Homework 3.1–3.7

- (3.1) Show equation 3.19 of Ryden starting from eq 3.16. (and with definition: $x \equiv S_{\kappa}(R)$, given in eq 3.18.)
- (3.2) Starting from eq 4.3, show Ryden equation 4.4 and hence 4.5
- (3.3) Prove and show "Equation of Motion" (Ryden eq 4.11) (start from eq 4.5)
 i) Show Ryden eq 4.11.
 ii) Show (prove) that for special case of U = 0, that a ∝ t^{2/3}.
 iii) (Optional) Solve for a(t) for U ≠ 0, (U > 0 and U < 0).
- (3.4) Show Ryden eq 4.21 What is the special meaning for $\kappa = 0$?
- (3.5) Show and discuss Ryden eq 4.31, (History of $\Omega(t)$ See Longair 7.34 as well.
- (3.6) Show and discuss Ryden eq 4.54 and 4.55 (Start from ideal gas law) Discuss why: i) $\omega < 1$ ii) $\omega \sim 0$ for non-relativistic iii) $\omega = \frac{1}{3}$ for photons iv) $\omega < -\frac{1}{3}$ for accell. universe v) $\omega \equiv -1$ for Λ
- (3.7) Show and discuss Ryden eq 4.58, 4.59, and 4.60 (You can start from the gravitational potential of $\Phi \sim \frac{GM}{r}$) and hecne for the static universe, $\Lambda = 4\pi G\rho$