LeRoy Eyring Center for Solid State Science Nate Newman, director

Established by ABOR on May 25, 1974

encourage & support *interdisciplinary* research activities in solid state materials

- Highlights of current status
 - * >\$2+ Million facility budget 20% higher than our last year record value
 * >\$32 M "touched-view" of research expenditures

* >40 instruments available to ASU & outside research community including TEM, SEM, FIB, SQUID magnetometer, RBS, AFM, AES, XPS, thermochemical analysis

- * >200 current users, >70 P.I.s, >20 departments and >4 colleges
- * >Outreach- "Science is Fun" program reaches >20,000 K-12 students
- * > Members of IAP include Intel, Chevron, Monsanto, Dial, Freescale,

> <u>1200 users to-date, our most important "product"</u>

Major objectives of the Center are:

•to encourage and support interdisciplinary research activities in solid state science

 to operate & administer user-facilities for multidisciplinary research

•to support outreach activities ; and

•to provide a valuable resource for industry through industrial affiliates programs

Expensive Advanced Instrumentation

Milions \$\$\$\$ invested in instrumentation (unique) Thousands of hours in associated expertise

People who make it happen

LE-CSSS Staff

1984-present 1985-present 1985-present 1985-present 1987-present 1987-present 1989-present 1994-present 2000-present 2000-present 2002-present 2003-present 2003-present 2007-present 2007-present Karl Weiss, **Renu Sharma Bonnie Mello David Wright Peter Crozier Paul Perkes Timothy Karcher Barry Wilkens Zhenquan Liu** Jon Mull **Grant Baumgardner Donalea Robertson** Joanne Ackerman Sisouk "Si" Phrasavath Roxanna montoya

23 years 22 years 22 years 20 years 20 years 20 years **18 years** 15 years 7 years 7 years **5** years 3/7years **3/14 years** 1 year 3 days

Atomic Resolution Z-Contrast Imaging

Z-contrast image of Si <110> orientation – atoms are white

Separation of pair of Si atoms ~ 0.14 - 0.15nm Z-contrast image simulation conducted using Kirkland codes $\Delta f = 50$ nm, t = 5 nm

E.J. Kirkland – Advanced Computing for Electron Microscopy 1998

> For thin samples, focusing is unique no contrast reversals !

Ordered Arrays of GaN Dots on Si

10 x 10 array drawn from adsorbed layers

GaN dots are very regular and show uniform size with base width of 9 nm and FWHM of 4 nm.

Decomposition of W(CO)_6

Array of <u>very</u> small W dots on Si_3N_4

Very few atoms in dot (~10 -15)

Shot noise leads to fluctuations

FWHM of average 1 nm - a world record for EBID !!!! Smallest cluster is 0.7 nm (submitted to Nanoletters)

N. Newman, School of Materials, ASU

NEW addition to LE-CSSS September 1st New High resolution X-Ray Diffractometer

- high speed wide angle x-ray diffraction and fast mode reciprocal space mapping

Some technical details:

- 7 axis horizontal goniometer (Omega, 2Theta, Psi (Chi), Phi, X, Y, Z)
- flip focus Cu anode x-ray tube (line or point focus)
- high resolution: 5 arc sec in point focus mode / 19 arc sec in line focus mode
- low resolution 0.04 ° (Bragg Brentano slit optics)
- diffracted beam optics
 - o rocking curve receiving slit used with sealed Xe proportional detectors
 - 12 arc sec Ge(220) monochromator used with sealed Xe 0 proportional detectors
- manual anti scatter assembly used with X'Celerator high speed solid state linear array position sensitive detector -ICDD PDF-2 XRD Database (2006-2007 version)
- o 19 arc sec hybrid (combination x-ray mirror + channel cut Ge(220) monochromator) line focus module
- o manual divergence slit line focus module

Contact Emmanuel Soignard (965 7242, emmanuel.soignar@asu.edu) for more information.

Applications:

- air sensitive materials

Thin film characterization:

- characterize epitaxial films and film stacks
- curvature, mismatch, mosaicity
- (crystalline and amorphous)

Accessories:

- 0 collection from RT up to 900 °C
- o 5 arc sec Ge(440) point focus module (Bartels
 - monochromator)

- layer composition, relaxation, thickness,
- degree of off cut
- super lattice period
- x-ray reflectivity on layered structures

- three sample stages:
- o standard 4" wafer mount
- solid sample holder (also used for powders)
- Anton Paar DHS 900 domed hot stage for data
 - Incident beam optics

<u>NEW addition to LE-CSSS, February 2008</u> <u>Quantum Design MPMS SQUID magnetometer</u> <u>& electrical test system, 0-5 T, 2 -400 K</u>

SQUID AC Susceptibility Measurement (*)
0.1 Hz to 1KHz
sensitivity: 2 x 10⁻⁸ emu at 0 T
Ultra-Low Field Capability (*) ±0.05 G
Reciprocating Sample Option (RSO) - DC
Magnetization absolute
sensitivity: 1 x 10-8 emu @ 2,500 Oe
Continuous Low Temperature
Control/Temperature Sweep Mode (CLTC) Sweep rate: 0.001 - 10 K/min.

Applications:

-Magnetic materials -Superconducting materials -Paramagnetic centers in semiconductors and dielectrics

New addition to LE-CSSS VG ESCALAB 220i-XL

The LeRoy Eyring Center for Solid State Science announces the availability of the VG ESCALAB 220i-XL. (shown in its current location in Goldwater B10) (donated to ASU by Intel Corp.)

It is expected to be fully operational/available for use on Sept. 1, 2007

Features:

- Standard XPS analysis.
- X-Ray Photoelectron imaging.
- SEM-style imaging.
- Video imaging.
- Small spot analysis: 100 mieron, 50 mieron, and 20 mieron.
- XPS Depth-profiling in small spot mode.
- XPS Angle-Resolved analysis.

X-Ray sources:

- Monochromated Al K-alpha. Linewidth 0.8 eV.
- Twin anode Al/Mg K-alpha

Sample handling:

- Standard multiple sample mount bar.
- 4° diameter and smaller wafer mount platform with rotation.
- Sample stage x-, y-, and z-motion.

Plense contact Tim Karcher at Tim.Karcher@nsu.edu; GW B83; (480) 965-9070

Nuclear Microprobe Analysis (Small Spot RBS and PIXE Analysis)

The capability of high spatial resolution PIXE and RBS analysis has been added to the IBeAM facility with the addition of a new beamline and focusing lens which provides a beam spot 100 - 500 X's smaller than the current 1 mm² spot size. The sample chamber incorporates an SEM (scanning electron microscope) and an optical microscope (with CCD camera) for small sample viewing and beam localization. Our anticipation is that the Nuclear Microprobe will find useful applications in a number of areas where improved spatial resolution in elemental analysis is

required. Some examples would include: Geology (mapping grains and crystals), Physics and EE (elemental analysis of microstructures and devices) and Life Sciences (elemental mapping of cells).

Optical image of a piece of ancient Egyptian decorated glass. Red arrow at left indicates location of 20 micron dia. proton beamspot.

It is fully operational and currently available for use.

Contact Barry Wilkens (barry.wilkens@asu.edu) for more information.

New addition to LE-CSSS Raman spectroscopy facility

Instrument: custom System w/ 532 nm excitation wavelength Currently available in Physical Science C37 (PSC 37)

State of the art custom-built notch filter based high throughput Raman system with an excitation wavelength of 532 nm.

- Maximum available power: 100 mW
- Special resolution: < 5 microns
- PI Liquid nitrogen cooled detector and Acton spectrometer
- Can collect down to $\sim 100 \text{ cm}^{-1}$.

No or minimal sample preparation

- NON DESTRUCTIVE
- Works for most liquid, gas or solid
- pure phase, multi phases, glasses, single crystals.... and even artwork such as painting...

Some applications

- phase identification (compare to a published spectrum/ standard)
- investigate small chemical/structural
- strain/defects in some material
- sample mapping
- *in situ* characterization at high pressure and or temperature or within a medium

Some limitations:

- most metals are difficult / impossible to observe
- sample fluorescent
- symmetry of the material

Contact Emmanuel Soignard (965 7242, emmanuel.soignar@asu.edu) for more information.

Center for High Resolution Electron Microscop

Electron Microscopy Methods for Advanced Materials

The purpose of the Center for High Resolution for Electron Microscopy is to promote the application of electron microscopy methods to problems of current scientific and technological importance.

The Center is a regional resource for applications involving imaging, microanalysis, electron diffraction, electron holography, and surface microscopy, as well as developments in methods and instrumentation.

Specific aims of the Center include:

- •to provide access to advanced research tools;
- •to provide advice on state-of-the-art techniques;
- •to offer educational opportunities such as
- advanced schools and research workshops.

Transmission Electron Microscopy

Cross-sectional TEM image revealing microstructure of Co/SiO₂/CoFe magnetic tunnel junction [1].

Cross-sectional electron micrograph showing misfit dislocations at sapphire/AlN interface.

Electron Holography

Two-dimensional imaging of magnetic field associated with tiny magnetite crystals in magnetotactic bacteria [2

Electrostatic potential within 0.13micron transistor device quantified using electron holography [9].

Scanning Transmission E.M.

Energy-dispersive Xray analysis with subnm STEM probe reveals Si interdiffusion into epitaxial Ge island [3].

Grain boundary solute distribution in Si_3N_4/SiC ceramic densified with Y_2O_3/Al_2O_3 sintering aid [4].

Cathodoluminescence

Plan-view CL images from InGaN used to correlate structural defects with light emission [5

Convergent Beam Electron Diffraction

Quantitative CBED pattern yields charge density map showing d-orbitals in cuprite crystal [6].

Energy Filtered Imaging Environmental Cell Microscopy

Progressive hydroxylation of MgO nanocrystal with associated change in EELS O_K -edge [7].

NanoSpectroscopy

Cross-sectional image of InGaAs quantum dots in GaAs matrix and EELS elemental profile [8].

URL: http://www.asu.edu/clas/csss/chrem

References

D. J. Smith, et al., J. Appl. Phys., 83 (1998) 5154.
 R. E. Dunin-Borkowski, et al., Science, 282 (1998) 1868.
 S. A. Chaparro, et al., Phys. Rev. Lett., 83 (1999) 1199.
 K. Das Chowdhury, et al., J. Amer. Cer. Soc., 78 (1995) 2579.

[5] S. Srinavasan, et al., Appl. Phys. Lett., 2001 (in press)
[6] J. M. Zuo, et al., Nature, 301 (1999) 49.
[7] M. J. McKelvy, et al., Chem. Mater., 13 (2001) 921.
[8] P. A. Crozier, et al., Appl. Phys. Lett., 2001 (in press)
[9] M. A. Gribelyuk, et al., Phys. Rev. Lett., 2001 (in press)

Major Instrument Acquisitions

1970 JEOL 100B2 1974 JEOL 100B4 1979 VG HB-5 **1980 PHILIPS 400T 1980 JEOL 200CX 1981 PHILIPS 400T FEG* 1984 JEOL 4000 EX* 1986 PHILLIPS EM 300 1988 PHILIPS 430 1989 JEOL 2000FX* 1989 TOPCON 002B* 1990** VG HB-501 **1992 RBS I-beam accelerator 2007 1993** AES Physical **Electronics 590 1993 XPS Kratos XSAM 800**

- **1995 PHILIPS CM-200***
- **1996** LEO 912*
- **1997** JEOL 840*
- **1997** VG HB-501
- **2000 JEOL JSM 6300**
- **2001 JEOL 2010F FASTEM***
- **2002 TECNAI F20***
- **2003** XL 30 ESEM FEG*
- 2004 Nova Nanolab FIB*
- 2006 VG-220i imaging XPS
- 2007 Panalytic high-res. X-ray diffractometer
 - Quantum Design SQUID Magnetometer

Regional Aberration Corrected Microscopy Center (Ray Carpenter, chair)

Observations:

- 1. no aberration corrected electron microscopes in Southwest.
- 2.ASU is best qualified university in the US to construct and operate a regional center.

1.Personnel.

- 2 tenure track materials science/electron microscopy in SOM
- 2 permanent microscope researchers/operators
- 2 postdocs
- 1 computer support staff
- 2 microscope maintenance staff
- 1 center management staff

3. Equipment

- aberration corrected STEM capable microscope
 - optimized for chemically sensitive imaging, electron and x-ray emission nanospectroscopy;
- aberration pre-and post-specimen corrected STEM (TEM/STEM)
 - for chemically sensitive imaging, HREM imaging, tomographic imaging, holography and nanospectroscopy
- TEM/STEM microscope with chromatic aberration corrector as well as spherical aberration corrector, cryostage, monochromator, and energy loss spectrometer
 - optimized for biomaterials nanocharacterization
- corrected microscope (TEM, TEM/STEM or DSTEM) with nanospectroscopic capability and ultra fast detection systems
 - for *in-situ* chemical reaction and phase transformation research.

INTEGRATED MATERIALS ANALYSIS & ADVANCED COMPUTATIONAL MODELING

Arizona State University ~ Center for Solid State Science

Science is Fun

- Brings excitement of scientific discovery to K-12 classrooms via interactive, minds-on demonstrations & explorations
- 100 schools, >20,000 students visited
- UNDERGRADUATE INTERNS / RESEARCH ASSISTANTS
 - enroll in 3-credit Science is Fun Service Learning Internship (UNI 484).
 - Trained & present science explorations at local schools throughout greater Phoenix metropolitan area.
- <u>http://www.asu.edu/clas/csss/scienceisfun/</u>

Industrial Associates Program for Center for Solid State Science

Director, Dr. Renu Sharma

Renu.sharma@asu.edu

480 965-4541

Membership-Based Structure

- Industrial Associates Program (IAP) established in 1988 and membership based.
- Members over the past 5 years include Intel, Motorola, Monsanto, Delphi, Chevron, Heraeus, IBM, Nanostellar, Exxon, Dow Chemical (Union Carbide), Shell, Seagate, Ford, NanoTEM, HP, Agilent, AMD, Qynergy, Valence Technology.
- Membership Categories:

Platinum \$40k/year Gold \$10k/year Silver Hourly quotes

Aligning with major ASU initiatives, programs and projects

School of Materials Research areas

- ✓ Functional Materials
- ✓ Computational Materials Science
- ✓ Energy
- ✓ Electron microscopy
- Soft solids

Integrated Materials- \$200K in support for CEMAPS in 08

Arizona Institute for Renewable Energy (AIRE) Center for Bio-Advanced Energy and Center for Polytechnic Photovoltaics Photosynthesis Renewable Energy Energy Center Electrochemistry Laboratory Capabilities and Infrastructure MTW odesian INSTITU Poly Campus PTL School of Nanofab Materials

AIRE – Arizona Institute for Renewable Energy, ~\$800K in FY08 & MRSEC effort (van Schilfgaarde)

ASU's Flexible Display Center: Resolving U. S. Industry's Barriers to Scale-Up

The Gen II pilot line capable of demonstrating the manufacturing and scaling of large area, lightweight integrated photovoltaic devices on flexible substrates

Flexible Display Center- Multi-million dollar commitment per year in terms of 75% RID return and Building O&M/Debt Service