Nanostructures Research Group

Ultra-Short Channel MESFETs & HEMTs

25 nm HEMT IEEE Electron. Dev. Lett. **11**, 209 (1990)

Ultra-Short Channel MESFETs & HEMTs

167 GHz

Chart taken from S.-J. Yeon *et al.*, IEDM 2007, pp. 613-6, December 2007.

Predictions for Today's In_{0.75}Ga_{0.25}As *p***-HEMTs**

Lateral Surface Superlattices Large Arrays of Quantum Dots

160 nm period lateral superlattice on AlGaAs/GaAs heterostructure

Prog. Quantum Electron. **16**, 251 (1992) Superlatt. Microstruc. **2**, 373 (1986)

- Established period band structure at both low and high magnetic fields
- Cooperative effects and shifts of energy in applied bias demonstrated

Poly-Si Based Single-Electron Devices drain Gate mm

Introduction

Scanning gate microscopy (SGM)

Metalized AFM tip with negative bias applied.

Detection of:

local potential local charge local current distribution

Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH

Imaging of Current flow from QPC

M.A. Topinka et al., Nature 410, 183 (2001)

Cryogenic SPM System

Piezo resistive cantilever PtIr coated tip Biased up to -3 V

Scan mode

Contact mode for topography Lift mode for SGM

Cryogenic SFM head by Omicron

Scan window = 20 μ m x 20 μ m at RT, decreasing 2.7 μ m at 0.3 K

He³ cryostat by Janis Base temperature: 0.27 K Isolators by Minus-K

< 0.5Hz resonant freq.

Measurements in a Quantum Point Contact

And the future holds...

- Transition of NRG into a Center within AINE, designed to couple the nanoelectronics activities within EE to the nano-physics thrusts within the Physics Department
- Expand simulation activities to more devices as part of the Computational Science Center
- Transport in new materials (graphene, oxide heterojunctions, nanowires, ...)
- Continue SGM studies of quantum coherence in quantum dots

