Metallicities & More at $z \geq 2$

Michael V. Lesniak III
AST 591
21 October 2005
“Evidence for Solar Metallicities in Massive Star-forming Galaxies at $z \geq 2$”
Outline

- Metallicity relations
- The “redshift desert”
- Measuring metallicity
- Metallicity-Luminosity relation
- Masses & star formation rates of galaxies
- Paper adopts quantities:
 \[H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}, \Omega_m = 0.3, \Omega_\Lambda = 0.7 \]
Metallicity Correlations

- Locally, H\textsc{ii} regions display relation between oxygen abundances and optical luminosity
 - More luminous \Rightarrow more metals
- Galaxies at $0.6 < z < 0.8$ are 1-3 mag more luminous than local galaxies of same metallicity (Kobulnicky et al. 2003)
 - Faintest galaxies are most evolved
- Galaxies at $0.47 < z < 0.92$ have similar metallicities as those in local universe (Lilly et al. 2003)
Metallicity Correlations

• HII regions in 6 galaxies at $z > 2.5$ have $(\text{O/H}) \sim 0.1-1.0(\text{O/H})$ but are 2-4 times as luminous

• Limited data of galaxies between $z = 1.4$ & $z = 2.5$
 – “Redshift desert”
 – Critical epoch of heavy element formation?
Anatomy of a Sample

• Objects analyzed from Steidel’s 2004 survey
 – Selected star-forming galaxies at $z \sim 2$ from U_n-G vs. $G-R$ plot

• Q1623 field of survey contains 167 galaxies at $z > 1.4$
 – 121 detected in K_s-band
 – For $z > 1.9$, K_s-band contains Hα and [NII] emission lines and corresponds to rest frame R-band
Special Filters:

Steidel 1993 AJ, 105, 2017
Anatomy of a Sample

- Selected galaxies that in rest-frame would be optically bright ($K_s \leq 20$)
 - 9 galaxies fit criteria and were selected (8 successfully imaged)
 - 8 of 9 galaxies are “BX” objects
 - The last is an “MD” object
Fig. 1.— The Color-magnitude diagram of 121 UV-selected galaxies at $z > 1$ ($\langle z \rangle = 2.28 \pm 0.28$), in the Q1623 field. R and K_s magnitudes are on the AB and Vega systems, respectively. The dotted diagonal line indicates the survey magnitude limit of $R = 25.5$. Only $\sim 10\%$ of the objects at $z > 1$ also have $K_s \leq 20.0$, indicated by the long-dashed line. The nine $K \leq 20.0$ objects observed with NIRSPEC in September 2003 are indicated by large blue triangles. The object in the lower left-hand corner, with $K_s = 18.29$ and $R - K_s = 2.15$, is a QSO at $z = 2.529$. The median color uncertainty is $\sigma(R - K_s) = 0.25$, though the $10 K_s$-selected objects have $\sigma(R - K_s) \sim 0.10$.
Determining Metallicity

• R_{23} method most common
 – Find ratio $([\text{O}II]+[\text{O}III])/\text{H}\beta$
 – Needs an independent ratio to determine whether a galaxy is metal-rich or metal-poor

• At $z \sim 2$, $[\text{N}II]$ lines are in optical region
 – Use ratio of $[\text{N}II]_{\lambda 6584}/\text{H}\alpha$ (Pettini & Pagel 2004)
 – Relate nitrogen abundances to oxygen
Table 1. Galaxies Observed With Keck II/NIRSPEC

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>R.A. (J2000)</th>
<th>Dec. (J2000)</th>
<th>$z_{\text{Ly} \alpha}$<sup>a</sup></th>
<th>z_{abs}<sup>b</sup></th>
<th>$z_{\text{H} \alpha}$<sup>c</sup></th>
<th>R_{AB}</th>
<th>$(G - R)_{AB}$</th>
<th>$(U_n - G)_{AB}$</th>
<th>$R_{AB} - K_{s,\text{Vega}}$</th>
<th>Exposure (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1623-BX274</td>
<td>16 25 38.202</td>
<td>26 45 57.141</td>
<td>2.415</td>
<td>2.408</td>
<td>2.4100</td>
<td>23.23</td>
<td>0.25</td>
<td>0.89</td>
<td>3.66</td>
<td>3×900</td>
</tr>
<tr>
<td>Q1623-MD66</td>
<td>16 25 40.392</td>
<td>26 50 08.878</td>
<td>...</td>
<td>2.111</td>
<td>2.1075</td>
<td>23.95</td>
<td>0.37</td>
<td>1.40</td>
<td>4.04</td>
<td>3×900</td>
</tr>
<tr>
<td>Q1623-BX341</td>
<td>16 25 43.554</td>
<td>26 46 36.942</td>
<td>...</td>
<td>2.377</td>
<td>...</td>
<td>24.83</td>
<td>0.47</td>
<td>0.90</td>
<td>4.81</td>
<td>2×900</td>
</tr>
<tr>
<td>Q1623-BX344<sup>d</sup></td>
<td>16 25 43.931</td>
<td>26 43 41.977</td>
<td>...</td>
<td>2.422</td>
<td>2.4224</td>
<td>24.42</td>
<td>0.39</td>
<td>1.25</td>
<td>4.41</td>
<td>2×900</td>
</tr>
<tr>
<td>Q1623-BX453</td>
<td>16 25 50.836</td>
<td>26 49 31.399</td>
<td>2.183</td>
<td>2.171</td>
<td>2.1816</td>
<td>23.38</td>
<td>0.48</td>
<td>0.99</td>
<td>3.65</td>
<td>3×900</td>
</tr>
<tr>
<td>Q1623-BX513</td>
<td>16 25 55.856</td>
<td>26 46 50.304</td>
<td>2.249</td>
<td>2.244</td>
<td>2.2473</td>
<td>23.25</td>
<td>0.26</td>
<td>0.68</td>
<td>3.33</td>
<td>2×900</td>
</tr>
<tr>
<td>Q1623-BX528</td>
<td>16 25 56.439</td>
<td>26 50 15.444</td>
<td>...</td>
<td>2.266</td>
<td>2.2682</td>
<td>23.56</td>
<td>0.25</td>
<td>0.71</td>
<td>3.87</td>
<td>4×900</td>
</tr>
<tr>
<td>Q1623-BX599</td>
<td>16 26 02.545</td>
<td>26 45 31.900</td>
<td>...</td>
<td>2.329</td>
<td>2.3304</td>
<td>23.44</td>
<td>0.22</td>
<td>0.80</td>
<td>3.65</td>
<td>4×900</td>
</tr>
<tr>
<td>Q1623-BX663<sup>e</sup></td>
<td>16 26 04.576</td>
<td>26 48 00.202</td>
<td>2.435</td>
<td>...</td>
<td>2.4333</td>
<td>24.14</td>
<td>0.24</td>
<td>1.02</td>
<td>4.26</td>
<td>3×900</td>
</tr>
</tbody>
</table>

^aVacuum heliocentric redshift of Lyα emission line, when present.

^bVacuum heliocentric redshift from rest-frame UV interstellar absorption lines.

^cVacuum heliocentric redshift of Hα emission line.

^dBX344 was observed with a 0"57 slit, while all other galaxies were observed with a 0"76 slit.

^eThe Hα emission in BX663 has a two distinct peaks, one at $z = 2.4333$, as listed above, and another at $z = 2.4289$.
Results

• Took spectra of 8 galaxies with NIRSPEC
• One galaxy tossed out due to OH contamination (BX 513)
• Detected Hα, [NII] emission, and [SII] emission
• 5 of 7 galaxies have $\sigma > 114$ km s$^{-1}$
 – 114 km s$^{-1}$ is $z \sim 2$ avg. (Erp et al. 2004)
Results

• Mean Hα flux:
 \[(1.34 \pm 0.50) \times 10^{-16} \text{ ergs cm}^{-2}\]

• Star formation rate: \(47 \pm 15 \text{ M}_\odot \text{ yr}^{-1}\)

• Values are 3 times greater than measured in Erp et al. (2003)

• Hα emission accounts for \(~15\%\) of \(K_s\)-band flux
Results

• \([\text{N} \text{II}]/\text{H} \alpha\) ratios measured from spectra
 – Mean value: 0.27
 – Data from Erp et al. 2003 yields mean of 0.10

• Given spectra S/N, all but one have ratios higher than minimum detectable
 (BX 528 measured \([\text{N} \text{II}]/\text{H} \alpha = 0.19\))

• Two galaxies had resolvable \(\text{H} \alpha\) profiles
Oxygen Abundance

• Define: \(N2 = \log([\text{NII}] \lambda 6584/\text{H}\alpha) \)

• Two \(N2 \) to \((\text{O/H}) \) relationships
 \[
 12 + \log(\text{O/H}) = 8.90 + 0.57N2 \\
 \]
 • From Pettini & Pagel 2004
 • Results within 0.18 dex (68% confidence)

 \[
 12 + \log(\text{O/H}) = 9.12 + 0.73N2 \\
 \]
 • From Denicolo et al. 2002

• For comparison:
 – Solar abundance: \(12 + \log(\text{O/H}) = 8.66 \pm 0.05 \)
 – Orion Nebula: \(12 + \log(\text{O/H}) = 8.64 \pm 0.06 \)
<table>
<thead>
<tr>
<th>Galaxy</th>
<th>$z_{\text{H}\alpha}$</th>
<th>σ^{b} (km s$^{-1}$)</th>
<th>$F_{\text{H}\alpha}^{c}$</th>
<th>$F_{\text{[N II]}}^{c}$</th>
<th>$\text{[N II]}/\text{H}\alpha$</th>
<th>$12 + \log (\text{O/H})^{d}$</th>
<th>$12 + \log (\text{O/H})^{e}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1623-BX 274</td>
<td>2.4100</td>
<td>121 ± 10</td>
<td>9.5 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td>0.17 ± 0.04</td>
<td>8.47 ± 0.19</td>
<td>8.56 ± 0.21</td>
</tr>
<tr>
<td>Q1623-MD 66</td>
<td>2.1075</td>
<td>120 ± 5</td>
<td>19.7 ± 0.4</td>
<td>3.4 ± 0.4</td>
<td>0.17 ± 0.02</td>
<td>8.47 ± 0.18</td>
<td>8.57 ± 0.20</td>
</tr>
<tr>
<td>Q1623-BX 344</td>
<td>2.4224</td>
<td>92 ± 9</td>
<td>17.1 ± 0.7</td>
<td>6.2 ± 0.8</td>
<td>0.36 ± 0.05</td>
<td>8.65 ± 0.18</td>
<td>8.80 ± 0.20</td>
</tr>
<tr>
<td>Q1623-BX 453f</td>
<td>2.1816</td>
<td>61 ± 6</td>
<td>13.8 ± 0.3</td>
<td>4.1 ± 0.3</td>
<td>0.30 ± 0.02</td>
<td>8.60 ± 0.18</td>
<td>8.74 ± 0.20</td>
</tr>
<tr>
<td>Q1623-BX 513</td>
<td>2.2473</td>
<td>...</td>
<td>3.3 ± 0.3</td>
<td><0.9</td>
<td><0.30</td>
<td><8.60</td>
<td><8.73</td>
</tr>
<tr>
<td>Q1623-BX 528</td>
<td>2.2682</td>
<td>142 ± 19</td>
<td>7.7 ± 0.5</td>
<td>1.5 ± 0.5</td>
<td>0.19 ± 0.07</td>
<td>8.49 ± 0.20</td>
<td>8.60 ± 0.23</td>
</tr>
<tr>
<td>Q1623-BX 599</td>
<td>2.3304</td>
<td>162 ± 9</td>
<td>18.1 ± 0.6</td>
<td>4.7 ± 0.6</td>
<td>0.26 ± 0.03</td>
<td>8.57 ± 0.18</td>
<td>8.69 ± 0.20</td>
</tr>
<tr>
<td>Q1623-BX 663</td>
<td>2.4333</td>
<td>132 ± 15</td>
<td>16.8 ± 0.9b</td>
<td>3.5 ± 0.3b</td>
<td>0.43 ± 0.05b</td>
<td>8.69 ± 0.18</td>
<td>8.85 ± 0.20</td>
</tr>
</tbody>
</table>

a Vacuum heliocentric redshift of $\text{H}\alpha$ emission.

b $\text{H}\alpha$ velocity dispersion obtained by fitting a Gaussian profile to the $\text{H}\alpha$ line and deconvolving the effects of instrumental resolution.

c Line flux and random error in units of 10^{-17} ergs$^{-1}$ cm$^{-2}$. While the systematic flux uncertainties are \sim25%, the uncertainty in the $\text{[N II]}/\text{H}\alpha$ flux-ratio is determined by the random errors in both line fluxes.

d Oxygen abundance deduced from the relationship presented in Pettini & Pagel (2004). For comparison, the most recent estimate of the solar abundance is $12 + \log (\text{O/H})_\odot = 8.66 ± 0.05$, and that of the Orion Nebula is $12 + \log (\text{O/H})_{\text{Orion}} = 8.64 ± 0.06$ (Allende Prieto et al. 2002; Asplund et al. 2004; Esteban et al. 1998).

e Oxygen abundance deduced from the relationship presented in Denicoló et al. (2002).

f The $\text{H}\alpha$ and [N II] line fluxes presented are integrals under Gaussian fits to the lines, whose central wavelengths and FWHM are determined by the parameters of the $\text{H}\alpha$ line. For all objects except BX 453, the fluxes obtained from the fits to the lines agree with the nonparametric integrals under the spectra, well within the uncertainties. However, in the case of BX 453, the [N II] flux obtained from the fit is 30% lower than that obtained by integrating nonparametrically under the spectrum, as a result of the larger apparent FWHM of the [N II] line than the $\text{H}\alpha$ line.

g The $\text{H}\alpha$ emission from BX 513 falls directly on top of a skyline, preventing a measurement of σ.

h The $\text{H}\alpha$ line flux listed for BX 663 represents the sum of the two components integrated over the entire extended region of $\text{H}\alpha$ emission. The [N II] line flux and $\text{[N II]}/\text{H}\alpha$ ratio correspond to the more significantly detected, higher redshift component and only include flux from the spatial extent common to both transitions.
Oxygen Abundance

- Relationship adopted between [N II] and (O/H) is linear, but [N II] saturates at \((O/H) \geq (O/H)_\odot\) and turns over beyond
 - Supersolar abundances?
- \([N II]/H_\alpha\) could be high, due to ignoring diffuse ionized gas contributions
- Excitation from AGN?
 - \(Ly_\alpha\) emission not there
 - Other emission lines not there (Si IV, Ci IV, & N V)
Metallicity-Luminosity Relation

- Nearby galaxies exhibit increasing luminosity with increasing metallicity
 - Seen over factor of 100 in (O/H) and 11 mag in M_B
- Galaxies at $z > 2$ can have M_B calculated from best-fit model SEDs
- Lyman-break galaxies (LBGs) at $z \sim 3$ are overluminous
- Similar result seen for $z \sim 2$ galaxies in sample
Fig. 4.— The Metallicity-Luminosity relationship. Data for local spiral (black squares) and irregular (black crosses) galaxies are taken from Garnett (2002), and display the well-studied strong correlation between (O/H) abundance and absolute B luminosity. The dashed line indicates a least-squares fit to the local data, while the dot-dashed line indicates solar (O/H) abundance. $K_g \leq 20.0$ UV-selected $z \sim 2$ objects (red triangles) are over-luminous for their (O/H) abundances, derived using the N_2 calibration of Pettini & Pagel (2004), but lie closer to the relationship than $z \sim 3$ LBGs (blue shaded region). The majority of the $z \sim 2$ data points represent lower limits in (O/H), since the measured N_2 values lie in a regime where this line ratio becomes insensitive to increasing metallicity.
Why Overluminous?

• Two different methods of calculating metallicity were used (R_{23} & $N2$)
 – Possible that $N2$-derived (O/H) too low and that real values are same as local universe
• Metallicities are likely to only grow toward present day
• Meier et al. (2004) proposes that (O/H) will increase and M_B will decrease toward present-day
 – However, future star formation rates cannot be accurately predicted
Why Overluminous?

• Need to expand sample-size to beyond $K_s \leq 20.0$
• Current sample has:
 – $\langle M_{\text{opt}} \rangle = -23.29$
 – $\langle [\text{N} \text{II}]/\text{H} \alpha \rangle = 0.27$
 – $\langle 12 + \log(\text{O/H}) \rangle = 8.58$
• Erb et al. sample has:
 – $\langle M_{\text{opt}} \rangle = -22.16$
 – $\langle [\text{N} \text{II}]/\text{H} \alpha \rangle = 0.10$
 – $\langle 12 + \log(\text{O/H}) \rangle = 8.33$
Stellar Masses & Ages

• Adopt Salpeter IMF
• Consider star-formation rates (SFRs) of form:
 – $SFR(t) \propto \exp(-t/\tau)$
• 5 of 7 galaxies appear to have formed $\geq 10^{11} M_\odot$ of stars
• $\tau \geq 200$ Myr required for models to fit
 – Significant fraction of Hubble time at $z \sim 2$
• Only models “casually” allowed by age of universe considered
Table 3. Star-formation Rates and Stellar Population Parameters

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>$z_{H\alpha}$</th>
<th>$L_{H\alpha}$</th>
<th>Uncorrected $SFR_{H\alpha}$</th>
<th>Uncorrected SFR_{UV}</th>
<th>Model SFR</th>
<th>$E(B - V)$</th>
<th>Age (Gyr)</th>
<th>M_{star} ($10^{11} M_\odot$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1623-BX274</td>
<td>2.4100</td>
<td>4.3</td>
<td>34</td>
<td>28</td>
<td>75</td>
<td>0.12</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Q1623-MD66</td>
<td>2.1075</td>
<td>6.5</td>
<td>51</td>
<td>10</td>
<td>65</td>
<td>0.23</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Q1623-BX344</td>
<td>2.4224</td>
<td>7.9</td>
<td>62</td>
<td>8</td>
<td>49</td>
<td>0.20</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Q1623-BX453</td>
<td>2.1816</td>
<td>4.9</td>
<td>39</td>
<td>16</td>
<td>174</td>
<td>0.27</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Q1623-BX528</td>
<td>2.2682</td>
<td>3.0</td>
<td>24</td>
<td>18</td>
<td>44</td>
<td>0.11</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Q1623-BX599</td>
<td>2.3304</td>
<td>7.6</td>
<td>60</td>
<td>22</td>
<td>49</td>
<td>0.10</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Q1623-BX663</td>
<td>2.4333</td>
<td>7.8</td>
<td>62</td>
<td>12</td>
<td>33</td>
<td>0.13</td>
<td>2.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

a Vacuum heliocentric redshift of $H\alpha$ emission.

b $H\alpha$ luminosity in units of 10^{42} erg s$^{-1}$.

c SFR calculated from $L_{H\alpha}$ using the conversion of Kennicutt (1998).

d SFR calculated from L_{1500}, probed by the G apparent magnitude and using the conversion of Kennicutt (1998).

e SFR calculated by fitting a Bruzual & Charlot (2003) $\tau = 1$ Gyr model reddened by dust extinction to the $U_{\text{R}}G\text{R}K_s$ colors of the galaxies. The best-fit value of $E(B - V)$ allows for the calculation of the dust-corrected value of the star-formation rate, listed here.

f The best-fit value of $E(B - V)$, assuming a Calzetti et al. (2000) dust-attenuation law as a function of wavelength.

g The best-fit value of stellar population age associated with the current episode of star formation, assuming an exponentially declining star-formation history with $\tau = 1$ Gyr.

h Formed stellar mass computed by integrating the best-fit exponentially-declining SFR between $\tau = 0$ and the best-fit age.
Evolution between $z \sim 3$ & $z \sim 2$?

- Take a sample of $z \sim 3$ galaxies (Shapley et al. 2001) and evolve them to $z \sim 2$
 - $\tau = 1$ Gyr
 - $E(B-V)$ doesn’t change
- Recalculate r, K_s magnitudes and $U_n-G, G-r$ colors
- Find that 15% of the $z \sim 3$ galaxies are possible progenitors of $z \sim 2$ galaxies in this sample
Stellar Mass Estimates

- Start with $\frac{[\text{NII}]}{\text{H} \alpha}$ derived total masses
 \[<M_{\text{star}}> = (1.4 \pm 0.5) \times 10^{11} \, M_\odot \]

- Since the sample galaxies are among all other $z \sim 2$ galaxies on color plots, this mass is probably good for all $K_s \leq 20.0$, $z \sim 2$ systems

- Now estimate the number of bright galaxies without assigned redshifts that will lie in the redshift desert based on R magnitude
Stellar Mass Estimates

- Start with 2004 sample of 956 BX objects with known z and R
- Bin BX galaxies by R magnitude and obtain fraction of galaxies in each bin that are in range of z (between 2.0 and 2.7)
- Bin systems with unknown z and $K_s \leq 20$ in Q1623 survey by R magnitude
- Multiply each Q1623 bin by its corresponding BX fraction
Result: 11 additional galaxies with $2.0 \leq z \leq 2.7$ and $K_s \leq 20$
Density at $z \sim 2$

- Number density of $2.0 \leq z \leq 2.7$ UV-selected objects with $K_s \leq 20.0$ in Q1623 is
 \[n = 1.7 \times 10^{-4} \text{ Mpc}^{-3} \]
- The mass density then is
 \[\rho = n\langle M_{\text{star}} \rangle = (2.5 \pm 0.9) \times 10^7 \text{ M}_\odot \text{ Mpc}^{-3} \]
- These galaxies represent $\sim 10\%$ of all BX objects at $z \sim 2$ so this is lower limit on density
K20 project

• Spectroscopic survey of \sim500 $K_s \leq 20.0$ systems; 9 confirmed to be at $1.7 \leq z \leq 2.25$
• SFR ~ 100-500 M$_\odot$ yr$^{-1}$
• Star formation ages of 0.25-1.7 Gyr
• Stellar masses of $(0.3$-$5.5) \times 10^{11}$ M$_\odot$
• 4 are similar to this sample and have
 – E(B-V) = 0.3
 – Star formation ages of 0.7-1.7 Gyr
K20 project

- Space density of $1.7 \leq z \leq 2.25$ K20 systems:
 \[n \approx 1.6 \times 10^{-4} \text{ Mpc}^{-3} \]
- Stellar mass distributions are similar to Q1623 field
GDDS Survey

- Sample contains galaxies at $1.6 \leq z \leq 2.0$
- Adopting IMF that turns over below $0.5 \, M_\odot$ (Baldry & Glazebrook 2003)
 - Masses of $6.3 \times 10^{10} \, M_\odot$
 - Mass density: $\rho = (1.7 \pm 0.6) \times 10^7 \, M_\odot \, \text{Mpc}^{-3}$
- To compare to this paper (Salpeter IMF), factor of 1.82 needed
 - After correction above values mirror results found in this paper
GDDS Survey – SSA22a field

• Field was observed in U_G filter set
• 3 confirmed galaxies at $1.6 \leq z \leq 2.0$, four maybe at $2.0 \leq z \leq 2.2$
• Most of these objects meet criteria for selection in this paper
Dynamical Masses

- Use Hα to obtain velocity dispersion
- Half-light radius determined from HST images: \(r_{1/2} = 0.2-0.3 \) arcsec
- Assume spherical geometry
- Dynamical masses found via
 \[M_{\text{dyn}} = 5\sigma^2 r_{1/2} / G \]
- These masses then compared to stellar masses calculated earlier
Table 5. Comparison of Dynamical and Stellar Masses

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>σ^a (km s$^{-1}$)</th>
<th>M_{dyn}^b ($10^{11} M_\odot$)</th>
<th>τ_{min}^c (Gyr)</th>
<th>$M_{star}(\tau_{min})^d$ ($10^{11} M_\odot$)</th>
<th>τ_{max}^e (Gyr)</th>
<th>$M_{star}(\tau_{max})^f$ ($10^{11} M_\odot$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1623-BX274</td>
<td>121</td>
<td>0.28</td>
<td>0.20</td>
<td>1.27 (0.70)</td>
<td>5.00</td>
<td>2.76 (1.52)</td>
</tr>
<tr>
<td>Q1623-MD66</td>
<td>120</td>
<td>0.28</td>
<td>0.05</td>
<td>0.49 (0.27)</td>
<td>∞</td>
<td>1.19 (0.65)</td>
</tr>
<tr>
<td>Q1623-BX344</td>
<td>92</td>
<td>0.16</td>
<td>0.20</td>
<td>1.06 (0.58)</td>
<td>2.00</td>
<td>2.18 (1.20)</td>
</tr>
<tr>
<td>Q1623-BX453</td>
<td>61</td>
<td>0.07</td>
<td>0.01</td>
<td>0.49 (0.27)</td>
<td>∞</td>
<td>0.92 (0.51)</td>
</tr>
<tr>
<td>Q1623-BX528</td>
<td>142</td>
<td>0.58</td>
<td>0.20</td>
<td>1.09 (0.60)</td>
<td>2.00</td>
<td>2.47 (1.36)</td>
</tr>
<tr>
<td>Q1623-BX599</td>
<td>162</td>
<td>0.50</td>
<td>0.20</td>
<td>0.83 (0.46)</td>
<td>5.00</td>
<td>1.69 (0.93)</td>
</tr>
<tr>
<td>Q1623-BX663</td>
<td>132</td>
<td>0.45</td>
<td>0.20</td>
<td>1.06 (0.58)</td>
<td>1.00</td>
<td>2.35 (1.29)</td>
</tr>
</tbody>
</table>

a Hα velocity dispersion.

b Mass calculated from the Hα velocity dispersion.

c Minimum time-constant of models of the form $SFR(t) \propto \exp(-t/\tau)$ that provide statistically acceptable fits to the galaxy colors.

d Mass of best-fit model, assuming $\tau = \tau_{min}$. Values not in parentheses assume a Salpeter IMF extending down to $0.1M_\odot$. Values in parentheses assume the more realistic Baldry & Glazebrook (2003) IMF, which has a break at $1M_\odot$.

e Maximum time-constant of models for which the best-fit age is younger than the age of the universe. BX453 and MD66 can be fit by $\tau = \infty$, i.e. constant star-formation models, while the remaining galaxies’ best-fit ages exceed that of the universe when $\tau = \infty$.

f Mass of best-fit model, assuming $\tau = \tau_{max}$. Values with and without parentheses have the same meaning as defined in note (d).
Mass Discrepancies

• If Salpeter IMF assumed, stellar mass exceeds dynamical mass in all cases
 – Extend radius beyond $r_{1/2}$ for M_{dyn}?

• Spherical symmetry probably not correct, one axis unequal to others requires correction

• Disklike shape introduces inclination effects

• Glazebrook IMF could be more appropriate
Loose ends

• Decrease uncertainty in metallicity using O_3N_2 indicator, a ratio of ratios
 – H-band spectra needed for this

• To help discriminate the star formation models, ground-based J- and H-band and Spitzer observations could be used

• Higher confidence mass density values need wider range in luminosity
Summary

- 7 UV-selected z ~2 galaxies with $K_s \leq 20.0$ observed and analyzed
- High [NII]/Hα ratios found that yield solar and/or supersolar metallicities
- Galaxies are all overluminous for their metallicity, similar to z ~ 3 LBGs
- Galaxies have been forming stars over long timescales, contain $\geq 10^{11} M_\odot$ and still have active star formation
Summary

- Results are roughly similar to two other surveys with overlapping redshifts.
- Dynamically determined masses systematically lower than SED derived stellar masses.