

Blackboard Academic Suite™

Blackboard Academic Suite
Building Blocks™ Developer

Guide

Release 8
Blackboard Learning System™

Blackboard Community System™
Blackboard Content System™

Date Published: November 2007

Copyright © 2007 by Blackboard Inc. All rights reserved.

Blackboard Building Blocks (Release 7.3) Building Block Developer’s Guide

Blackboard, the Blackboard logo, Blackboard Academic Suite, Blackboard Learning System,
Blackboard Learning System ML, Blackboard Community System, Blackboard Transaction System,
Blackboard Building Blocks, and Bringing Education Online are either registered trademarks or
trademarks of Blackboard Inc. in the United States and/or other countries. Microsoft and Windows
are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Sun, Solaris, UltraSPARC, and Java are either registered trademarks or trademarks of Sun
Microsystems, Inc. in the United States and/or other countries. Oracle is a registered trademark of
Oracle Corporation in the United States and/or other countries. Red Hat is a registered trademark
of Red Hat, Inc. in the United States and/or other countries. Linux is a registered trademark of
Linus Torvalds in the United States and/or other countries. Apache is a trademark of The Apache
Software Foundation in the United States and/or other countries. Adobe and Acrobat Reader are
either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. Macintosh and QuickTime are registered trademarks of Apple Computer,
Inc. in the United States and/or other countries. WebEQ is a trademark of Design Science, Inc. in
the United States and/or other countries. Other product and company names mentioned herein
may be the trademarks of their respective owners. U.S. Patent No. 6,988,138. Patents pending.

© 2007 Blackboard Inc. All rights reserved. Made and printed in the USA.

No part of the contents of this manual may be reproduced or transmitted in any form or by any
means without the written permission of the publisher, Blackboard Inc.

Worldwide Headquarters
Blackboard Inc.
1899 L Street, NW, 5th Floor
Washington, DC 20036-3861 USA
800-424-9299 toll free US & Canada
+1-202-463-4860 telephone
+1-202-463-4863 facsimile
www.blackboard.com

International Headquarters
Blackboard International B.V.
Dam 27 2nd Floor
1012 JS Amsterdam
The Netherlands
Main Line: +31 (0)20 520 6884
Fax: +31 (0)20 624 3361
http://global.blackboard.com

© 2007 Blackboard Inc. Proprietary and Confidential Page 2 of 73

Blackboard Building Blocks (Release 7.3) Building Block Developer’s Guide

© 2007 Blackboard Inc. Proprietary and Confidential Page 3 of 73

Table of Contents

Introduction.. 4

Building Block Overview .. 5
What is a Building Block?.. 6
Things to Do With a Building Block ... 7
Architecture Examples.. 8

Building Blocks APIs and Runtime ... 10
Data Objects and Persistence ...11
Session and Context, Gradebook and Authorization APIs ..13

Using the Building Blocks APIs and Runtime.. 14
Top-Level Package Structure ..15
Blackboard Data Model..16
Strongly-Typed Enumerations ..17
Persistence Services ...18

Blackboard Look and Feel .. 19
Building Blocks Tag Library ..20
Icons ..27

Writing Content Building Blocks... 28
Entry Points...29
Using Content Items ...31
Context Passing ...33
Interacting with the Gradebook ..36
Using the File System ...37

Writing Tool Building Blocks .. 38
Writing Content System Building Blocks .. 40
General Development Tasks... 43

Authenticating Users ...44
Authorizing Users ...45

Creating a Building Block ... 46
Development Environment...47
Deciding What to Build ..48
Debugging the Building Block ...50

Building Block XML Packaging Format.. 51
Web Archive Overview ..52
URLs ..53
Blackboard Learning System Manifest..55
Packaging the Building Block ..67

Migrating a Building Block ... 68
Advanced Development Issues .. 71
Troubleshooting... 72

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Introduction

Overview

Building Blocks are an exciting feature in Blackboard Academic Suite™. A Building
Block is an application created by third party developers that is used to extend the
functionality of the core Blackboard Academic Suite.

The Building Blocks Software Development Kit is intended to give Building Block
authors a thorough overview of the Building Block framework and provide a quick start
reference to begin creating Building Blocks.

This document will help developers create Supported Interfaces for the Blackboard
Academic Suite that are secure, consistent with the Blackboard Academic Suite look
and feel, integrate with the core application, and operate with external systems.
’Supported Interfaces’ are those utilizing Blackboard’s published API’s pursuant to a
valid license, including through the Blackboard Building Blocks Program.

Manual Updates

Please note that the Building Blocks Developer Guide is updated periodically. Check
the Date Last Update at the beginning of the manual to ensure that it is the most
recent copy. Any updates are listed in the Appendix.

To report any comments or suggestions regarding this manual, please contact
Blackboard Support.

Audience

This document is intended for developers creating Building Blocks for the Blackboard
Learning System, the Blackboard Community System, and the Blackboard Content
System. A thorough understanding of Java®, Servlets, and Java Server Pages is
assumed. Proficiency in Java server-side programming is also assumed. Additionally,
references will be made to the Building Blocks API Specification Guide for more details
regarding the objects and system services mentioned here.

Quick start

This document explains how to create a Building Block in a step-by-step manner. The
following are the high-level steps necessary to create a Building Block:

Step 1 Create the scripts.

Step 2 Create a Building Block manifest file.

Step 3 Create the Building Block package file.

Step 4 Install the Building Block.

Step 5 Register with Blackboard to obtain a vendor ID at

http://buildingblocks.blackboard.com/.

© 2007 Blackboard Inc. Proprietary and Confidential Page 4 of 73

http://buildingblocks.blackboard.com/

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Building Block Overview

Overview

A Building Block is a .zip or .war file that has a certain structure defined by
Blackboard. This structure primarily consists of a file-directory hierarchy containing
custom-code tied together by a Blackboard Learning System manifest. There are many
different types of Building Blocks that can be built, including new content type and
collaboration tools. This section discusses the definition of a Building Block in depth
and offers a number of examples.

In this section

The following topics are included in this section:
• What is a Building Block?
• Things to do with a Building Block
• Architecture Examples

© 2007 Blackboard Inc. Proprietary and Confidential Page 5 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

What is a Building Block?

Overview

A Building Block is simply a set of files installed on the Blackboard Web/app server in a
way that is structured so the server has predefined entry points to call upon the
functionality of the Building Block. The entry points are Uniform Resource Locators
(URLs) that are tracked in the Blackboard Learning System database and associated
with key entities such as content handlers and navigation items. For more information,
see the section Using the Building Blocks APIs and Runtime.

Building Block = Web application

At its very core, a Building Block is simply a Web application, with some supplemental
information provided for Blackboard Learning System to locate the resources within a
Building Block. The Java Servlet, specification version 2.2, defines Web applications.

The servlet specification provides a standard way to package the resources in a Web-
based application, and a standard deployment framework. For more information see
http://java.sun.com/products/servlet/2.2/ .

Entry points = Hyperlinks

Hyperlinks are the entry points and the means by which Blackboard Learning System
calls upon a Building Block. There is not necessarily a one-to-one correspondence
between links and JSPs provided by the Building Block. For example, a Building Block
may provide scripts that are never rendered as links but instead serve as callbacks for
an external system.

Java libraries

Developers may provide supplemental class libraries as part of their application.
Deployment of these is defined by the Servlet specification.

© 2007 Blackboard Inc. Proprietary and Confidential Page 6 of 73

http://java.sun.com/products/servlet/2.2/

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Things to Do With a Building Block

Overview

What exactly can a developer do with a Building Block? This is one of the first
questions that come to mind when looking at the Building Block framework.

While entry points limit where Building Blocks appear in the Blackboard Academic
Suite user interface, the possible behaviors of a Building Block are not so limited.
Building Blocks will appear in a Course Control Panel, via the content editors, or in the
Tools or Communication navigation area. While these conventions broadly imply the
functionality of a Building Block, they do not constrain it. The following are some
examples of uses for a Building Block:

• Bridge to an External System. A live hook can be created between
Blackboard Academic Suite and an external system, through a Building Block.
Examples include links to globally hosted databases or locally hosted websites.

• Content Type. By creating a Building Block that defines a content handler, a

developer can override how the system processes content, allowing them to
place custom content types in course and organization content areas, like
Course Documents, Books, and Assignments.

• Student/Instructor Tool. Tools, such course-specific hooks into a library

reservation system, can also be created.

• Communication Tool. Communication tools can be developed, for example, a

hook to a different chat server.

Developers can also build combinations of any of the above. An example might be a
Building Block that bridges the Blackboard Learning System with an external system
for a custom content type. The same Building Block could install a link to tools that
provides a user with the ability to manage their account information on the target
system.

© 2007 Blackboard Inc. Proprietary and Confidential Page 7 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Architecture Examples

Overview

In order to illustrate what can be done with a Building Block, two basic architectures
for Building Blocks are described, plug-in architecture and bridge architecture.

Plug – in

A plug-in is a Building Block that can be used to provide an independent piece of
functionality that does not rely on external servers. An example would be a custom
content type that provides an interactive applet in the course environment. This is the
most basic Building Block type.

Below is an example of the plug-in architecture.

Blackboard Server

Extension

Blackboard APIs

Blackboard Database

JD
B

C
/D

B
I,

et
c

Bridge

In the bridge architecture, the Building Block can be used to facilitate communication
with an external system. There are a variety of ways to implement the communication
channel, including using script URLs as callbacks or implementing a custom protocol.
An example of this type of Building Block may include a hook to a third-party
assessment engine. Bridges can become very complex; some external applications
may require complex flow control using a custom protocol.

Below is an example of the bridge architecture.

© 2007 Blackboard Inc. Proprietary and Confidential Page 8 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

© 2007 Blackboard Inc. Proprietary and Confidential Page 9 of 73

Blackboard Server

Third Party ServerCustom protocol, HTTP, etc.Extension

Blackboard APIs

Blackboard Database

JD
B

C
/D

B
I,

et
c

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Building Blocks APIs and Runtime

Overview

The Blackboard Learning System exposes several Java-based APIs to access run-time
information. This provides useful functionality in the Building Block. These Building
Block APIs are broadly categorized into several distinct sub-sets: Data Objects and
Persistence, Session and Context, Gradebook, and Authorization. Although the APIs
are provided with the Blackboard Learning System they can also be used to extend the
Blackboard Community system.

Note: This section gives a brief overview of the Building Blocks APIs and Runtime that
underlies the specific APIs used to create Building Blocks. A more detailed description
can be found in the Blackboard Building Blocks: Introduction to the Building Blocks
APIs and Runtime.

In this section

The topics in this section include:
• Data Objects and Persistence APIs
• Session and Context, Gradebook, and Authorization APIs

© 2007 Blackboard Inc. Proprietary and Confidential Page 10 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Data Objects and Persistence

Overview

Data Objects and Persistence is not a specific Building Block API, rather it is a set of
APIs that relate to one another in a common mechanism. This mechanism is used to
store the data manipulated in each API. Developers will probably never need to work
with the framework directly, but it is valuable to understand its role in storing and
retrieving data. For more information on how to use the Persistence framework, see
the section Using the Building Blocks APIs and Runtime.

Data Objects

Data objects are encapsulations of data entities in the Blackboard Academic Suite and
the attached attributes. Data objects within the Building Blocks APIs and Runtime
directly map to the entities a user would see represented in the user interface. These
objects contain no business logic and act primarily as attribute repositories.

The data objects are independent of any storage or persistence mechanism—in other
words, the data objects are completely separate from the containers used to store
data.

All data objects are in the system sub-class blackboard.data.BbObject. This sub-
class contains most of the functionality used by the map-based persistence
framework.

Here are examples of available data objects:

• Announcement
• Calendar
• CourseDocument
• ContentFolder
• ExternalLink
• StaffInfo
• StaffInfoFolder
• Course
• CourseMembership
• ButtonStyle
• User
• UserInfo

Persistence Objects

To support several different data stores without making the data objects overly
complex, the Blackboard Building Blocks run-time includes sets of Persistence Objects
that provide the logic and functionality required to save the data objects into and read
from different data stores.

Supported Data Stores

• Oracle®
• Microsoft® SQL® Server

Loaders
Loaders are the objects responsible for reading data from a storage mechanism and
converting the data into a live object reference.

Persisters

© 2007 Blackboard Inc. Proprietary and Confidential Page 11 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Persisters are the objects responsible for taking a live object reference and writing the
data into a storage mechanism. They offer read-write functions such as insert, update,
and delete.

See blackboard.data.*
See blackboard.persist.*

Using data objects and persisters

At first glance the API may seem complex as it is designed to allow flexible persistence
operations. However, many of the steps will be the same in most cases so
convenience methods are available to expose the default-configured objects. Most of
the objects are automatically initialized in the Blackboard platform's Java environment
via a services framework that creates appropriate default instances for all services,
loaders, and persister objects. The services framework also maintains the right
connection between the persistence objects and the appropriate database for access to
the Virtual Installation.

© 2007 Blackboard Inc. Proprietary and Confidential Page 12 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Session and Context, Gradebook and Authorization APIs

Overview

The following topic describes the APIs for Session and Context, Gradebook,
Authorization, and Authentication.

Session and Context

All requests to the application are associated with a Session. This object retains
information about the user and their authentication status. Context is not a specific
object but represents information about the current request that is not readily
identified by Session, such as the course being accessed.

See blackboard.platform.session.BbSessionManagerService

Gradebook

Some Building Blocks need to write data into the Gradebook. A simple API is provided
to allow the creation of line items and the recording of scores into the line items for
users.

See blackboard.data.Gradebook.*
See blackboard.persist.Gradebook.*

Authorization

Authorization comprises two parts: verifying that the current user has appropriate
access to perform a specific action and verifying that the code being executed is also
trusted. The user authorization is handled by the AccessManager object. Code
verification is performed by the JVM. Building Blocks are required to include in the
manifest a brief security descriptor that identifies permissions required to operate.

See blackboard.platform.security.AccessManager.

Authentication

Authentication is handled automatically by the login subsystem of Blackboard Learning
System. If a Building Block must ensure that authentication has occurred, it may call
Session.isAuthenticated(). If this method returns false
HttpAuthManager.sendLoginRedirect() may be called to initiate a login sequence. A
utility method in PlugInUtil is also available to wrap this functionality.

See blackboard.platform.session.

© 2007 Blackboard Inc. Proprietary and Confidential Page 13 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Using the Building Blocks APIs and Runtime

Overview

This section describes some general information about the Building Blocks APIs and
Runtime that underlies the specific APIs used to create Building Blocks.

Note: A more detailed description of the APIs and Runtime can be found in the
Blackboard Building Blocks: Introduction to the Building Blocks APIs and Runtime.

In this section

The following topics are included in this section:
• Top-level Package Structure
• The Blackboard Data Model
• Strongly-types Enumerations
• Persistence Services

© 2007 Blackboard Inc. Proprietary and Confidential Page 14 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Top-Level Package Structure

Overview

This section describes the top-level structure of the Java API.

Top-level Packages

The following table describes the top-level packages in the Building Blocks APIs.

Package Name Description
blackboard.data Data bean package. This package, together with its sub-

packages Announcement, Assessment, Calendar, Course,
Registry, Task, and User, contains the definition of the
Blackboard core data model. This data model is independent
of any storage or persistence mechanism or completely de-
coupled from the persistence services.

blackboard.persist Persistence framework package. This package contains the
core elements in the Building Blocks APIs and Runtime,
including the BbPersistenceManager class. Its sub-packages
Announcement, Assessment, Calendar, Course, Registry,
Task, and User, define the Persister and Loader interfaces
available for each data bean. These interfaces make up the
core of the persistence framework.

blackboard.db Database utility package. This package contains the
BbDatabase class, which is the main class for declaring and
accessing relational databases. It also contains the base
query classes that are used internally by the framework.

blackboard.base Package for miscellaneous classes that define core-level
functionality or concepts.

blackboard.util Utility package.

© 2007 Blackboard Inc. Proprietary and Confidential Page 15 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Blackboard Data Model

Overview

The data bean classes in the various sub-packages of blackboard.data provide
almost complete coverage of the data that is tracked by the Blackboard Learning
System.

Data sub-packages

The data beans are grouped into the following sub-packages:

Data sub-package Classes contained
announcements Announcements in the system.
calendar Contains the CalendarEntry class that is used by the

Calendar subsystem.
content Contains classes for creating and manipulating course

content.
course Contains classes for core learning system concepts such as

courses, groups, course classification and course
membership. Also contains the ButtonStyle class.

user Contains core classes pertaining to users and other user
information, such as an Address Book entry.

It is important to note that the data model is independent of any storage or
persistence mechanism, meaning the data model is completely de-coupled from the
persistence services. All data beans in the model inherit directly or indirectly from the
class BbObject. BbObject can be thought of as the base persistent object class.
BbObject is made up of an ID, created date, and modified date. Data beans are
limited to contain only a set of attributes and getter and setter methods for those
attributes.

© 2007 Blackboard Inc. Proprietary and Confidential Page 16 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Strongly-Typed Enumerations

Overview

All enumerations in the Building Block APIs are implemented using a pattern that
provides for compile-time type checking of element membership in an enumeration. In
this pattern the primary enumeration class includes the following properties:

• Only private constructors
• Static final instances of itself are defined for each element in the enumeration

Class

For convenience, the enumeration classes are frequently declared as inner classes of a
more general class that provides for the scope and context. For example, class Course
contains an inner class called Pace. Given this class, methods like course.setPace
(Course.Pace.INSTRUCTOR_LED)can be called. To switch off of the elements in an
enumeration, the “==” operator can be used. The example below typed enumeration
example demonstrates this point.

Course.Pace pace = myCourse.getPace();
if (pace == Course.Pace.INSTRUCTOR_LED) {
 /* handle case one */
}
else if (pace == Course.Pace.SELF_PACED) {
 /* hadle case two */
}
else {
 throw new InternalError(
 "unknown enumeration element encountered: " + pace.toString());
}

Tips and tricks

It is good form to explicitly handle each case in the enumeration—the code should not
“fall through” with an else and assume a certain state unless not all cases in the
enumeration require explicit handling. This reduces code readability and introduces the
possibility of an error if an enumeration is widened at a later date. Blackboard
encourages all developers to use this pattern instead of switching on statically defined
integers or strings.

© 2007 Blackboard Inc. Proprietary and Confidential Page 17 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Persistence Services

Overview

Access to the persistence services of the Building Blocks APIs and Runtime originates
with the BbPersistenceManager class. For the remainder of this document, the term
“persistence manager” will be used to denote an instance of the class
blackboard.persist.BbPersistenceManager.

Container

A persistence manager is associated with a particular container. A container can be
thought of as a mechanism that provides persistent storage for objects such as a
database or file system. Blackboard persistence APIs work transparently against
Oracle and SQL Server database back ends.

Loaders and persisters

The services offered by the Building Blocks APIs and Runtime are defined in a set of
implementation independent Java interfaces. An instance of the appropriate
implementation class for a given interface must be obtained from a persistence
manager. These interfaces are divided into two main categories: Loaders and
Persisters. Loaders offer read-only operations on the data model such as looking up an
object by its ID or searching for a list of objects based on given criteria. Persisters
offer read-write functions such as insert, update, and delete. The following code shows
how to look up an implementation of a loader for Courses from a pre-initialized
instance of BbPersistenceManager called bbPm.

Example of performing a loader lookup:

CourseDbLoader loader = (CourseDbLoader) bbPm.getLoader(CourseDbLoader.TYPE);

//access CourseDbLoader.loadByXXX() methods

© 2007 Blackboard Inc. Proprietary and Confidential Page 18 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Blackboard Look and Feel

Overview

When creating a Building Block it is useful to the end user to make the Building Block’s
interface fit seamlessly into the Blackboard interface. There are two that can help
accomplish this: the Blackboard tag libraries, used to render common visual elements,
and icons supplied as part of the Building Block.

In this section

The topics in this section include:
• Blackboard Tag Libraries
• Icons

© 2007 Blackboard Inc. Proprietary and Confidential Page 19 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Building Blocks Tag Library

Overview

The Building Blocks Tag library is a Java class library used to abstract user interface
components as XML-like tags that are evaluated by Java classes. The tag library
architecture was standardized in the JSP 1.1 specification from Sun© Microsystems.

More information about the JSP specifications can be found at:

• Java Servlet Specification, version 2.2.
http://www.javasoft.com/products/servlet/2.2/

• Java Server Pages (JSP) Specification, version 1.1.

http://www.javasoft.com/projects/jsp/1.1/

While it is not required to use the Blackboard tags, it is highly recommended, as it
helps ensure a seamless experience for the user. It also helps to ensure that the
Building Block can evolve as the Blackboard UI becomes available in different
contexts, such as Wireless Application Protocol (WAP) or text-only versions for high
accessibility.

Note: The tag names and attributes are case-sensitive.

Tags

The following tags are those that ship with the application. Note that in many of the
samples, the XML namespace prefix “bbUI” is used in the tags. The taglib directive
sets this prefix. This prefix must be included at the top of any JSPs that use the tag
libraries. For example: <%@ taglib uri="/bbUI" prefix="bbUI"%>

breadcrumb
Definition:
Wraps the text and URL for an individual breadcrumb item (one element in the
breadcrumb bar). This element can be used in the breadCrumbBar element to create
an entire bar if no internal handle is appropriate (if the item does not hook into the
existing Blackboard navigation structure), although this should probably only occur in
testing situations. It can also be used to generate the final element(s) that should be
added to the end of an automatically generated breadCrumbBar.

Note: This element must be nested in a breadCrumbBar; the final breadcrumb in the
bar should not be hyperlinked.

Attributes: href

Body: Any valid JSP code.

Sample:

<bbUI:breadcrumb href="http://www/blackboard.com">A breadcrumb</bbUI:breadcrumb>

breadCrumbBar
Definition: Creates the breadcrumb navigation bar. Can generate an entire navigation
bar when provided with a valid handle. Can be manually generated by nesting multiple
breadcrumb elements.

Attributes:

© 2007 Blackboard Inc. Proprietary and Confidential Page 20 of 73

http://www.javasoft.com/products/servlet/2.2/
http://www.javasoft.com/projects/jsp/1.1/

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

environment-whether viewing this navigation element in the course, control panel, or
any other part of the portal acceptable values are: PORTAL, COURSE, CTRL_PANEL, and
SYS_ADMIN . The default is PORTAL.

handle-the database field used to uniquely identify the root navigation item for the
breadcrumb bar. The bar gets the appropriate navigation item from the handler then
traverses the navigation tree to iteratively get the item's parents. The handler is
required unless breadCrumb elements are manually entered. There is no default.

Note: The breadcrumbBar must be nested in a coursePage element for the COURSE
or CTRL_PANEL environments.

Body: Display text for bread crumb. May include JSP code.

Sample:

<bbUI:breadcrumbBar>
 <bbUI:breadcrumb href="http://www/blackboard.com">A breadcrumb</bbUI:breadcrumb>
 <bbUI:breadcrumb href="http://www/blackboard.com">A breadcrumb</bbUI:breadcrumb>
 <bbUI:breadcrumb>A breadcrumb</bbUI:breadcrumb>
</bbUI:breadcrumbBar>
or:
<bbUI:breadcrumbBar handle="address_book"></bbUI:breadcrumbBar>

Button
Definition: Hides the details of a button object (will be functional in JavaScript and
non-JavaScript modes). Type-safe button tags in future versions will supercede this
tag.

Attributes:
type- describes if the button is FORM_ACTION, INLINE, LONG_INLINE, or TOOLBAR. The
type determines the size of the displayed image. FORM_ACTION is used to render
Submit and Cancel buttons on form pages. INLINE is used to render Modify and
Remove buttons. LONG_INLINE is similar to INLINE, but is used for buttons that are
wider than the standard.

name-The name of the button. It should correspond to the name of the image for the
button, minus the “_off.gif”.

alt-Used for the alt tag in the code.

action-Determines whether the button submits a form or links to another page; either
LINK or FORM_ACTION.

targetUrl-The target for the page to link to for link-type buttons.

Body: Empty.

Sample:

<bbUI:button type="FORM_ACTION" name="cancel" alt="Cancel" action="LINK"
targetUrl="http://www.blackboard.com"/>

coursePage
Definition: Creates a course page element and makes the course available to sub-tags.
It should be wrapped around pages that contain a courseTitleBar or a course
breadcrumbBar. An appropriate use would be to wrap the entire course page, just
inside the docTemplate tag.

Attributes:

© 2007 Blackboard Inc. Proprietary and Confidential Page 21 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

courseId-Course ID used to load the Course data object.

Body: All page content inside the docTemplate tag.

Sample:

<bbUI:coursePage courseId="<%=COURSE_ID%>">
<!-- other tags go here -->
</bbUI:coursePage>

courseTitleBar
Definition: Creates a course title bar with the appropriate background color for a given
course.

Attributes:
courseId-Course ID used to load the Course data object.

Body: The title of the page that is to be rendered inside the courseTitleBar.

Sample:

<bbUI:coursePage courseId="<%=COURSE_ID%>">
…
<bbUI:courseTitleBar>The Page Title</bbUI:courseTitleBar>
…
</bbUI:coursePage>

dataElement
Definition: Provides the HTML framework for content in a Step element. The current
implementation simply creates a two column table row with a label in the first column
and the body in the second column.

Note: This element must be nested in a Step tag.

Attributes:
Label-The text label for the data (form) element. This attribute is required.

Required-Indicates that the element is required before submitting form (does not
validate, adds “*”). This attribute is optional.

Body:
Form input tags, buttons, or other content that can be appropriately matched with a
left-aligned label. It may include valid JSP.

Sample:

<bbUI:dataElement label="First Name"><input type="text"
name="tFirstName"></bbUI:dataElement>

devDocTemplate
Definition: A development tool that sets the HTML page <head> <title> and <body>
elements. This version of the Document Template includes a link to show the JSP code
of the page.

Attributes:
title-The title of the page being rendered.

Contains: All page content.

Sample:

<bbUI:devDocTemplate title="A Page Title">
<!-- other tags go here -->

© 2007 Blackboard Inc. Proprietary and Confidential Page 22 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

</bbUI:devDocTemplate >

docTemplate
Definition: A development tool that sets the HTML page <head> <title> and <body>
elements.

Attributes:
title-The title of the page being rendered.

Body: All page content.

Sample:

<bbUI:docTemplate title="A Page Title">
<!-- other tags go here -->
</bbUI:docTemplate>

Instructions
Definition: Encapsulates the style for instructions as used in the Step element.

Note: This element must be nested in a Step tag.

Attributes: none

Body: The text of the instructions; may include valid JSP.

Sample:

<bbUI:instructions>Please enter your first and last name. </bbUI:instructions>

Receipt
Definition: Creates a receipt page using titleBar and button components.

Attributes:
iconUrl-The URL for the Icon image used in the titlebar. The default is
/images/ci/icons/receiptsuccess_u.gif

pluginId-The ID for the Building Block known by the Building Block developer and
used as the directory root of the Building Block. For example,
/Blackboard/plugins/*pluginId*/images/pluginimg.gif. This is optional.

recallUrl-The URL to recall the page to after viewing. The default is back to the
previous page.

title-Title displayed in title bar of page. The default is Action Successful. Other
defaults are determined by type.

type-The type of receipt to display (SUCCESS, FAIL, DISABLED). This is optional.

Body: Any valid JSP.

Sample:
Basic:

<bbUI:receipt type="DISABLED"></bbUI:receipt>

Customized:

<bbUI:receipt type="DISABLED" iconUrl="/images/ci/icons/bookopen_u.gif"
title="Disabled Books" recallUrl="http://www.blackboard.com">The books button has been
turned off!</bbUI:receipt>

Spacer

© 2007 Blackboard Inc. Proprietary and Confidential Page 23 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Definition: Creates an invisible area on the page with the specified height and width.
Used as a page layout tool. For example, it can set a minimum table column width.
Should be encapsulated in other widgets and should not be called alone.

Attributes:
Height-Vertical size of the spacer in pixels (for example, “1”).

width-Horizontal size of the spacer in pixels (for example, “1”).

Contains: Empty.

Sample: This tag should not be called directly. It is used to assist in layout by other
Blackboard tags.

Step
Definition: Creates HTML for a wizard Step element. These are used throughout the
Blackboard for form input.

Attributes:
number-The number for the step.

title-The title of the step.

Body:
Instructions about the purpose of the step or wizard; one or more dataElement tags .

Sample:

<bbUI:step title="Test Step Title" number="1">

 <bbUI:instructions>Please enter your first and last name.</bbUI:instructions>

 <bbUI:dataElement label="First Name"><input type="text"
name="tFirstName"></bbUI:dataElement>

 <bbUI:dataElement label="Last Name" required="true"><input type="text"
name="tLastName"></bbUI:dataElement>

</bbUI:step>

stepSubmit
Definition: Creates HTML for an entire submit and cancel step element. This is a
convenience tag that wraps default content for a Step tag that is appropriate for the
final step on a step wizard page.

Attributes:
number-The number for the step. This is required.

title-The title of the step. This is required.

cancelUrl-The URL to recall the page to if the user cancels. The default is back to the
previous page.

instructions-The message string displayed in this step. The default is Choose
Submit to finish or choose Cancel to abort this process.

Body: Empty.

Sample:

<bbUI:stepSubmit title="Test Submit Step" number="3"

© 2007 Blackboard Inc. Proprietary and Confidential Page 24 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 cancelUrl="http://www.blackboard.com"/>

titleBar
Definition: Creates a general use title bar with an icon.

Attributes:
iconUrl-The URL for the icon image used in the titlebar.

• If using a Blackboard icon the URL should be formed as follows,
/images/ci/icons/bookopen_u.gif

• If using a Building Block icon the URL should be formed root-relative to the

Building Block home directory. For example, in directory
/samplePluginId/images/icon.gif, use images/icon.gif

pluginId-The ID for the Building Block known by the Building Block developer; used
as the directory root of the Building Block. For example, /Blackboard/g.
plugins/*pluginId*/images/pluginimg.gif

Body: Title for the page, may include a valid JSP.

Sample:
<% String iconUrl = "/images/ci/icons/bookopen_u.gif"; %>
<bbUI:titleBar iconUrl="<%=iconUrl%>">A Generic Title</bbUI:titleBar>

Using the Tag Library

The following tag library descriptor (TLD) reference must be included in the manifest:

<taglib>
 <taglib-uri>/bbUI</taglib-uri>
 <taglib-location>/WEB-INF/config/taglibs/bbUI.tld</taglib-location>
</taglib>

The actual TLD file must be packaged in the .WAR file, otherwise, the Blackboard
Learning System will not be able to locate the tag definitions. The file is included in the
SDK. Additionally, as stated above, each JSP that is going to use the tag library must
include a taglib directive. For example: <%@ taglib uri="/bbUI"
prefix="bbUI"%>.

© 2007 Blackboard Inc. Proprietary and Confidential Page 25 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Example
The following is a sample page using taglibs.

Submit

The HTML for the example above is generated by the following JSP code:

<bbUI:docTemplate title="Add HTML Block">
<bbUI:coursePage courseId="<%=bbSession.lookupCourseContext(request).getCourseId()%>">

<bbUI:breadcrumbBar environment="CTRL_PANEL" handle="<%=strHandle%>" >
 <bbUI:breadcrumb>Add HTML Block</bbUI:breadcrumb>
</bbUI:breadcrumbBar>
<bbUI:titleBar iconUrl="/images/ci/icons/tools_u.gif">Add HTML Block</bbUI:titleBar>
<form action="create_proc.jsp" method=post>
<input type=hidden name=content_id value="<%=request.getParameter("content_id")%>">
<input type=hidden name=course_id value="<%=request.getParameter("course_id")%>">
<bbUI:step title="Enter Information" number="1">
 <bbUI:dataElement label="Title"><input type="text" name="title"></bbUI:dataElement>
 <bbUI:dataElement label="Text"><textarea name="text" cols=40
rows=10></textarea></bbUI:dataElement>
 <bbUI:dataElement label="Available"><input type="Radio" name="isAvailable"
value="true" checked>Yes <input type="Radio" name="isAvailable" value="false">No
</bbUI:dataElement>
</bbUI:step>
<bbUI:stepSubmit title="Submit" number="2" />
</form>
</bbUI:coursePage>
</bbUI:docTemplate>

In-line JSP code (for example, <%=request.getParameter("content_id")%>) is used
to dynamically generate values. There are also places where raw HTML is included
such as form elements included inside the dataElements and the form elements that
do not have dataElement wrappers.

© 2007 Blackboard Inc. Proprietary and Confidential Page 26 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Icons

Overview

Icons are the visual cues associated with a Building Block in the application. A Building
Block must provide an icon to display within the course context.

List Item icon

The List Item icon is displayed when the Building Block entry point is displayed in a list
with other system entry points. An example is the Tools page within a course. The List
Item icon must be 32 x 32 pixels.

© 2007 Blackboard Inc. Proprietary and Confidential Page 27 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Writing Content Building Blocks

Overview

Content Building Blocks are Building Blocks that interact in the content areas of a
course. They allow custom content types to be placed in the course or organization
content areas, such as Course Documents, Assignments, and Books. Course
Documents are also referred to as Content Items.

In this section

The following topics are included in this section:
• Entry Points
• Using Course Documents
• Context Passing
• Interacting with the Gradebook
• Using the File System

© 2007 Blackboard Inc. Proprietary and Confidential Page 28 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Entry Points

Overview

Entry points are defined for each content handler included in the manifest. Content
handlers are used to render a Building Block’s links for creating custom content types.
Information on the manifest can be found in the Blackboard Learning System Manifest
topic of this document.

The scripts provided in the Content Handler definition are the entry points of a content
Building Block. They are rendered in two contexts: from the Add Custom page (create
action) and from the Content Area editor pages (modify and remove actions).

Create action

Create action is rendered from within the content editing areas in a course through the
Add Custom link. The links are not rendered directly. The display page includes logic
to generate the appropriate parameters and direct the browser to the create script.

The example below demonstrates create action rendering.

The create script must accept the following parameters:

Parameter Description

content_id The ID, in string form, of the parent object for the new
document. This must be set on the new document object.

course_id The ID, in string form, of the containing course.

Modify/Remove action

The Modify and Remove actions are rendered from within the content editing areas in
a course and in line with content items that may be edited.

© 2007 Blackboard Inc. Proprietary and Confidential Page 29 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

The remove action is not directly invoked as a Blackboard-provided script does most of
the processing. The Blackboard script deletes the actual Course Document. The
execution of the remove script provided by the Building Block allows the Building Block
to clean up or clear any external resources it may be holding.

Additionally, the modify script should support the following parameters:

Parameter Description

content_id The ID, in string form, of the content object
to delete.

course_id The ID, in string form, of the containing
course.

© 2007 Blackboard Inc. Proprietary and Confidential Page 30 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Using Content Items

Overview

The key ability of a content Building Block is being able to place content into the
Content Item hierarchy associated with a course. There are several components of the
persistence API to facilitate this.

Create a content item

Creating a content object is as simple as instantiating the data object and setting its
attributes. The following code sample shows how to create and save a content item.

// retrieve the Db persistence manager from the persistence service
BbPersistenceManager bbPm = BbServiceManager.getPersistenceService().
 getDbPersistenceManager();

// create a course document and set all desired attributes
Content content = new Content();
content.setTitle("Sample Item");
FormattedText text = new FormattedText(
 request.getParameter("text"), FormattedText.Type.HTML);
content.setBody(text);
content.setContentHandler("resource/x-smpl-type1");
// ... set additional attributes ...

// these attributes of content require valid Ids... create and set them
Id courseId = bbPm.generateId(Course.DATA_TYPE,
 request.getParameter("course_id"));
Id parentId = bbPm.generateId(Content.DATA_TYPE,
 request.getParameter("content_id"));
content.setCourseId(courseId);
content.setParentId(parentId);

// retrieve the content persister and persist the content item
ContentDbPersister persister = (ContentDbPersister)
 bbPm.getPersister(ContentDbPersister.TYPE);
persister.persist(content);

In the example above, the text of the content item is entered through the
Content.setBody(). This method accepts a FormattedText object which encapsulates
both the text of the content item as well as the formatting of that text. Presently,
three types of formatting are supported: HTML, Plain Text, and Smart Text (Smart
Text uses some of the basic features of HTML without having to enter HTML code).

Note: Templates can be included to make some details of the content formatting
easier, such as content.url to reference uploaded files.

Using ID Objects

Ids play a key role within the Blackboard API -- they serve to uniquely identify objects
within the Blackboard system allowing for future retrieval and/or modification. In
order to be system unique, Ids encompass several pieces of information, including key
data, object type and other identifying information. Ids can not be directly
instantiated and must be created using BbPersistenceManager.generateId().

A string representation of an Id value may be obtained via Id.toExternalString(). This
is useful when it is necessary to pass an Id value from one process to another and the

© 2007 Blackboard Inc. Proprietary and Confidential Page 31 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

object itself can not be passed—for example, passing an Id on a URL from one JSP
page to another.

Note: toString() is not appropriate for this purpose as it is used to provide
additional debugging information.

Save the document object

Once the object has been created it is saved by getting a reference, through the
BbPersitenceManager, to a persister and invoking its persist() method.

The following is an example of saving a Course Document:

ContentDbPersister persister = (ContentDbPersister)
 bbPm.getPersister(ContentDbPersister.TYPE);
persister.persist(content);

Note: The process is identical if the document is new or was loaded from the
database. The persistence objects determine what action to take.

Loading a Document

In addition to persister objects the developer will work with loaders to create objects
from stored data. In most cases, a parameter passed from the modify action script will
be referenced. This is typically encoded as a string. The BbPersistenceManager can
be used to translate the string to a valid ID object for use in a load operation.

Note: IDs are actual objects in the persistence framework and must be generated by
the PersistenceManager.

The following code demonstrates loading a document.

ContentDbLoader loader =
 (ContentDbLoader) bbPm.getLoader(ContentDbLoader.TYPE);
Id contentId = bbPm.generateId(Content.DATA_TYPE,
 request.getParameter("content_id"));
Content content = loader.loadById(contentId);

Content Item Types

The Blackboard Content API includes many different data objects. The base content
class is called Content. All sub-classes of Content (CourseDocument, ExternalLink,
etc.) represent native content types understood by the Blackboard system. Use of
these sub-classes should be limited to times when the desire is to create a native
Blackboard content item. If creating your own content type (the typical reason for
creating a content Building Block), then the Content class should be used as shown in
the examples above.

Since the ContentDbLoader can return any of the content data objects, it is safer to
treat all objects returned by it as the base class (Content). This avoids possible object
casting problems. If you must cast to another content type, it is safer to use
getDataType() or instance of to first validate the type before trying to cast.

© 2007 Blackboard Inc. Proprietary and Confidential Page 32 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Context Passing

Overview

Context passing is useful to System Administrators when they are implementing
Building Blocks that require content from Blackboard Learning System to generate a
URL.

The context passing APIs allow the Blackboard Learning System to pass data to URLs
requiring that data in a query string. To see an example of this type of URL, simply
look at the URL for a course in the Blackboard Learning System. The last part of the
URL is url=/bin/common/course.pl?course_id=<unique_id> where the <unique_id>
is a variable. It is variables such as this that can be passed using the context passing
APIs.

Developers may want to include parameters in links embedded in a course document.
Without a dynamic rendering framework some additional actions are required.
Blackboard Learning System provides the URL with a feature for passing contextual
data through URL templates. Templates are URLs provided by users that contain
placeholders for data that will be inserted at render time.

There are several variables that can be used to embed information in the HTML
included for rendering. The advantage to using templates is that the information does
not have to be hard coded and is thus more portable from course to course. This is
particularly relevant in course copy and import/export actions.

Course Document expansion

If @X@ are used as the delimiters the variables will be expanded when rendered in a
Course Document. The benefit of this approach is that there is no intermediate step
between the display of the template and navigating the link.

Deferred expansion

A slightly different syntax can be used if Course Document expansion is not desired
Instead, have the link reference the URL
/webapps/blackboard/launch_external.jsp and include a URL template in the url
parameter. Below is an example of a deferred expansion URL:

/webapps/blackboard/launch_external.jsp?encrypt=y&url=http://example.com/page?
uid=@X@user.user_id@X@

The benefit of this approach is that there is an intermediate step to invoke the
launch_external.jsp. This allows the developer to specify that the URL should be
encrypted. This step creates a temporary key that external systems (with live
database access to the Blackboard Learning System), can use to verify requests.

Run-time expansion

Developers can also have provided templates expanded at runtime by the Session
object. The templates are the same, but instead are processed in the context of a
method call.

See blackboard.platform.session.BbSession.encodeTemplateURL()

© 2007 Blackboard Inc. Proprietary and Confidential Page 33 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Variables
The following variables may be used in URL templates:

Variable Value Example
course.batch_uid The external identifier for a

course. Accepts multibyte
characters.

 ABC123ABC

course.id The simple abbreviation for
a course.

 BIO101

course.role A user’s role in the current
course or organization.
Accepts multibyte
characters.

 student

course.url The base URL for all files
referenced in the course.

 /courses/1/BIO101/

content.id The internal identifier for
content in a course.

 _23_1

content.url The base URL for files
associated with a given
piece of content.

 /courses/1/BOB101/content/_x_y

system.site_id The host name of the
current virtual installation.

 bb_bb60

request.id Unique identifier for the
current session formatted
as a 32 character hex digit
string based on the time of
access. Guaranteed to be
unique across the system.

 35853280-A77A-11D8-83D5-
9CAA2FE644E1

request.return The first non-null value of:
The “return” parameter in
the query string
The “return” parameter in
the URL
the URL of the referring
page.

http:/localhost/webapps/bbgs-bbqa-
context-
bb_bb60/tool_1/tool.jsp?course_id=_
2_1

session.id Hexadecimal string
representing the session
identifier for the current
session.

8f14e45fceea167a5a36dedd4bea2543

user.batch_uid The external identifier for a
user. Accepts multibyte
characters.

123-45-6789

user.id The current Username.
Accepts multibyte
characters.

 jsmith

user.role The current user’s System
Role.

 System Roles
C- Course Administrator
U- Guest
N- None
O- Observer
Y- Community Administrator
R- Support
Z- System Admin
H- System Support
A- User Administrator

user.institution_role The Role ID of the current
user’s Primary Institution

 student

© 2007 Blackboard Inc. Proprietary and Confidential Page 34 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Role. Accepts multibyte
characters.

user.primary_institution_role The Role ID of the current
user’s Primary Institution
Role (same as
institution_role). Accepts
multibyte characters.

student

user.secondary_institution_role A comma-delimited list of
all of the user’s secondary
Role IDs.

student,faculty

membership.role A user’s role in the current
course or organization.
Accepts multibyte
characters.

Course/Organization Roles
B- Course Builder/Organization
Builder
G- Grader/Grader
U- Guest/Guest
P- Instructor/Leader
S- Student/Participant
T- Teacher's Assistant/Assistant

Example One:
When given the user jdoe, in the course CS114, the URL template
user_id=@X@user.user_id@X@&course_id=@X@course.course_id@X@ would expand
as: user_id=jdoe&course_id=CS114.

Example Two:
A Building Block includes a Java applet that reads a file from the server to display
math equations. The file is stored in the course document’s file repository. The
following applet tag could automatically generate the appropriate URL without hard
coding the location.

Below is an example of using templates in Course Document HTML:

<applet code=“vendor.AppletClass” archive=“/webapps/vend-plgn/applet.jar”>
 <param name= “download” value= “@X@content.url@X@/file.mml”>
</applet>

Example Three:
The Session object can be used to encode parameters directly in the plug-in script
handlers. Below is an example of using session to encode a template URL:

BbSession bbSession =
 BbServiceManager.getSessionManagerService().getSession(request);
String encodedUrl =
 bbSession.encodeTemplateUrl(request, request.getParameter("target"));

Encoding the template URL can be used to pass information to external systems or the
tool. The batch_uid property on both user and course is used in integration scenarios
and typically maps to an ID maintained by an external system, for example the
primary key used within the SIS.

Note: When performing deferred expansion, the developer must be able to include the
appropriate IDs (such as Course ID) to ensure that the context information is
available.

© 2007 Blackboard Inc. Proprietary and Confidential Page 35 of 73

mailto:user_id=@X@user.user_id@X@&course_id=@X@course.course_id@X@

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Interacting with the Gradebook

Overview

Content Building Blocks may need to interact with the Gradebook. This is done
through the Gradebook API, which exists in the packages
blackboard.data.gradebook and blackboard.persist.gradebook.

Line items

This interface allows the developer to create line items and attach scores to them.
Additionally, the developer can link both the line items and scores to external analysis
programs, via the attemptHandlerURL property of the
blackboard.data.gradebook.Lineitem object. This is particularly useful if the
Building Block is a bridge to an external assessment engine.

Scores

Score objects represent the actual graded outcome of a student’s interaction with a
“grade-able” resource. Even though an individual score may be calculated from one or
more attempts, only a single score value is exposed for each line item in this version
of the API.

Basic Usage

Using the Gradebook APIs typically comprises the following steps:
Step 1 Create a Lineitem and set the appropriate properties, including the

courseId.

Step 2 Persist Lineitem.

Step 3 Store the LineitemID reference for later use.

Step 4 When a Student interacts with a "gradeable" resource, create a

Score object and set the appropriate properties, including the
stored Lineitem Id.

Step 5 Persist Score.

© 2007 Blackboard Inc. Proprietary and Confidential Page 36 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Using the File System

Overview

Every Course Document has an associated file store. The developer can use the file
store to save data for their Building Block.

Note: These files are not tracked by the system and will be deleted when the content
object is removed.

Directories

The FileSystemService gives access to directory spaces within the content areas.

The directories retrieved from the FileSystemService must be treated as unrelated.
That is, any reliance on paths existing outside of the provided directory will likely
result in errors in subsequent releases.

Warning: Do not rely on the layout of directories returned from the
FileSystemService as it will change in subsequent releases.

See blackboard.platform.filesystem.FileSystemService

© 2007 Blackboard Inc. Proprietary and Confidential Page 37 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 Writing Tool Building Blocks

Overview

Writing a Tool Building Block can be a very open-ended task, and can touch a number
of issues. This section will review the basics of a Tool in the Blackboard context and
the various points of interaction in the system.

Note: This section makes the assumption that the reader is familiar with the Web-
based navigational structure of the Blackboard Academic Suite.

Applications

In the Blackboard Academic Suite all of the links that may be associated with tools in a
system are related via the Application entity. For example, the different links for the
Announcements tool are connected via an Application object.

The end user manages applications via the System Control Panel and the Course
Control Panel. For example, open Manage Tools on the Control Panel. The tools
installed by default are managed differently than tools installed by Building Blocks.

Building Blocks may define one or more applications in the manifest. For the Building
Block this means that all of the links associated with that Building Block will be
managed as a single unit.

Entry Points

There are four pre-defined entry points for a Building Block to use in the context of a
course. The entry point used depends on the use case.

• Control Panel. The link is displayed in the Course Tools section of the Course
Control Panel.

• System Administration Panel. The link is displayed in the System Tools

section of the System Control Panel.

• Communications. The link is added to the set of tools displayed in the default

Communications navigation area of the course. This area is located in the
Course Menu.

• Course Tools. The link is added to the set of tools displayed in the default

Tools navigation area of the course. Tools are located in the Course Menu.

• User Tools. The link is added to the Tools box available on the community tab

areas.

Course Tools and User Tools are somewhat arbitrary. Once an Application is defined
for a set of links Instructors can create any number of access points to that
application. For example, if a Building Block installs a link that will appear in the Tools
area of a course, an Instructor can create a new course area and point it directly to
the entry point of the Building Block.

The entry points are determined by the type attribute on the link element in the
manifest.

© 2007 Blackboard Inc. Proprietary and Confidential Page 38 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Communication Tools vs. Course Tools

Functionally, there is no difference in the API for use by either type of Building Block.
The distinction is made solely for the details the developer wants to apply for the tool.

© 2007 Blackboard Inc. Proprietary and Confidential Page 39 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Writing Content System Building Blocks

Overview

Beginning with Blackboard Content System (Release 2.3), it is possible to write
Building Blocks with features specific to the Content System. Developers have the
option of either creating Building Blocks that require the Content System to be
installed, or creating Building Blocks that integrate with the Content System when it is
available but do not require it.

Installation

In addition to specifying the required Blackboard platform version in the Building Block
manifest, Content System Building Blocks should specify the minimum required
version of the Content System in a csversion sub-element of the requires element.
When a Content System Building Block is installed, the version of the Content System
currently installed is checked against the version specified in the Building Block
manifest. If the currently installed version is older than the version in the manifest,
the Building Block will not be installed, and the Administrator will receive an error
message stating the required Content System version. If the currently installed
version is the same as the version in the manifest or newer, the Building Block will be
installed successfully.

If the Content System is not installed at all, the ifMissing attribute of the csversion
element is checked. When set to “fail” the Building Block will not be installed, and the
Administrator will receive an error message stating that the Content System must be
installed to use the Building Block. When set to “warn” the Building Block will be
installed, but the Administrators will receive a message stating that some features of
the Building Block may be unavailable unless the Content System is installed. This can
be used to create Building Blocks that integrate with the Content System when it is
available, but can also be used with only the Blackboard Learning System or
Blackboard Community System installed.

Applications

Writing a Content System Building Block is very similar in most respects to writing a
Tool Building Block. As with Tool Building Blocks, Content System Building Blocks are
grouped within an Application object. Tool Building Blocks and Content System
Building Blocks can be freely intermixed within a single application definition, or can be
defined in separate applications.

Entry Points

The Content System defines six additional entry points for use by Content System
Building Blocks.

• Content System Tools. The link is added to the Tools box in the folder view
of the Content Collection menu, and the Tools menu available from the
shortcut view of the Content Collection menu.

• Content System Action Bar. The link is added to the drop-down menu at the

end of the Action Bar on folder listing pages in the Content Collection. Action
Bar Building Blocks act on the files and folders currently selected in the folder
listing.

© 2007 Blackboard Inc. Proprietary and Confidential Page 40 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

• Modify Content File. The link is added to the menu of options that appears
when a user clicks Modify on a file in the Content Collection.

• Modify Content Folder. The link is added to the menu of options that

appears when a user clicks Modify on a folder in the Content Collection.

• Manage Portfolio. The link is added to the menu of options that appears
when a user clicks Manage on a Portfolio on the My Portfolios page.

• My Portfolios. The link is added to the My Portfolios box in the folder view of

the Content Collection menu, and the Portfolios menu available from the
shortcut view of the Content Collection menu.

Execution Contexts

Content System Tools and My Portfolios Building Blocks are system-wide tools. Links
added in those areas by Building Blocks will not have any additional HTTP request
parameters appended beyond what is specified by the developer in the Building Block
manifest. Links in the Content System Action Bar, Modify Content File, Modify Content
Folder, and Manage Portfolio areas, however, are meant to operate on one or more
Content System objects, specified by an HTTP request parameter. The
blackboard.cms.servlet package contains classes that encapsulate the use of these
request parameters, and can be used by Building Blocks developers to determine the
appropriate object or objects to act on.

Example 1: Content System Action Bar Building Blocks
This JSP can be used as the target of a Content System Action Bar link. It will print out
a list containing the path names of the files and folders that were selected in the folder
listing where it was used.

<%@page import="blackboard.cms.servlet.CSActionRequest" %>
<%@page import="java.util.Iterator" %>
<%@taglib prefix="bbData" uri="/bbData" %>
<bbData:context>
<!-- Print out a list of the selected files and folders -->

<%
 CSActionRequest actionReq =
 new CSActionRequest(request, response, application);
 List selectedFiles = actionReq.getSelectedPaths(); // returns a list of path names
 for (Iterator i = selectedFiles.iterator(); i.hasNext();)
 {
 String fileName = (String) i.next();
%>
 <%= fileName %>
<%
 }
%>

</bbData:context>

Example 2: Modify Content File/Folder Building Block
This JSP can be used as the target of a Modify Content File or Modify Content Folder
link. It will print out the path name of the file being modified.

<%@page import="blackboard.cms.servlet.CSModifyEntryRequest" %>
<%@taglib prefix="bbData" uri="/bbData" %>
<bbData:context>
<%
 CSModifyEntryRequest modifyEntryReq = new CSModifyEntryRequest(request);

© 2007 Blackboard Inc. Proprietary and Confidential Page 41 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 out.println(modifyEntryReq.getPath());
%>
</bbData:context>

Example 3: Manage Portfolio Building Block
This JSP can be used as the target of a Manage Portfolio link. It will print out the title
of the Portfolio being managed.

<%@page import="blackboard.cms.portfolio.Portfolio" %>
<%@page import="blackboard.cms.servlet.CSManagePortfolioRequest" %>
<%@taglib prefix="bbData" uri="/bbData" %>
<bbData:context>
<%
 CSManagePortfolioRequest portfolioReq =
 new CSManagePortfolioRequest(request);
 Portfolio portfolio = portfolioReq.getPortfolio();
 out.println(portfolio.getTitle());
%>
</bbData:context>

© 2007 Blackboard Inc. Proprietary and Confidential Page 42 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

General Development Tasks

Overview

The following section describes the higher-level tasks of authentication and
authorization that are useful in Building Blocks.

In this section

The following topics are included in this section:
• Authenticating Users
• Authorizing Users

© 2007 Blackboard Inc. Proprietary and Confidential Page 43 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Authenticating Users

Overview

Authentication is performed by the Blackboard Learning System, and will rarely, if
ever, get called directly from a plug-in. For more information see the topic on
Authentication.

Checking authentication

Authentication status is queried by referencing a Session object and checking the
isAuthenticated() method.

Below is an example of checking authentication:

BbSession bbSession = sessionService.getSession(request);
.
.
if (! bbSession.isAuthenticated())
{
 HttpAuthManager.sendLoginRedirect(request,response);
 return;
}

See blackboard.platform.session.BbSessionManagerService

© 2007 Blackboard Inc. Proprietary and Confidential Page 44 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Authorizing Users

Overview

User authorization is performed through AccessManagerService.

Authorization example

This example demonstrates how to use the method isUserInSystemRole(). The roles
used in the sysAllowedRoles array are defined in the enumeration
blackboard.data.user.User.SystemRole.

The following is an authorization example:

//roles that are allowed access
User.SystemRole sysAllowedRoles[] = {
 User.SystemRole.SYSTEM_ADMIN,
 User.SystemRole.SYSTEM_SUPPORT,
 User.SystemRole.ACCOUNT_ADMIN,
 User.SystemRole.COURSE_CREATOR
};
//get access manager
AccessManagerService accessManager = (AccessManagerService)
 BbServiceManager.lookupService(AccessManagerService.class);
//perform check
if (!accessManager.isUserInSystemRole(request, sysAllowedRoles)) {
 HttpAuthManager.sendAccessDeniedRedirect(request,response);
 return;
}

Note: The supported roles are enumerated in the class User.SystemRole. The utility
method HttpAuthManager.sendAccessDeniedRedirect() sends the user to a page
that displays a message if authorization fails.

Authorization utility methods

There are utility methods on PlugInUtil that authorize predefined sets of roles based
on the default Blackboard Learning System behavior.

Method Description
authorizeForCourseControlPanel Verifies that the user associated with the

current session is enrolled in the current course
as an Instructor, Teaching Assistant, or Course
Builder.

authorizeForSystemAdmin Verifies that the current user has a System
Administrator role of System Administrator,
System Support, Account Admin, or Course
Creator.

© 2007 Blackboard Inc. Proprietary and Confidential Page 45 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Creating a Building Block

Overview

This section describes the areas outside of programming that developers should take
into account when building a Building Block for the Building Blocks APIs and Runtime.

Note: All of the code described in this section is included in the sample Building Block
package delivered as part of the Building Blocks Software Developer Kit.

In this section

The following topics are included in this section:
• Development environment
• Deciding what to build
• Debugging the Building Block

© 2007 Blackboard Inc. Proprietary and Confidential Page 46 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Development Environment

Overview

Developers may create a Building Block with any Java development tools they are
familiar with. The Building Block may simply contain a few JSP files or it may contain
custom class libraries developed to encapsulate more advanced functionality. If class
libraries that rely on the Blackboard classes are going to be developed then the
CLASSPATH of the development tool must be set up.

CLASSPATH

For many Building Blocks, the development environment does not need to be
configured unless custom classes are being created. Many Building Blocks will be able
to provide their functionality exclusively through JSP scripts. The
<blackboard>/bbservices/systemlib/bb-persistence.jar needs to be added to
the CLASSPATH variable used by the development environment when creating custom
class libraries that use the Blackboard Learning System Java classes.

Utility Libraries

The Blackboard Learning System ships with several libraries that may be useful for
general-purpose development.

• Gnu-regex-1.0.8. A package for parsing regular expressions.

• Xerces-1.4.3. The Apache XML parser. Contains facilities for DOM and SAX

parsing and support for name spaces and document type definition (DTD)
validation.

• Xerces-1.2.0. The Apache XML parser. This is an older version shipped for

backward compatibility.

• Xerces-1.0.3. The Apache XML parser. This is an older version shipped for
backward compatibility.

Java Database Connectivity (JDBC)

In this version of the Building Blocks API and Runtime direct database access is
possible though not encouraged. All of the required database operations are
accomplished with the persistence APIs. These wrap the details of database
interaction, allowing the programmer to focus on data. The one exception is obtaining
a Connection object to control transactions.

Additional libraries

Additional libraries may be provided in the installation package either as expanded
class files or as a bundled .jar file. Class files go into the /WEB-INF/classes directory
and .jar files go into the /WEB-INF/lib directory.

© 2007 Blackboard Inc. Proprietary and Confidential Page 47 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Deciding What to Build

Overview

The Building Block sample that is provided is a simple Building Block that presents a
form field for text entry. The example does not provide much practical use as this
feature is already available in the core platform but it does illustrate most of the
components needed to develop for a Building Block.

The following steps are dependent on the type of functionality being provided. They
are each discussed in detail in this section.

Step 1 Build the content handler actions.
Step 2 Build the links.
Step 3 Build a configuration script.
Step 4 Build a remove script.

Build the Content Handler Actions

When building a custom content type, HTTP actions for each content handler defined
in the Building Block manifest must be provided. These scripts are always invoked in a
content context, which means that the URL contains parameters that define the
current course and content object.

When the create action is called the content ID passed is that of the parent folder.
When creating a Course Document it must be associated with a folder.

When the other modify and remove actions are called the content ID refers to the item
to modify or delete. Thus an action such as load from database is performed based on
the content ID.

Build Links

Links are different from content handlers and configuration scripts in that they are not
clearly defined by http actions. Instead, they are defined with a link element and a
type attribute. This is because in the tool-oriented areas of the application (course
tools and communications) a single entry is provided. The type attribute determines
where the application should render the link.

Build a Configuration Script

All Building Blocks that are required to provide a configuration script are identified in
the manifest by the configuration HTTP action element. The script is not required to do
anything except display a message. In the example a simple screen that allows us to
select the items to query will be added.

Configuration data for the plug-in may be stored in the file system. The directory may
be obtained via PlugUtil.getConfigDirectory().

© 2007 Blackboard Inc. Proprietary and Confidential Page 48 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

The following example demonstrates rendering the configure and remove scripts.

Build a Remove Script

By providing a remove script, the developer can perform any necessary cleanup when
the Building Block is removed from the Blackboard Learning System. For example, the
Building Block may need to un-register itself from external systems. This is not an
opportunity to delete all associated content or file system components; that is handled
by the Blackboard Learning System. The remove script is not mandatory. The script is
summoned by a RequestDispatcher.include() call and is not expected to display
any user interface or interact with the user.

Note: There are certain limitations to building a Remove Script. The Remove Script
must not attempt to alter the client response. This means it cannot write any HTML,
which may produce unpredictable results since a different script generates the receipt.
It also cannot attempt to set an alternate HTTP status code which will result in an
IllegalAccessException error.

RemoveScript Config Script

© 2007 Blackboard Inc. Proprietary and Confidential Page 49 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Debugging the Building Block

Overview

Blackboard Learning System (Release 7) is designed to run against the Java 2 SDK
5.0.

Debugging support is automatically provided by Java via the Java Virtual Machine
Debugging Interface (JVMDI).

© 2007 Blackboard Inc. Proprietary and Confidential Page 50 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Building Block XML Packaging Format

Overview

Packaging a Building Block includes creating a .ZIP file that conforms to the Servlet
2.2 Web Application Archive (.war) specification and includes additional data used by
the Blackboard Learning System server to install the Building Block’s entry points.

In this section

The following topics are included in this section:
• Web Archive Overview
• URLs
• Blackboard Manifest
• Packaging the Building Block

© 2007 Blackboard Inc. Proprietary and Confidential Page 51 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Web Archive Overview

Overview

A Web archive file is a .ZIP file conforming to the definition provided in Section 9 of
the Sun Java Servlet Specification, version 2.2.

Sub-directories

Below is a brief description of the sub-directories that may be included in the WEB-INF
directory or WAR file layout.

Directory/File Description

WEB-INF/classes/ Expanded class files.
WEB-INF/lib/ .jar files included for the application. These may

include libraries that are developed or third party
libraries included as utilities.

WEB-INF/web.xml The Web app deployment descriptor (required by the
Servlet 2.2 specification).

WEB-INF/bb-manifest.xml The Blackboard package definition (required by the
Blackboard Learning System package specification).

/ The root of the Building Blocks. With the exception of
WEB-INF developers may organize this directory as
they see fit. Typically, this will include the Building
Blocks JSP scripts, images, and so forth.

© 2007 Blackboard Inc. Proprietary and Confidential Page 52 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

URLs

Overview

Once the application has been called up many Web applications rely on the ability of
supplemental scripts to provide processing. This is typically done by HTTP redirects or
Request Dispatches. Care must be taken in the construction of URLs as the evaluation
of the URL is dependent on the method used.

Obtaining a URL to the Building Block

Due to the dynamic deployment environment with Virtual Installations the Building
Block should not hard code any root-anchored, self-referencing URLs. Instead, one of
the utility methods on blackboard.platform.plugin.PlugInUtil should be used to
obtain the URL reference.

Redirection vs. request dispatch

In the servlet specification there are two methods to return an alternative response to
a client, redirection and request dispatch.

• Redirection involves an actual HTTP response code sent to the client to request
a different page.

• A request dispatch allows a script on the server to invoke the functionality of

another script. Under the servlet specification there are different semantics for
URLs in each case.

Redirects

Redirects are generated via the HttpServletResponse.sendRedirect() method,
which is exposed by the Java Servlet API. A redirection sends an HTTP 302 to the
client resulting in the client requesting a new target URL. If a relative URL is provided
as the argument to sendRedirect()then the servlet container translates the call to a
fully qualified URL. URLs to Building Blocks are typically rendered to the client in the
form /webapps/<extension_id>/<extension script>.

Note: The Web server (Apache on UNIX, IIS on Windows) uses a proxy agent to
delegate requests to the servlet engine. The proxy agent strips /webapps from the URL
thus the developer needs to ensure that all root-anchored Universal Resource
Identifiers (URIs) include /webapps, for example, /webapps/smpl-plugin/test.jsp.

Request dispatch

Request dispatch is a technique for delegating requests on the server and is defined in
the Servlet specification. This is a more confusing case.

The Servlet specification defines an object called a RequestDispatcher. There are two
methods: forward() and include(). A Request Dispatcher is obtained from a
number of sources, all of which require a Uniform Resource Identifier (URI). The URI is
evaluated relative to the Web application’s context. That is, if a URI such as
/some.jsp is provided it will be evaluated against the Web application’s root, which is
equivalent to /webapps/<extension id>. Thus the full URL would be
/webapps/<extension>/some.jsp.

© 2007 Blackboard Inc. Proprietary and Confidential Page 53 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Consider the following sets of scripts in a Building Block:
• /webapps/smpl-plugin/create.jsp
• /webapps/smpl-plugin/modify.jsp
• /webapps/smp-plugin/include.jsp

If either create.jsp or modify.jsp requires access to include.jsp as an included
resource the following code snippet would be used:

RequestDispatcher rd = application.getRequestDispatcher(“include.jsp”);
rd.include(request, response);

Note: Application, request, and response are JSP built-in objects.

Encoded URLs

When generating URLs for use with sendRedirect() or display in an <A> element it is
good form to use the session object to encode the URL. This will encode any session or
context information that may need to be passed back to the server on subsequent
requests.

© 2007 Blackboard Inc. Proprietary and Confidential Page 54 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Blackboard Learning System Manifest

Overview

The manifest is the set of directives the developer provides to Blackboard Learning
System that tells the server what links to render for the Building Block and where to
render them. The manifest provides links in the form of HTTP actions.

Manifest Definitions

There are several main link types defined by the manifest:

• Basic Information and Configuration. Used to render a Building Block’s
configuration and remove links.

• Content Handler. Used to render a Building Block’s links for creating custom

content types.

• Application. Used to render Building Blocks in course tools and course

communication links.

• Module. Data that is processed by a module type to render a module in the

community home page.

• Module Types. Custom logic used to display modules in the community home

page.

• RSS Channels. A specific data entity used by both the RSS Channel module

type and RSS modules that reference channel definitions.

Note: For Module, Module Types, and RSS Channel definition, see the Module
Developers’ Guide for more information. They are not covered in detail in this section.

Community System Modules, Module Types, and RSS Channels can also be defined in
the manifest.

Localizing the Manifest

Building Blocks may include text that is specific to different languages. Prior to
Blackboard Learning System (Release 7), data such as the name of the Building Block
or content handlers, were displayed “as-is” from the manifest. Using a simple
mechanism to find the language-appropriate text, Building Block developers can
provide information for the platform to display the Building Block metadata in a
localized fashion. This mechanism, explained below, renders the text in the
appropriate language by using a combination of the key from the manifest plus an
algorithm to find the appropriate bundle.

The following manifest elements are used by the platform to render information to the
end user. To localize them, use a “bundle key” in the manifest instead of plain text. A
bundle key is a simple identifier used by the system to locate the actual text to
display.

Note: Multibyte characters are accepted in all of these elements.

Element Attributes Description
name value Name of the plug-in

© 2007 Blackboard Inc. Proprietary and Confidential Page 55 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

© 2007 Blackboard Inc. Proprietary and Confidential Page 56 of 73

Element Attributes Description
description value A description of the plug-in
description value A description of the vendor
content-handle name name for custom content types.
application name name name for application
application description long description for application
link name link label
link description link long description
module title Title of Module
rss-channel title Title of rss channel
module-type title label for module type
module-type description long description for modules type

The Blackboard Learning System can support multiple languages and includes the
ability for end users to create and install their own language packs. To require Building
Blocks to support that range of languages is unrealistic. Thus, when rendering the
metadata for a Building Block installed on the system, the platform will attempt to find
a resource bundle associated with the manifest in the following order:

• User’s current locale
• System’s default locale
• Building Block’s default locale (an optional element in the manifest)
• English (United States)

A file naming convention is used to find the appropriate bundle, bb-manifest-
<locale>.properties, where <locale> is a string in the standard ISO language/country
format. The bundles must be in the WEB-INF/bundles directory of the manifest. For
example, the following files would be used in a Building Block that supports English
(US) and Spanish (Spain):

• WEB-INF/bundles/bb-manifest-en_US.properties
• WEB-INF/bundles/bb-manifest-es_ES.properties

At a minimum, a Building Block should have two bundles to be considered
“localizable”, though for backwards compatibility, if no bundles are found, the text in
the manifest is returned “as-is”. This allows localization to be optional, and allows old
Building Blocks to operate without modification.

The bundle format should follow the standard for Java property bundles; they must be
ISO-8869-1 encoded and use Unicode escape sequences for multi-byte characters.
Tools such as Native-to-ASCII (which is part of the standard Java Developer’s Kit) can
be used to format the data as needed.

Note: This format is required for the bundles that Blackboard will display; the Building
Block itself, however, can use whichever bundle format is appropriate.

Basic Information and Configuration

The root element for a Building Block’s manifest is always <plugin>. The basic
information for a Building Block is defined in the first few child elements of the
<plugin> element.

Element Description
Name A name to display for the Building Block in the management

screens. Required. Maximum length: 50 characters. Accepts
multibyte characters.

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Handle A unique string value used to associate with the Building Block.
The handle, in combination with the Vendor Id, is considered to
be the unique identifier for this Building Block. Required.
Maximum length: 32 characters.

Vendor Root element for information about the Building Block vendor.
Required.

Description Human readable description for the Building Block. Displayed to
administrators in the “view components” management screen.
Required. Maximum length: 255 characters. Accepts multibyte
characters.

Default-locale Language to use when the Building Block does not support the
current user’s locale.

Requires Root for the Building Block prerequisites. Contains <bbversion>
and <csversion> elements. Required.

Bbversion Element to define dependency on a specific Blackboard version.
Value is of the form major.minor.patch.build. Only two
numbers are required, but for precision, the first three are
recommended.

csversion Element to define dependency on a specific Blackboard Content
System version. The value has the same format as in the
<bbversion> element. Not required.

ifMissing Attribute of <csversion> element that determines whether the
package can be installed without the Content System present.
Possible values are “fail” and “warn”. Not Required. Default
value: warn.

Http-actions Container element for configuration and removal data.
Required.

Config URI for invoking configuration information for the Building
Block. Not Required. Maximum length: 512 characters

Remove URI for invoking removal action for the Building Block. The
script must not perform any action for the user interface
(writing HTML, setting status codes). It’s intended only as a
notification mechanism so the Building Block can perform any
required cleanup. Not Required. Maximum length: 512
characters

Id Vendor ID. Arbitrary string chosen by the developer to identify
institution or organization that authored the Building Block.
Child of <vendor> element. Required. Maximum length: 4
characters.

Name Vendor name. Child of <vendor> element. Required. Maximum
length: 50 characters. Accepts multibyte characters.

url Vendor URL. Child of <vendor> element. Not Required.
Maximum length: 255 characters.

Defining a content handler
Use the <content-handler> container element, and define a name, handle, icon, and
HTTP-actions.

Element Description
Name A name to display in the Add Other drop-down list in the

Instructor page editors. Accepts multibyte characters.
Handle A unique string value used to connect a content database entry

with its corresponding handler. The syntax is not strictly
defined; however, by convention a MIME-like syntax is
commonly used.

Http-Actions Defines the collection of entry points for editing content created
by this handler.

© 2007 Blackboard Inc. Proprietary and Confidential Page 57 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Create Script called to create a content object. The script must accept
course_id and content_id arguments. The content_id
argument for creation references the parent folder. Maximum
length is 512 characters. This URL must be relative to the root
of the Web application.

Modify The script called to modify the content created by this handler.
The script must accept a course_id and content_id
arguments. The content_id argument is the object to modify.
Maximum length is 512 characters. This URL must be relative to
the root of the Web application.

Remove The script called to follow up on deletion of content. The script
must accept a content_id argument. Note that the actual
deletion is performed by the Blackboard Learning System prior
to invoking this script; thus there is no direct access to the
object. This is called to allow cleanup by the Building Block.
Maximum length is 512 characters. This URL must be relative to
the root of the Web application.

Icons Collection of icons to display to the user. Icon should be 32 x
32 pixels to display properly in the course/organization
environment.

Toolbar Reserved. Child element of Icons.
List item Not used; child element of Icons. Blackboard Learning System

Example
The following example defines a simple content handler.

 <content-handlers>
 <content-handler>
 <name value="content-handler.handle"/>
 <handle value= "resource/x-smpl-type1"/>
 <http-actions>
 <create value="ch1/create.jsp"/>
 <modify value="ch1/modify.jsp"/>
 <remove value="ch1/remove.jsp"/>
 </http-actions>
 <icons>
 <toolbar value="/images/add_ch1.gif"/>
 <listitem value="/images/icon.gif"/>
 </icons>
 </content-handler>
 </content-handlers>

Defining an application

Links should appear inside an <application> definition.

Name Description
Application-defs The container for multiple application definitions.
 Application The entity that defines the grouping of links.
 Handle Simple string identifier to uniquely identify the application on

the system. This string is combined with the vendor ID string.
 Type The type for the application. This must be one of “course”,

“shared” or “system”. A course application is only used in the
course or organization environment. A “system” application
can expose an entry point in the system context. A “shared”
application may be used in courses, or at the system level.

 Name The user-friendly name of the application. Maximum length:
64 characters. Accepts multibyte characters.

© 2007 Blackboard Inc. Proprietary and Confidential Page 58 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 Small-icon Reserved.
 Large-icon Reserved.
 Description A description of the application. Maximum length: 3900

characters. This field is not currently displayed to end users.
Accepts multibyte characters.

 Can-allow-guest Flag indicating that the tool can accept anonymous (or guest)
users.

Links The collection of links exposed by the containing application.
 Link A single link within the application.
 Type Type of the link. This must be one of: tool, communication,

course_tool, user_tool, system_tool, cs_tool, cs_action,
cs_modify_file, cs_modify_folder, cs_manage_portfolio, or
cs_my_portfolios. An application may contain any number of
links of any type. For example, the developer may choose to
provide two separate links to a tool within the “Tools” area of
the course.

 Name Name to display for the link. Maximum length: 255 characters.
Accepts multibyte characters.

 URL Relative path of the tool. This must be relative to the web
application root (but not root-anchored). Maximum length:
255 characters.

 Description Description of the link to display. Maximum length: 3900
characters. This is not currently displayed to end users.
Accepts multibyte characters.

 Icons The container for icon definitions.
 Listitem The icon to display in the list mode for course navigation

areas.

Example

 <application-defs>
 <application handle="sampleapp" type="course" use-ssl="false"
 name="application.name" can-allow-guest="true"
 small-icon="" large-icon="">
 <description >application.description</description>
 <links>
 <link>
 <type value="tool"/>
 <name value="tool.name"/>
 <url value="links/tool1.jsp" />
 <description value="tool.description" />
 <icons>
 <listitem value="/images/icon.gif"/>
 </icons>
 </link>
 </application>
 </application-defs>

Declaring security

A section of the manifest is set aside to declare permissions that are required to run
the Building Block. Refer to the Building Blocks API Specifications for more information
on what permissions are required for specific operations.

The XML format corresponds closely to the format used in standard Java policy files.
This includes a type attribute to define the Java class name for the requested
permission, a “name” attribute, and an “actions” attribute. The “name” and “actions”
attributes are defined by the Permission object in the core Java API. The exception is

© 2007 Blackboard Inc. Proprietary and Confidential Page 59 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

for mnemonic names for Blackboard-defined permissions or commonly requested Java
permissions. The following mnemonic names are defined:

• Persist. Permission required to load or persist a data object. The name is the
type of action; the allowed actions are load and persist.

• Runtime. Wrapper for a Java runtime permission. Name and actions are

defined in the Java platform API.

• Socket. Wrapper for a Java socket permission. Name and actions are defined
in the Java platform API.

Name Description

Permissions Container for permissions.
Permission Individual permission to apply.
Type Type string, either a mnemonic or fully qualified class name.
Name Name of the permission.
Actions Actions required to perform correctly.

Example

 <permissions>
 <permission type="persist" name="Content" actions="persist"/>
 <permission type="socket" name="*.blackboard.com" actions="connect"/>
 </permissions>

Complete Manifest

The following sample is a complete manifest and is included with the sample plug-in.

<?xml version="1.0" encoding="ISO-8859-1"?>
<manifest>
 <!-- core extension information -->
 <plugin>
 <name value= "Sample Plugin"/>
 <handle value= "plgnhndl"/>
 <description value= "This plugin is a sample."/>
 <version value= "1.0.0.1"/>
 <requires>
 <bbversion value="6.3.0"/>
 <csversion value="2.3.0" ifMissing=”warn”>
 </requires>
 <vendor>
 <id value="smpl"/>
 <name value="Sample Plugin Vendor"/>
 <url value="http://www.samplevendor.com/" />
 <description value="The description of the sample vendor goes here." />
 </vendor>
 <http-actions>
 <config value="admin/config.jsp"/>
 <remove value="admin/remove.jsp"/>
 </http-actions>

 <!-- Custom content types defined by this extension -->
 <content-handlers>
 <content-handler>
 <name value="Blackboard Sample Plug-in: HTML Block"/>
 <handle value= "resource/x-smpl-type1"/>
 <http-actions>

© 2007 Blackboard Inc. Proprietary and Confidential Page 60 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 <create value="ch1/create.jsp"/>
 <modify value="ch1/modify.jsp"/>
 <remove value="ch1/remove.jsp"/>
 </http-actions>
 <icons>
 <toolbar value="/images/add_ch1.gif"/>
 <listitem value="/images/icon.gif"/>
 </icons>
 </content-handler>
 <content-handler>
 <name value="Blackboard Sample Plug-in: Text Block"/>
 <handle value= "resource/x-smpl-type2"/>
 <http-actions>
 <create value="ch2/create.jsp"/>
 <modify value="ch2/modify.jsp"/>
 <remove value="ch2/remove.jsp"/>
 </http-actions>
 <icons>
 <toolbar value="/images/add_ch2.gif"/>
 <listitem value="/images/icon.gif"/>
 </icons>
 </content-handler>
 </content-handlers>

 <!-- Tools defined by this extension -->
 <application-defs>
 <application handle="sampleapp" type="course" use-ssl="false" name="Sample
Application" can-allow-guest="true"
 small-icon="" large-icon="">
 <description lang="en_US">Application installed as part of the sample
plugin</description>
 <links>
 <link>
 <type value="tool"/>
 <name value="Sample Tool 1"/>
 <url value="links/tool1.jsp" />
 <description value="The description of Sample Tool 1." />
 <icons>
 <listitem value="/images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="communication"/>
 <name value="Sample Communication Tool 2"/>
 <url value="links/tool2.jsp?mode=73" />
 <description value="The description of Sample Communication Tool 2." />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="course_tool"/>
 <name value="Plugin Control Panel Tool"/>
 <url value="links/controlPanelTool.jsp" />
 <description value="Demonstrates adding tools to the course control
panel." />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="user_tool"/>
 <name value="Plugin User Tool"/>

© 2007 Blackboard Inc. Proprietary and Confidential Page 61 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 <url value="links/tool2.jsp?mode=73" />
 <description value="Demonstrates adding tools available to all users." />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="system_tool"/>
 <name value="Plugin Admin Panel Tool"/>
 <url value="links/tool2.jsp?mode=73" />
 <description value="Demonstrates adding tools to the system administration
tool." />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="cs_action"/>
 <name value="CS Action"/>
 <url value="actionbar.jsp"/>
 <description value="Sample CS Action Bar Plug-in"/>
 <icons></icons>
 </link>
 <link>
 <type value="cs_tool"/>
 <name value="CS Tool"/>
 <url value="tool.jsp"/>
 <description value="Sample CS Tool Plug-in"/>
 <icons></icons>
 </link>
 <link>
 <type value="cs_modify_file"/>
 <name value="CS Modify File"/>
 <url value="modifyfile.jsp"/>
 <description value="Sample CS Modify File Plug-in"/>
 <icons></icons>
 </link>
 <link>
 <type value="cs_modify_folder"/>
 <name value="CS Modify Folder"/>
 <url value="modifyfolder.jsp"/>
 <description value="Sample CS Modify Folder Plug-in"/>
 <icons></icons>
 </link>
 <link>
 <type value="cs_manage_portfolio"/>
 <name value="CS Manage Portfolio"/>
 <url value="manageportfolio.jsp"/>
 <description value="Sample CS Manage Portfolio Plug-in"/>
 <icons></icons>
 </link>
 <link>
 <type value="cs_my_portfolios"/>
 <name value="CS My Portfolios"/>
 <url value="myportfolios.jsp"/>
 <description value="Sample CS My Portfolios Plug-in"/>
 <icons></icons>
 </link>
 </links>
 </application>
 </application-defs>

 <!-- Modules, types, and channels for the community -->

© 2007 Blackboard Inc. Proprietary and Confidential Page 62 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 <module-defs>

 <module-type ext-ref="smpl-module" title="Sample Plug-in Module Type"
uicreatable="true">
 <jsp-dir>module</jsp-dir>
 <jsp>
 <view>view.jsp</view>
 <admin>admin.jsp</admin>
 </jsp>
 </module-type>

 <rss-channel ext-ref="gamenews" title="Game News">
 <data-url>http://p.moreover.com/cgi-
local/page?c=Computer%20games%20news&o=rss</data-url>
 </rss-channel>

 <module type="portal/channel" isadmin="true" useraddable="true"
isdeletable="true" title="Sample Channel Module">
 <description>Sample channel module. This module accesses the RSS channel
installed with this plug-in.</description>
 <ExtraInfo>
 <property key="channel.id" type="String">smpl-gamenews</property>
 </ExtraInfo>
 </module>

 <module type="portal/includehtml" isadmin="true" useraddable="true"
isdeletable="true" title="Sample Plug-In Module">
 <description>Sample uploaded module</description>
 <ExtraInfo>
 <property key="body.text" type="String">This module was installed as part of
the sample plugin. It uses the
 basic 'includetext' module type.</property>
 </ExtraInfo>
 </module>

 </module-defs>

 <!-- code permissions required for proper operation -->
 <permissions>
 <permission type="attribute" name="user.givenname" actions="get,set"/>
 <permission type="persist" name="Content" actions="persist"/>
 <permission type="socket" name="*.blackboard.com" actions="connect"/>
 </permissions>
 </plugin>

</manifest>

Localized Manifest

The following sample is a complete manifest for a localized Building Block.

Note: The manifest should use an encoding appropriate for the data contained in the
file. UTF-8 is recommended, but if the manifest contains no multibyte characters, 1SO-
8869-1 and US-ASCII are appropriate as well.

<?xml version="1.0" encoding="ISO-8859-1"?>
<manifest>
 <!-- core extension information -->
 <plugin>
 <name value= "plugin.name"/>
 <handle value= "plgnhndl"/>
 <description value= "plugin.description"/>

© 2007 Blackboard Inc. Proprietary and Confidential Page 63 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 <default-locale value="en_US"/>
 <version value= "1.0.0.1"/>
 <requires>
 <bbversion value="7.0.0"/>
 </requires>
 <vendor>
 <id value="smpl"/>
 <name value="Sample Vendor"/>
 <url value="http://www.samplevendor.com/" />
 <description value="plugin.vendor.description" />
 </vendor>
 <http-actions>
 <config value="admin/config.jsp"/>
 <remove value="admin/remove.jsp"/>
 </http-actions>

 <!-- Custom content types defined by this extension -->
 <content-handlers>
 <content-handler>
 <name value="plugin.content-handler1.name"/>
 <handle value= "resource/x-smpl-type1"/>
 <http-actions>
 <create value="ch1/create.jsp"/>
 <modify value="ch1/modify.jsp"/>
 <remove value="ch1/remove.jsp"/>
 </http-actions>
 <icons>
 <toolbar value="/images/add_ch1.gif"/>
 <listitem value="/images/icon.gif"/>
 </icons>
 </content-handler>
 <content-handler>
 <name value="plugin.content-handler2.name"/>
 <handle value= "resource/x-smpl-type2"/>
 <http-actions>
 <create value="ch2/create.jsp"/>
 <modify value="ch2/modify.jsp"/>
 <remove value="ch2/remove.jsp"/>
 </http-actions>
 <icons>
 <toolbar value="/images/add_ch2.gif"/>
 <listitem value="/images/icon.gif"/>
 </icons>
 </content-handler>
 </content-handlers>

 <!-- Tools defined by this extension -->
 <application-defs>
 <application handle="sampleapp" type="course" use-ssl="false"
name="plugin.application1.name" can-allow-guest="true"
 small-icon="" large-icon="">
 <description lang="en_US">plugin.application1.description</description>
 <links>
 <link>
 <type value="tool"/>
 <name value="plugin.application1.tool.name"/>
 <url value="links/tool1.jsp" />
 <description value="plugin.application1.tool.description" />
 <icons>
 <listitem value="/images/icon.gif"/>
 </icons>
 </link>
 <link>

© 2007 Blackboard Inc. Proprietary and Confidential Page 64 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 <type value="communication"/>
 <name value="plugin.application1.communication_tool.name"/>
 <url value="links/tool2.jsp?mode=73" />
 <description value="plugin.application1.communication_tool.description" />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="course_tool"/>
 <name value="plugin.application1.course_tool.name"/>
 <url value="links/controlPanelTool.jsp" />
 <description value="plugin.application1.course_tool.description" />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="user_tool"/>
 <name value="plugin.application1.user_tool.name"/>
 <url value="links/tool2.jsp?mode=73" />
 <description value="plugin.application1.user_tool.description" />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 <link>
 <type value="system_tool"/>
 <name value="plugin.application1.system_tool.name"/>
 <url value="links/tool2.jsp?mode=73" />
 <description value="plugin.application1.system_tool.description" />
 <icons>
 <listitem value="images/icon.gif"/>
 </icons>
 </link>
 </links>
 </application>
 </application-defs>

 <!-- Modules, types, and channels for the community -->
 <module-defs>

 <module-type ext-ref="smpl-module" title="plugin.sample-module.title"
uicreatable="true">
 <jsp-dir>module</jsp-dir>
 <jsp>
 <view>view.jsp</view>
 <edit>edit.jsp</edit>
 <admin>admin.jsp</admin>
 </jsp>
 </module-type>

 <rss-channel ext-ref="gamenews" title="plugin.rss-channel.gamenews.title">
 <data-url>http://p.moreover.com/cgi-
local/page?c=Computer%20games%20news&o=rss</data-url>
 </rss-channel>

 <module type="portal/channel" isadmin="true" useraddable="true"
isdeletable="true" title="plugin.sample-channel.module.title">
 <description>plugin.sample-channel.module.description</description>
 <ExtraInfo>
 <property key="channel.id" type="String">smpl-gamenews</property>
 </ExtraInfo>

© 2007 Blackboard Inc. Proprietary and Confidential Page 65 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 </module>

 <module type="portal/includehtml" isadmin="true" useraddable="true"
isdeletable="true" title="plugin.sample-includehtml-module.title">
 <description>plugin.sample-includehtml-module.description</description>
 <ExtraInfo>
 <property key="body.text" type="String">plugin.sample-includehtml-
module.extra-info.text</property>
 </ExtraInfo>
 </module>

 </module-defs>

 <!-- code permissions required for proper operation -->
 <permissions>
 <permission type="persist" name="Content" actions="create,modify,delete"/>
 <permission type="attribute" name="user.authinfo" actions="get"/>
 </permissions>
 </plugin>

</manifest>

© 2007 Blackboard Inc. Proprietary and Confidential Page 66 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Packaging the Building Block

Overview

To install a Building Block on the Blackboard Learning System the various pieces must
be collected into a file, called an installation package, which contains all the code, the
Building Block, and deployment information.

Providing a Deployment Descriptor

The servlet specification defines a deployment descriptor to be used in Web
applications. Building Blocks are deployed as Web applications; therefore, a Web
deployment is required. For the purposes of deploying a Building Block this can be as
minimal as possible. This deployment descriptor is defined by the Servlet specification.
It is an XML file that must be named WEB-INF/web.xml. Blackboard supports the
Servlet 2.3 specification. The contents of this are not controlled or used directly by
Blackboard; any valid Servlet 2.3 web.xml file is acceptable. This includes defining
custom tag libraries, servlets, servlet filters, and MIME mappings. Refer to the servlet
specification (http://java.sun.com/servlets) for more information.

The following Deployment Descriptor is an example of what is included in the sample.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <display-name>PlugInManager</display-name>
 <taglib>
 <taglib-uri>/bbUI</taglib-uri>
 <taglib-location>/WEB-INF/config/taglibs/bbUI.tld</taglib-location>
 </taglib>
</web-app>

Zipping the Building Block

To create the package use a tool to .ZIP the files. The folder structure must be
preserved though directory references may be root anchored or relative. This must be
consistent throughout the package.

Note: If additional .jar files are included the Building Block must be packaged with
compression turned off. For example, using the jar tool with the -0 flag will package
the files together without compression. Failure to do so may result in unpredictable
behavior.

© 2007 Blackboard Inc. Proprietary and Confidential Page 67 of 73

http://java.sun.com/servlets

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Migrating a Building Block

Overview

Developers may migrate a Building Block from Blackboard 5.x to Blackboard Learning
System (Release 6.x). This section reviews the steps for migration and offers several
examples.

Note: This section does not apply for Blackboard Learning System (Release 7). There
is a seamless migration for Building Blocks from Blackboard Learning System (Release
6.x to Blackboard Learning System (Release 7).

Migration steps

The following steps outline how to migrate a Building Block from Blackboard 5.x to
Blackboard Learning System (Release 6.0). Release 6.0 Building Blocks will work with
Release 6.1.

Step 1 Change the manifest to include security information.

Step 2 Change the manifest to include application definitions.

Step 3 Remove references to Lightweight objects and associated load/persist

objects. See blackboard.data.* and blackboard.persist.*

Step 4 Update content methods to use the ContentDbLoader and

ContentDbPersister. See blackboard.data.persist.content.*.

Step 5 Update Java Server Pages (JSPs) to use the <context> tag in the

Blackboard Data tag library

Step 6 Update servlets or non-JSP controller logic to set/release Context

accordingly

See the Building Blocks API Specification Guide for more information.

Examples

Step 1 Example
The following XML allows the Building Block to store Content objects, and make socket
connections to addresses in the blackboard.com domain.

 <permissions>
 <permission type="persist" name="Content" actions="persist"/>
 <permission type="socket" name="*.blackboard.com" actions="connect"/>
 </permissions>

Step 2 Example
Adding an application definition can be done by wrapping existing link definitions in an
<application-defs> and <application> tag.

 <application-defs>
 <application handle="sampleapp" type="course" use-ssl="false"
 name="Sample Application" can-allow-guest="true"
 small-icon="" large-icon="">
 <description lang="en_US">Application installed as part of the sample
 plugin</description>

© 2007 Blackboard Inc. Proprietary and Confidential Page 68 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

 <links>
 <link>
 <type value="tool"/>
 <name value="Sample Tool 1"/>
 <url value="links/tool1.jsp" />
 <description value="The description of Sample Tool 1." />
 <icons>
 <listitem value="/images/icon.gif"/>
 </icons>
 </link>
 </links>
 </application>
 </application-defs>

Step 3 Example
Heavyweight objects are a superset of lightweight objects and thus are structurally
compatible. To remove references to Lightweight objects replace the variable
declarations. For example, the following code:

LwCourse course;

becomes:

Course course;

Step 4 Example
CourseDocumentDbLoader and ExternalLinkDbLoader should no longer be used.
Instead, load all content types with ContentDbLoader.

Previously, the code was written as:

 CourseDocumentDbLoader courseDocumentLoader =
 (CourseDocumentDbLoader) bbPm.getLoader(CourseDocumentDbLoader.TYPE);
 CourseDocument courseDoc =
 (CourseDocument)courseDocumentLoader.loadById(contentId);

In Blackboard Learning System (Release 6), the code should be written as follows:

 ContentDbLoader courseDocumentLoader =
 (ContentDbLoader)bbPm.getLoader(ContentDbLoader.TYPE);
 CourseDocument courseDoc =
 (CourseDocument)courseDocumentLoader.loadById(contentId);

Note: ContentDbLoader methods return Content objects; thus the results must be
cast to the desired object type.

Step 5 Example
The context tag is required to initialize any request processing that deals with the
correct Virtual Installation.

Add a reference to the Data tag library:

<%@ taglib uri="/bbData" prefix="bbData"%>

Wrap all logic for the page inside <context> tags. Note that because of the syntax for
declaring tag library references, there will always be a prefix for the tag that the user
defines, e.g., <bbData:context>.

<bbData:context>
<!-- your code goes here -->

© 2007 Blackboard Inc. Proprietary and Confidential Page 69 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

. . .
</bbData:context>

Step 6 Example
When writing non-JSP classes, such as a servlet, the Context must be manually
initialized and released, as shown below:

 try {
 //get services
 ctxMgr = (ContextManager)BbServiceManager.lookupService(ContextManager.class);
 Context ctx = ctxMgr.setContext(request);

 //process . . .

 }
 catch (Exception e) {
 //handle error...
 }
 finally {
 if(ctxMgr != null) {
 ctxMgr.releaseContext();
 }
 }

Note: Make sure ContextManager.releaseContext() is performed in a finally block.
This will ensure that context gets released.

© 2007 Blackboard Inc. Proprietary and Confidential Page 70 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Advanced Development Issues

Overview

Currently, Building Blocks are additions to the Blackboard Learning System. They can
be as simple or as complex as desired. For some types of Building Blocks, however,
significant complexity may extend beyond the scope of the Web application container.
To meet a wide array of needs the Blackboard APIs are designed to be both portable
and flexible. There are numerous possibilities for Building Blocks, especially with the
assistance of Blackboard Technical Services. Some of these possibilities are discussed
in this section.

Shipping additional libraries

The Web application portion of the servlet specification states that Web applications
may ship both custom classes and .jar files. One caveat is that if a library contains a
duplicate of a class contained in the Blackboard Learning System class path,
unpredictable behavior may result in the Building Block. The reason is that the class
loader used for the Web application will find and load the system’s version of the
custom class before it loads the one found in the custom class created in the Building
Block.

Third-party class libraries

The following third-party class libraries are included in the Blackboard Learning
System class path:

• Gnu-regexp-1.0.8.jar
• Xerces-1.4.3.jar
• Gnu-getopt-1.0.8.jar

Off-line tools

Most of the Blackboard APIs are meant to be portable and can be used outside of the
Blackboard Learning System server runtime to create offline tools. Not all system
services are available, but much of the content runtime is set up to allow data objects
to be created and manipulated in external programs.

© 2007 Blackboard Inc. Proprietary and Confidential Page 71 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

Troubleshooting

Introduction

Questions and problems may arise during the creation of a Building Block. The
following section enables developers to deal with some of the most common issues.

Threading and synchronization

Though not exhaustive, the following list represents some of the possible problems in
the multi-threaded application server environment.

• Many threads can safely access one persistence manager instance
simultaneously. However, multiple threads are not allowed to simultaneously
use the same database connection.

• Due to efficiency issues the typed list classes are not synchronized. If a list is

cached that may be modified by multiple threads get a synchronized version of
it through the Java collections APIs.

• In general, if there are more threads than database connections in the pool

the threads may block while trying to obtain a connection. The order in which
the threads obtain a connection is dependent on the connection pool
implementation and may not be first-in-first-out, as expected.

Installation issues

Problem: Installing the Building Block results in the error “Error registering plugin”,
with additional error information about “invalid entry CRC.”

Solution: Do not specify compression when creating a .war file that includes .jar files
that are already compressed.

Classpath Issues

Problem: At run-time the JSP compiler fails to locate classes.

Solution: Any .jar files needed to run the Building Block must be in the WEB-INF/lib
directory of the Building Block. An example would be a third party library.

Classes that are compiled from source and not put in .jar files should be in WEB-
INF/classes. That is the standard directory within the Web/app structure.

Web Application Issues

Problem: Accessing any link for the Building Block results in a “Page Not Found”
message.

Solution: Ensure that there is a valid web.xml file in WEB-INF directory. The Building
Block will not be registered as a Web application if there is not a web.xml. Additionally,
if the Universal Resourse Identifier (URI) specified in the link is not correctly mapped
in the web.xml the servlet container will not be able to resolve the URL.

© 2007 Blackboard Inc. Proprietary and Confidential Page 72 of 73

Blackboard Building Blocks (Release 8) Building Block Developer’s Guide

© 2007 Blackboard Inc. Proprietary and Confidential Page 73 of 73

	Introduction
	Overview
	Manual Updates
	Audience
	Quick start

	Building Block Overview
	Overview
	In this section
	What is a Building Block?
	Overview
	Building Block = Web application
	Entry points = Hyperlinks
	Java libraries

	Things to Do With a Building Block
	Overview

	Architecture Examples
	Overview
	Plug – in
	Bridge

	Building Blocks APIs and Runtime
	Overview
	In this section
	Data Objects and Persistence
	Overview
	Data Objects
	Persistence Objects
	Using data objects and persisters

	Session and Context, Gradebook and Authorization APIs
	Overview
	Session and Context
	Gradebook
	Authorization
	Authentication

	Using the Building Blocks APIs and Runtime
	Overview
	In this section
	Top-Level Package Structure
	Overview
	Top-level Packages

	Blackboard Data Model
	Overview
	Data sub-packages

	Strongly-Typed Enumerations
	Overview
	Class
	Tips and tricks

	Persistence Services
	Overview
	Container
	Loaders and persisters

	Blackboard Look and Feel
	Overview
	In this section
	Building Blocks Tag Library
	Overview
	Tags
	Using the Tag Library
	Example

	Icons
	Overview
	List Item icon

	Writing Content Building Blocks
	Overview
	In this section
	Entry Points
	Overview
	Create action
	Modify/Remove action

	Using Content Items
	Overview
	Create a content item
	Using ID Objects
	Save the document object
	Loading a Document
	Content Item Types

	Context Passing
	Overview
	Course Document expansion
	Deferred expansion
	Run-time expansion
	Variables

	Interacting with the Gradebook
	Overview
	Line items
	Scores
	Basic Usage

	Using the File System
	Overview
	Directories

	 Writing Tool Building Blocks
	Overview
	Applications
	Entry Points
	Communication Tools vs. Course Tools

	Writing Content System Building Blocks
	Overview
	Installation
	Applications
	Entry Points
	Execution Contexts

	General Development Tasks
	Overview
	In this section
	Authenticating Users
	Overview
	Checking authentication

	Authorizing Users
	Overview
	Authorization example
	Authorization utility methods

	Creating a Building Block
	Overview
	In this section
	Development Environment
	Overview
	CLASSPATH
	Utility Libraries
	Java Database Connectivity (JDBC)
	Additional libraries

	Deciding What to Build
	Overview
	Build the Content Handler Actions
	Build Links
	Build a Configuration Script
	Build a Remove Script

	Debugging the Building Block
	Overview

	Building Block XML Packaging Format
	Overview
	In this section
	Web Archive Overview
	Overview
	Sub-directories

	URLs
	Overview
	Obtaining a URL to the Building Block
	Redirection vs. request dispatch
	Redirects
	Request dispatch
	Encoded URLs

	Blackboard Learning System Manifest
	Overview
	Manifest Definitions
	Localizing the Manifest
	Basic Information and Configuration
	Defining a content handler
	Defining an application
	Declaring security
	Complete Manifest
	Localized Manifest

	Packaging the Building Block
	Overview
	Providing a Deployment Descriptor
	Zipping the Building Block

	Migrating a Building Block
	Overview
	Migration steps
	Examples

	Advanced Development Issues
	Overview
	Shipping additional libraries
	Third-party class libraries
	Off-line tools

	Troubleshooting
	Introduction
	Threading and synchronization
	Installation issues
	Classpath Issues
	Web Application Issues

