Homework 1

- (a) Assume power, P(z) (= Luminosity, L(z)), and density $\rho(z)$ are all constant. – Show for the Euclidian case: $N(>S) \propto S^{-3/2}$
 - where S =flux.
 - Disscuss what will change if your assumptions don't hold?
- (b) Compute the Sky Brightness (in Radio). Integrate!!
 - Assume $N(>S) \propto S^{-\gamma}$. For which values of γ the sky brightness is infinite (or finite). This is called the *Olbers' Paradox*.
- (c) Using the same assumptions as in part (a):
 - Show for the Euclidian case: $N(< m) \propto 10^{0.6m}$ where, m = magnitude.
 - For $N(< m) \propto 10^{\alpha m}$, which values of α will cause the Olber's Paradox.
 - Discuss about what you can conclude from the assumptions we made.