(6.1.optional) Evaluate equation 6.8 for a reasnable matirx of values of Ω_{r}, Ω_{m}, and Ω_{Λ}. ($\kappa=0$ only, OK) (Can turn this into term project, as long as you turn it into a general paperwith discussion.)
<choice> You can do either 6.2 or 6.3. Not necessary to do both of them, but you may chose to do so for some extra points.
(6.2) Show and discuss eq $6.17 \& 6.18$.

How would you define θ ?
Hint: For $\theta \equiv \theta_{1}$, Try:
(a) $\kappa=+1$

$$
\cos \theta_{0}=\left(2-\Omega_{0}\right) / \Omega_{0}
$$

$$
\cos \theta_{1}=\left(z+\cos \theta_{0}\right) /(1+z)
$$

(b) $\kappa=-1$
$\cosh \theta_{0}=\left(2-\Omega_{0}\right) / \Omega_{0}$
$\cosh \theta_{1}=\left(z+\cosh \theta_{0}\right) /(1+z)$
(6.3) Show and discuss eq 6.20 and 6.21
(6.4.a) Show eq 6.26 (Prefer you do 6.4.b instead...)
(6.4.b) Show eq 6.28 and 6.31 and compute age of universe for WMAP values:
$\Omega_{m}=0.27, \Omega_{\Lambda}=0.73, H_{0}=71$
(6.5) Show eq 6.37. (Assume eq 6.37) Then derive eq 6.38-6.40 from this and discuss about eq 6.41 (Handout says 6.40, but Dr. Windhorst's textbook says 6.41...)

