876$	[OI] λ6300	[OI] $\lambda 6363$	Ca II $\lambda 8498^{a}$	Ca II $\lambda 8542^a$	Ca II $\lambda 8662^{a}$	accretor?	instrument
IC348-454	193	-23	-32 ^b	-18°			<-3.5:	<-3.9	<-0.1	<-0.1	<-0.2	n	ESI
IC348-478	117	-22	-40^{b}				<-9.6:	< -1.5	<-0.1	<-0.2	< -0.1	n	ESI
SOri-12	116	-9	-9.5	-5.5 ^b			<-1.1:	< -0.3	<-0.1	<-0.1	< -0.1	n	ESI
SOri-17	126	-4.8	-5.0 ^b				<-3.5:	<-2.2:	<-0.1	<-0.1	< -0.1	n	ESI
SOri-25	156	-44	-50 ^b	-36°		-6.0	<-1.0	< -0.5	-0.2:	-0.2	< -0.2	n	ESI
SOri-25	94:	-36 ^b							<-0.5		< -0.25	n	HIRES
SOri-29	154	-15	-21	-16°		<-1.5	<-0.2	< -0.1	<-0.1	<-0.1	< -0.2	n	ESI
SOri-40	194	-16	-12				<-1.0:	<-2.3:	<-0.1	<-0.3	< -0.2	n	ESI
SOri-45°	78:	-21 ⁶	-16^{6}						<-0.2	<-0.3	< -1.4	n	ESI
SOri-46°	194	-14	-9 ⁶						< -0.4	<-0.4	<-0.6	n	BSI
UScoCTIO-66	116	-6.0	-8.8	-8.0	-5.5	-1.0	<-0.3	<-0.1	<-0.1	<-0.1	<-0.1	n	ESI
UScoCTIO-75	231	-15	-19	-16	-10	-1.3	<-0.1	<-0.1	<-0.1	<-0.1	< -0.1	n	ESI
UScoCTIO-85°	154	-7.0	-14	-18°	-5.0^{b}	-0.9	<-0.2	< -0.2	<-0.1	<-0.2	< -0.2	n	ESI
UScoCTIO-100	154	-12	-23	-20	-12	-2.0	<-0.1	<-0.1	<-0.1	<-0.1	< -0.1	n	ESI
UScoCTIO-109	116	-10	-22	-12	-11^{b}	-2.5	<-0.3	<-0.1	<-0.2	<-0.1	< -0.1	n	ESI
UScoCTIO-121°	116	-7.3	-25 ⁸				< -0.4:	< -1.2	< -0.1	< -0.1	< -0.2	n	ESI
UScoCTIO-128	193	-60	-50	-50°	-30 ^b	-10°	<-0.3	< -0.6	-0.3	-0.6	< -0.2	n	ESI
UScoCTIO-132°	116	-4					<-3.0:	< -0.6	< -0.2	<-0.3	< -0.4	n	BSI
GY 5	177	-17						-0.4:	<-0.2		< -0.1	n	HIRES
GY 37	197:	-20^{b}							<-0.4		< -0.4	n	HIRES
GY 141	88:	-32 ^b							<-3.0		<-17	n	HIRES
Gl 406	113	-7.1	-13	-15	-16	-0.9 ^d	<-0.1	< -0.1	<-0.1	-0.1	< -0.1	n	ESI
LHS 2351	136	-3.9	-11	-9.2	-9.1^{b}	-0.6^{d}	<-0.1	<-0.1	<-0.1	-0.2:	< -0.2	n	ESI

Accretion?

- Two primary methods for determining whether accretion is present
 - Veiling
 - $H\alpha$ emission-line profiles
- Secondary indicators
 - Balmer, Ca II lines
 - [O I], [S II] lines

$\square \alpha Emission$

- For T Tauri stars, $H\alpha EW = 10$ Å is dividing line between weak-lined and classical
- But equivalent width is dependent on continuum flux
 - Lower continuum → higher EW
- Instead, use 10% line widths
 - Define 200 km s⁻¹ as lower limit for accretion
- Also use symmetric vs. asymmetric shapes

$H\alpha$ Emission

- 10 objects meet both criteria
- 7 objects meet one
 - 4 others have broad $H\alpha$ lines but are symmetrical
 - 3 objects have asymmetric $H\alpha$ but are relatively narrow
 - 3 of 7 "maybes" probably are accretors (based on other emission features; i.e. Balmer lines, Ca II triplet)

Veiling

- The process:
 - Mass accretes onto the star via magnetospheres and undergoes an accretion shock, giving off continuum flux
- Quantified by measuring excess continuum flux and comparing to photospheric continuum

$$r_{\lambda} = F_{\lambda,ex} / F_{\lambda,cont}$$

- Use objects determined to not have mass accretion as continuum templates
- Expect little veiling for lower mass stars

ob	ject	veiling template	r_{5500}	r_{6200}	r_{7100}	r_{8900}	$\log \dot{M} (M_{\odot} \mathrm{yr^{-1}})$
Haro	6-28	TWA 15A, CIDA 13^a	0.3	0.2	0.1	0.0	-8.7^{b}
$LkH\alpha$	358	LkCa 7		1.0:	1.0:	1.0:	-8.5^{b}
MHO	-5	V410 Xray-3	0.0	0.1	0.0	0.0	-10.8
MHO	-6	MHO-7	0.0	0.1	0.1	0.1	-10.3
V410	Anon13	V410 Xray-3	0.0	0.1	0.0	0.1	-11.3
IC348	3-165	MHO-8	0.0	0.0	0.0	0.0	-10
IC348	3-173	MHO-7	0.0	0.1	0.0	0.0	-10
IC348	3-205	MHO-8	0.0:	0.1	0.0	0.1	-10
IC348	3-336	MHO-7		0.2:	0.1	0.1	-10
IC348	3-382	V410 Xray-3			0.2:	0.2:	-10.8
IC348	3-415	V410 Xray-3		0.5:	0.1	0.1	-9.3
		Table 5. Veiling	- HIR	ES Acc	retor S	ample	
	objec	t template r	6450	r ₇₁₀₀	\mathbf{r}_{8700}	$\log \dot{M}$	$I (M_{\odot} yr^{-1})$
	CIDA 14	MHO-8	-0.1	0.1	-0.1		-10.3
	FP Tau	LkCa 1	0.0	0.2	-0.1		$< -9^{a}$
	$LkH\alpha$ 35	8 LkCa 7	0.4	0.4	0.4		-8.5 ^a

0.1

. . .

0.0

-11.3

V410 Anon 13

MHO-8

Table 4. ESI Accretor Sample

Continuum Excess Models

- Picked 2 generic stars that compare to sample
 - M5: T = 2900 K, $M_* = 0.12 \text{ M}_{\odot}$, $R_* = 1.2 \text{ R}_{\odot}$
 - M6: T = 2800 K, $M_* = 0.05 \text{ M}_{\odot}$, $R_* = 0.5 \text{ R}_{\odot}$
- Selected accretion energy fluxes of log F = 10, 11, 12 (corresponding to TTS)
- Calculated emission from shock for mass accretions of $10^{-10},\,10^{-9},\,10^{-8}~M_{\odot}~yr^{-1}$
- Finally, computed veiling ratio r_{λ} over wavelength regime of observations

Figure 4:

$H\alpha$ Emission Models

- Model parameters: M_{*}, R_{*}, R_{mag}, T_{max}, i, dM/dt
 - Adopted $M_* = (0.05, 0.15) M_{\odot}, R_* = (0.5, 1.0) R_{\odot}, R_{mag} = 2.2-3 R_*, T_{max} = 12000 K$
 - *i*, *dM/dt* varied to fit
 - *i*: 0 90°
 - dM/dt: 10⁻¹² 10⁻⁹ M_{\odot} yr⁻¹
- Rotation effects ignored (no significant effects expected for $v_{rot} < 20 \text{ km s}^{-1}$)
- To avoid problems with $T_{\rm max}$, accretors earlier than M5 not modeled

Fig. 6.— Model H α profiles, as a function of magnetospheric density and temperature. All models calculated with $M_* = 0.05 \,\mathrm{M}_{\odot}$, $R_* = 0.5 \,R_{\odot}$, $i = 60^{\circ}$, and $R_{mag} = 2.2 - 3 \,R_*$. Solid line: $\dot{M} = 10^{-9} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$, $T_{max} = 8000 \,K$. Dashed line: $\dot{M} = 10^{-9} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$, $T_{max} = 10,000 \,K$. Dot-dashed line: $\dot{M} = 10^{-10} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$, $T_{max} = 10,000 \,K$. Dot-dashed line: $\dot{M} = 10^{-10} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$, $T_{max} = 10,000 \,K$. Dotted line: $\dot{M} = 10^{-10} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$, $T_{max} = 12,000 \,K$.

Table 6. Parameters for $H\alpha$ Model Comparisons

Figure 7

object	$M_{*}\;(M_{\odot})$	$R_{*}\left(R_{\odot}\right)$	$R_{mag}~(R_{*})$	$T_{max}(K)$	i (°)	$\log\dot{M}~({\rm M_\odotyr^{-1}})$
MHO-5	0.05	0.5	2.2-3	12,000	45	-10.8
MHO-6	0.15	1.0	2.2-3	12,000	60	-10.3
CIDA 14	0.15	1.0	2.2-3	12,000	50	-10.3
IC348-165	0.15	1.0	2.2-3	12,000	89	-10.0
IC348-173	0.15	1.0	2.2-3	12,000	80	-10.0
IC348-205	0.15	1.0	2.2-3	12,000	80	-10.0
IC348-336	0.15	1.0	2.2-3	12,000	75	-10.0
IC348-415	0.05	0.5	2.2-3	12,000	45	-9.3
IC348-382	0.05	0.5	2.2-3	12,000	55	-10.8

Discussion

- ~30% of sample deemed to be accreting
 Similar to studies of higher mass TTS
- Near-infrared excess suggests disks with small inner holes
 - Other possibilities include spots or cooler companions
- Magnetospheric accretion models fit accretors well over large range of masses
- Combining these results with literature values, correlation between M and dM/dt can be examined

Mvs. dM/dt

Potential problems

- Masses are based on evolutionary tracks
- Very low accretion rates would yield undetectable Hα emission
- Veiling could mask objects with higher accretion rates

6 April 2006

M. V. Lesniak

Discussion

- Why a *M* vs. *dM/dt* relationship?
 - Accretion is thought to be dependent on disk density, viscosity
 - Balbus-Hawley instability (viscosity model) requires ionized gas to operate efficiently
 - X-rays?
- M vs. dM/dt relation found here is for narrow age range (1 - 3 Myr)

Discussion

- Location of accretors dependent on cluster age
 - IC 348 & Taurus star forming regions are about
 1-3 Myr all 13 VLM accretors found
 - $\sigma {\rm Ori}$ & Sco-Cen associations are older (3-8 Myr) and have none
- Similar fraction of VLM objects in Taurus are accretors compared to TTS (~50%)

My last journal club talk *sniff* *sniff*